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PREFACE 

This Second Edition of the Software Development Handbook has 
been extensively revised and updated to incorporate new 
developments, and to, improve and clarify the presentation. 

As before, it is hoped that the book will appeal on several 
levels. The first three chapters are an introduction to the 
I - -  rechaol~gy, and assuae little sr ns b - - L - 2  - e l  I - - - - -  

L c L r r r r r L c r r  hLIUWlzdge . 
Chapter 1 ,  which is introductory, describes the nature of 
software and the particular contribution of microsystems 
technology. Chapter 2 describes, step by step, the process 
of software development for microcomputers. Chapter 3 
describes the tools of the software engineer. It is hoped 
that these chapters will appeal to those who have a 
peripheral interest in the technology, as well as to those 
who are or will become directly involved in software 
engineering. 

Chapter 4 addresses the subject of software>esign, which we 
feel can and should be tackled separately from the 
discipline of programming in a particular language. The 
goal of appealing to a wide level of readership means that 
experienced software engineers will find some of the 
material familiar; however the approach may well be new, and 
some at least of the ideas will be novel, This chapter 
introduces suggested algorithmic and graphical notations for 
language independent software design, Those new to the 
technology are advised to read Chapter 4 in conjunction with 
some practical experience of programming in one of the 
languages available. 

Chapter 5, Component Software, is the major new addition to 
the book. It describes a method of developing and packaging 
complex real time software functions. Such packages are 
available off the shelf from Texas Instruments for direct 
incorporation in application systems. Component Software is 
a significant step towards complete packaged functions, 
incorporating both hardware and software. These are likely 
to play an important part in microsystems technology in the 
future. Chapter 5 also includes a description of 
concurrency and the requirements of real time software. 

Chapters 6, 7 and 8 describe in turn Microprocessor Pascal, 
Power BASIC, and 9900/99000 Assembly Language. These 
chapters are not intended to be complete language 
tutorials. Tutorials are available elsewhere; and it is 
felt that programming is best taught by a combination of 
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personal tuition and practical experience. Courses on 
programming are available from various sources, including 
Texas Instruments. Rather, these chapters are designed to 
give a feel for each language, its important features, and 
its areas of application. Microprocessor Pascal is a 
professional programmer's tool which permits the 
construction of reliable, real time software systems of any 
level of complexity, Power BASIC is a much simpler language 
that can be learned in a few hours, and can be used even by 
non software professionals to provide quick solutions to 
simple problems. Assembly language provides direct access 
to all the resources of the microcomputer, and can be used 
in critical areas of a system to "fine tune" for maximum 
performance. Naturally, effective use of assembly language 
requires a certain level of skill. Chapter 8 contains an 
extensive "Algorithms and Techniques" section, describing 
some commonly used solutions to specific problems. Each 
chapter includes, besides the language description, a 
Reference Section that tabulates the vital elements of each 
language , 

This handbook is not intended as a complete course in 
software development for microcomputers. However, wieh 
appropriate additional material and combined with practical 
experience of one or more of the languages described, it 
could form the basis for such a course. The aim is to 
provide a Handbook for the emerging discipline of software 
engineering for microcomputers, and to begin the process of 
identifying and communicating those elements of the 
technology that will prove to be of lasting value. This 
book is a distillation of the practical experience of 
software engineers, and it,is hoped that it will make some 

, contribution to those entering on or already immersed in the 
technology. 

The authors wish to thank all those who have contributed 
approaches, ideas, descriptions or actual software examples, 
and without whom this book could not have been written, 

Geof f Vincent 
Jim Gill 

October 1981 
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We would appreciate your comments on the usefulness of this 
handbook. Please complete and return this form to the 
address overleaf . 

Name: (last) (first): 
Company: Position: 
Address : 

Country: 

1. Is the handbook well organised? Yes No 
Comments: 

2. Is the text correctly presented and adequately 
illustrated? Yes - No - 
Comments : 

3. What subject matter could be expanded or clarified? 

I 

4. Are you directly involved in software development? 
Please indicate your main area(s) of interest. 

5. Have you found this handbook useful 
(a) As an introduction to the field 
(b) As a source of ideas/information 

( c )  As a reference book . . 
(d) In any other way (please specify) 

6. Do you use any Texas Instruments software products? 
Is the information on these products useful to you? 

7. Any other comments 
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Please mail this sheet to: 

M/s 35 
Microprocessor Group 
TEXAS INSTRUMENTS Ltd 
Manton Lane 
Bedf ord 
MK41 7PA 
ENGLAND 
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CHAPTER I 

INTRODUCTION 

1.1 WHAT IS SOFTWARE? 

Software is what makes microprocessor technology different 
from conventional engineering techniques. Fundamentally, 
software is a set of instructions that tells the hardware 
(the microprocessor, and any electrical or mechanical 
devices connected to it) what to do. 

In a conventional machine, the physical layout of the parts 
determines what the machine will do: 

- L LdJjg, 
Figure 1-1 Conventional Machine 

In a microprocessor machine, it is not always possible to 
tell from the physical arrangement exactly what the machine 
does: 

PROCESSOR 

Figure 1-2 Microprocessor Machine 

The function of the machine is determined by software. 
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The g e n e r a l  l a y o u t  of a  m i c r o p r o c e s s o r  machine i s  shown i n  
F i g u r e  1-3. 

INPUTS 

SENSORS 
(TEMPERATURE, 

POSITION, 
LIGHT, ETC) 
SWITCHES, 

KEYBOARDS 

PROCESSOR 
OUTPUTS 

- 

MOTORS, 

DISPLAYS, 
PRINTERS 

F i g u r e  1-3 Layout  of a  M i c r o p r o c e s s o r  Machine 

I n  t h e  c e n t r e  i s  t h e  m i c r o p r o c e s s o r .  To t h e  p r o c e s s o r  a r e  
b r o u g h t  a  s e r i e s  of i n p u t s  - which might  come from 
t e m p e r a t u r e  s e n s o r s ,  l i m i t  s w i t c h e s ,  o p e r a t o r  keyboa rds  and 
s o  on, A l l  i n p u t s  must be c o n v e r t e d  t o  e l e c t r i c a l  s i g n a l s  
b e f o r e  t h e y  r e a c h  t h e  p r o c e s s o r .  

From t h e  p r o c e s s o r  come a  c o l l e c t i o n  of o u t p u t s  - a g a i n  
e l e c t r i c a l  s i g n a l s ,  which c a n  be u sed  t o  o p e r a t e  m o t o r s ,  
a c t u a t o r s ,  d i s p l a y s  and s o  on, The p r o c e s s o r  i t s e l f  h a s  a n  
e x t e n s i v e  r e p e r t o i r e  of o p e r a t i o n s  i t  c a n  pe r fo rm,  i n v o l v i n g  
i n p u t s ,  o u t p u t s  and i n t e r n a l  m a n i p u l a t i o n s .  However, by 
i t s e l f  t h e  p r o c e s s o r  i s  u s e l e s s ,  It needs  a  program - a  s e t  
o f  s o f t w a r e  i n s t r u c t i o n s  t h a t  s p e c i f y  e x a c t l y  what 
o p e r a t i o n s  t o  p e r f o r m ,  and i n  what o r d e r .  The program w i l l  
d e t e r m i n e  when t o  t a k e  n o t i c e  of ( t o  r e a d )  t h e  i n p u t  
s i g n a l s ,  what t o  do w i t h  them, and what o u t p u t  s i g n a l s  t o  
p roduce .  It i s  t h e  program t h a t  c o n t r o l s  t h e  machine.  
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INPUTS OUTPUTS 
PROCESSOR 

SENSORS 
(TEMPERATURE, 

POSITION, MOTORS, 
LIGHT, ETC) \ 
SWITCHES, DISPLAYS, 

PRINTERS 

PROGRAM 
- 

Figure 1-4 Program Control 

One characteristic of microprocessor systems is that a 
different program placed in the 'same set of hardware will 
cause the machine to do different things. Of course, the 
scope of what can be done is determined by the hardware: if 
there is not a motor control circuit connected to a 
microprocessor, there is no way that the software will be 
able to turn a motor on and off. It is the hardware that 
determines what is possible; it is the software that 
determines what the machine actually does. 

Software must have some ultimate physical reality in order 
to have any effect on the real world. However, it has two 
fundamental characteristics which distinguish it from 
hardware. First, it is at least an order of magnitude 
easier to manipulate than hardware: changing a piece of 
software usually involves no more than typing a few keys at 
a keyboard, while changing a hardware layout (say a printed 
circuit board) requires a lot of work and a lot of time. 
Second, software has a chameleon-like quality of being able 
to change its physical form without altering its essential 
nature. The same piece of software may exist on a magnetic 
disk, in semiconductor memory, as printed output or 
displayed on a screen. 
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HUMAN READABLE MACHINE READABLE 

Figure 1-5 Software Has No Unique Physical Form 

The problems which characterise software engineering are 
problems of management and organization rather than the 
problems of dealing with the physical world. 

The way the traditional computer evolved was determined by 
the size and cost of available technology. These factors 
influenced how the different parts of the computer 
developed, how they were .put together, and the kinds of 
applications where computers could be used. For reasons of 
cost and physical size it made no sense at all to consider 
placing a computer in a consumer product, or even in the 
average factory. Microprocessors are small and cheap enough 
to be placed in any piece of equipment. This, in turn, has 
revolutionised some aspects of computer technology: 
microcomputers are not just smaller copies of large 
computers, but have some significant new characteristics. 

The major effort of design for a microcomputer application 
goes into software. Software is in a number of ways easier 
to deal with than hardware. However, it must be treated 
with respect. Designing the software for a complex 
application is not trivial, especially as the potential of 
the microprocessor leads to more ambitious projects. With a 
new technology, new methods must be used: those developed 
for hardware design are not appropriate. Even techniques 
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used in the design of software for 'mzinfrzme' or 'mini' 
computers need adapting, because of the special features and 
the different areas of application of microcomputers. This 
book describes the techniques of system and software design 
that are applicable to the new technology of microsystems 
(=  microprocessor systems). 

1.2 BLACK BOXES AND DIGITAL ELECTRONICS 

Any mechanical or electrical device can be considered, very 
simply, as a black box with inputs and outputs: 

Figure 1-6 "Black Box" 

"Inputs" might be switches, temperature sensors, flow. rate 
detectors, or keys pressed by a human operator. ltOutputs" 
might control a motor, print text or figures, switch on a 
heater, and so on. 

The "black box" processes .these inputs and produces outputs 
in a well-defined fashion. For example, a typewriter takes 
key presses as input and produces printed characters 
corresponding to the key inputs as outputs. All problems 
that are solvable by machinery can be analyzed in this 
manner. The black box, with its inputs and outputs, may be 
called a system. 

How can such black boxes be built? The traditional, 
non-computer method would be to design a dedicated piece of 
hardware: a mechanical device. Methods of implementation 
have varied. Early workers used wires, pulleys, cogs and a 
great deal of mechanical ingenuity. In general, mechanical 
systems are restricted to the kind of simple and direct 
response characterised by the typewriter. Electrical 
systems provide additional power, but in general do not 
permit much greater complexity. 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION 

Electronics introduced a whole new range of possibilities. 
Perhaps the most significant advance in black-box 
implementation was the invention of digital electronics, 
based on the binary digit, or bit. 

A bit can be considered as a switch. It has two possible 
states: on or off, 1 or 0 ,  high or low. Bits can easily be 
represented in electronic circuits, and they can be used to 
store information. Circuit elements can be designed that 
combine bits in various useful ways. One such element is 
the AND gate, conventionally depicted as follows: 

INPUTS 

Figure 1-7 AND Gate 

OUTPUT 

The basic AND gate has two inputs, here called A and B, and 
one output C. These are digital signals, each of which can 
take one of two possible values (conventionally represented 
as "0" and "1"). Each input and output line represents one 
bit of information. For given conditions of the inputs A 
and B, the output C is completely determined. For an AND 
gate, C is 1 only when both A and B are 1. This can be 
summarised in a truth table, which maps the value of the 
output C for all possible values of the inputs A and B: 

Figure 1-8 AND Gate Truth Table 

By combining logic elements such as the AND gate, electronic 
circuits can be constructed to take decisions and signal 
appropriate outputs depending on the state of any number of 
inputs. It is only necessary to arrange that the inputs 
represent the state of switches, sensors etc, and to connect 
the outputs to motor control circuits, actuators and 
displays, to construct very complex pieces of machinery. 

Electronic systems can provide a limited kind of memory, 
counting operations, and simple arithmetic. Integrated 
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circuit technoiogy allows many thousands of logic ele ents 
such as the AND gate to be implemented on a single chi3 of 
silicon 4 or 5 mm square. Electronics works very fast, too: 
many millions of decisions of the AND gate variety 
(determining the vaiue of C given the values of A and B) can 
be made per second, and many decisions can be made in 
parallel. However, the technology becomes very expensive 
for complex applications, and systems take a long time to 
develop. 

Digital electronics is powerful because it permits any 
operation that can be conceived using bits; and any real 
world action that can be translated into electrical signals 
can he represented as bits. The techniques of digital 
electronics can be used for a vast range of different 
applications, where any kind of iogicai decision making or 
arithmetic processing is required. 

Solving a real world problem, of course, depends on 
translating real inputs (such as mechanical movements, 
temperature readkngs, etc) into bits, and translating bits 
back into the rear world. 

J 

This process of translation can be represented (adding to 
the hlack box diagram) as: 

MOTORS, 

'PHYSICAL 
MEASUREMENTS 
(TEMPERATURES, 
PRESSURES, ETC) 

& 
INFORMATION 

REAL WORLD 'BLACK BOX' SYSTEM 

OUTPUTS 
* 

ACTUATORS 
(DIRECT 

. DATA 
. 

(INFORMATION) 

REAL WORLD 

Figure 1-9 Data Translation 

'Data' is a term used for coded information - that is, 
information translated into a pattern of bits for processing 
by a digital circuit. Data can be considered as an 
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a b s t r a c t e d  r e p r e s e n p a t i o n  of t h e  r e a l  wor ld .  

I n  e x t r a c t i n g  d a t a  f rom t h e  r e a l  wor ld  f o r  p r o c e s s i n g  by a  
d i g i t a l  c i r c u i t ,  %he d e s i g n e r  ' s e l e c t s  o n l y  t h e  a s p e c t s  of 
t h e  i n f o r m a t i o n ?  a v a i l a b l e  t h a t  he  w a n t s ,  enumera t e s  a l l  
p o s s i b l e  va lues , ;  and d e s i g n s  h i s  sys tem t o  cope  w i t h  and 
respond p r e d i c t a b l y  t o  e v e r y  p o s s i b l e  combina t ion .  The 
d i g i t a l  c i r c u i t  does  n o t  know o r  c a r e  what t h e  d a t a  
r e p r e s e n t s ;  i t  s imp ly  p r o c e s s e s  b i t s  a c c o r d i n g  t o  t h e  l o g i c  
d e s i g n e d  i n t o  i t ,  

T h i s  can  c a u s e  problems,  b e c a u s e  b i t s  ( d a t a )  a r e  e n t i r e l y  
a b s t r a c t  e n t i t i e s .  The d e s i g n e r  must be v e r y  s u r e  t h a t  he  
knows e x a c t l y  what h i s  d a t a  r e p r e s e n t s ,  T r a n s l a t i n g  
i n f o r m a t i o n  i n t o  d a t a  i n  a  w e l l  thought- out  manner i s  
p r o b a b l y  t h e  most i m p o r t a n t  s t e p  i n  d e s i g n i n g  any d i g i t a l  
sys tem.  

1 

I n  t h e  l?st 2 0  y e a r s ,  advances  i n  t echno logy  have v a s t l y  
d e c r e a s e d  k h e  p r i c e  and i n c r e a s e d  t h e  cap  i l i t y  of d i g i t a l  
e l e c t  ron*s. However, w i t h  t h e  t echno  g i c a l  advance  h a s  
come th$  problem of o r g a n i z a t i o n .  Org i z i n g  a l l  t h e s e  
l o g i c  /e lements  t o  pe r fo rm t h e  d e s i r e d  a c t i o n  i s  a  v e r y  
d i f  f  i $ @ l t ,  t i m e  consuming,  and e x p e n s i v e  : t a sk ,  r e q u i r i n g  . a  
high* s k i l l e d  ' d e s i g n e r  1 ( o r  team of d e s i g n e r s ) .  I n  

L i o n ,  b e c a u s e  a n  AND g a w  i s  a p i e c e  of hardware  - a  
i c a l  d e v i c e  - i t  i s  q u i t e  awkward t o  m a n i p u l a t e .  Once a  
gn h a s  b ~ n  p u t  t o g e q e r ,  i t  i s  e x t r e m e l y  d i f f i c u l t  t o  

nge i n  a n y , ' s i g n i f i c a n t  gay w i t h o u t  s t a r t i n g  a g a i n  from 
s c r a t c h .  

~ h i $ i s  where t h e  compute comes i n .  "f 

l a 3  COMPUTERS 

The i d e a  f o r  t h e  computer  e x i s t e d  l ong  b e f o r e  t h e  
i m p l e m e n t a t i o n  t e c h n i q u e s  t h a t  made i t  p r a c t i c a l l y  
r e a l i s a b l e .  I n  t h e  1 9 t h  Cen tu ry ,  C h a r l e s  Babbage conce ived  
a ' d i f f e r e n c e  e n g i n e "  t h a t  would o p e r a t e  a c c o r d i n g  t o  t h e  
i n s t r u c t i o n s  of a  s t o r e d  program. However, t h e  t e c h n i q u e s  
a v a i l a b l e  t o  him (mechan ica l  cogs  and l e v e r s )  were unequa l  
t o  t h e  t a s k .  Babbage n e v e r  comple ted  h i s  p r o j e c t .  

P r a c t i c a l  r e a l i s a t i o n  of t h e  computer  had t o  w a i t  f o r  
e l e c t r o n i c s  - f i r s t  u s i n g  v a l v e s  (which were . n o t o r i o u s l y  
u n r e l i a b l e ,  l a r g e ,  and power h u n g r y ) ,  t h e n  t r a n s i s t o r s ,  and 
f i n a l l y  i n t e g r a t e d  c i r c u i t s .  What t h e  computer  does  i s  t o  
s e p a r a t e  t h e  d e v i c e  which c a r r i e s  o u t  t h e  work of d e c i s i o n  
making,  c a l c u l a t i o n  e t c  - t h e  p r o c e s s o r  - f rom t h e  se t  of 
i n s t r u c t i o n s  - t h e  program - which t e l l  t h e  p r o c e s s o r  what 
t o  do. T h i s  s e p a r a t i o n  a l l o w s  s p e c i a l i s t  m a n u f a c t u r e r s  t o  
d e s i g n  and implement power fu l  and e f f i c i e n t  p r o c e s s o r s  f o r  
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t h e  range  of p o s s i b l e  a p p l i c a t i o n s ,  w h i l e  a p p l i c a t i o n  
e n g i n e e r s  can t a k e  a  s t a n d a r d  p r o c e s s o r  and w r i t e  a  s o f t w a r e  
program t o  t a i l o r  i t s  o p e r a t i o n  t o  t h e i t  s p e c i f i c  need.  

L ike  o t h e r  d i g i t a l  d e v i c e s ,  computers  work w i t h  b i t s ,  I n  
f a c t ,  t hey  u s u a l l y  work w i t h  g roups  of b i t s .  The Texas 
I n s t r u m e n t s  TMS 9900/99000 f a m i l y  of m i c r o p r o c e s s o r s  u s e s  a  
b a s i c  u n i t  of 16 b i t s ,  c a l l e d  a  word. The p o s s i b l e  
o p e r a t i o n s  t h a t  can  be performed on words a r e  s t r i c t l y  
l i m i t e d  and w e l l  d e f i n e d ,  which i s  what makes t h e  computer  
p o s s i b l e ,  

Of t h e  t o t a l  range  of o p e r a t i o n s ,  t h e  most u s e f u l  a r e  
s e l e c t e d  t o  form t h e  computer 's  i n s t r u c t i o n  s e t .  Each 
i n s t r u c t i o n  per forms one o p e r a t i o n ,  For example, t h e r e  i s  
a n  o p e r a t i o n  t o  per form a  l o g i c a l  AND on two words of d a t a :  

f i r s t w o r d  O 1 0 1 1 0 1 1 1 0 0 1 O 1 1 0  
s e c o n d w o r d  0 1 O 1 0 1 0 1 1 0 1 0 1 1 0 1  

r e s u l t  0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0  

Corresponding  b i t s  i n  each  word a r e  ANDed t o g e t h e r  t o  
produce  t h e  c o r r e s p o n d i n g  b i t  i n  t h e  r e s u l t a n t  word. Here, 
a  word i s  t r e a t e d  a s  c o n t a i n i n g  16 unconnected  h i t s ,  The 
i n s t r u c t i o n s  which o p e r a t e  on words i n  t h i s  way a r e  c a l l e d  
l o g i c a l  i n s t r u c t i o n s ,  

Using t h e  b i n a r y  number sys tem *, a  16- bi t  word can  a l s o  
r e p r e s e n t  a  number. There  i s  a  group of 
a r i t h m e t i c  i n s t r u c t i o n s  which t r e a t  words a s  numbers,  and 
pe r fo rm t h e  u s u a l  a r i t h m e t i c  o p e r a t i o n s  on them. For 
example, ADD: 

B I N A R Y  DECIMAL 

f i r s t w o r d  0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0  23446 
s e c o n d w o r d 0 1 0 1 O 1 0 1 1 0 1 0 1 1 0 1  + 21933 

r e s u l t  1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1  = 45379 

The i n s t r u c t i o n  s e t  f o r  t h e  TMS9900 and 99000 a l s o  i n c l u d e s  
o p e r a t i o n s  on b y t e s  ( 1  b y t e  = 8  b i t s )  of d a t a ,  

I n  a d d i t i o n  t h e r e  a r e  i n s t r u c t i o n s  t o  r ead  i n p u t  s i g n a l s  
from t h e  o u t s i d e  world and t o  w r i t e  o u t p u t s ,  and t o  move 
d a t a  around w i t h i n  t h e  computer ,  

* The b i n a r y  number sys tem i s  d e s c r i b e d  i n  Chap te r  8 ,  
s e c t i o n  8.13.2.1 
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A program is a list of these instructions stored in the 
computer's memory. A computer, then, looks like Figure 
1-10, 

Figure 1-10 Computer 

t 

PROGRAM 

1 

The stored program controls the operation of the computer. 
The processor fetches the program instructions one at a 
time. Instructions are normally executed in sequence, one 
after another. However, the computer has the capability to 
change this. It can make simple decisions about whether to 
execute one set of instructions or another. The decisions 
might depend on the value of some data word stored in 
memory, or the state of some input, or on a more complex 
condition. 

INPUTS PROCESSOR . b 

For example, 

2 

OUTPUTS 

"IF temperature LESS THAN set value AND heater is off THEN 
switch heater on" 

The primitive control instructions, which can change program 
flow and make pre-programmed decisions, are the final group 
of operations that make up the computer's instruction set. 
With these five basic groups of instructions - logical, 
arithmetic, input/output (I/O), data transfer, and control - 
a computer can perform any task that can be precisely and 
unambiguously specified. The task of software design is to 
carry out this specification and, ultimately, to produce the 
program in a form that the computer can implement it. 

The program completely determines the operation of the 
system. If the initial conditions and all of the inputs are 
known, the action of the computer will he entirely 
predictable. Thus a computer is a black box, but one whose 
operation is determined not by the physical arrangement of 
its parts, but by a software program. Computer hardware can 
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be regarded as a pool of resources, which are organized 3y 
the software. By placing the burden of organization on 
software, many of the problems of designing a digital system 
are solved. 

Figure 1-11 shows the structure of a computer in more 
detail. 

I MEMORY I 

I 

I PROCESSOR (CPU) I 
I 

-- -- 
OUTPUTS E I 

Figure 1-11 Structure of a Computer 

I 

The Arithmetic and Logic Unit (ALIJ) performs the operations 
requested by the program (addition, subtraction, logical 
ANDing, etc). The Control section supervises the reading 
and writing of program, data, and 1/0 (Input/Output), and 
ensures that everything happens in the proper sequence. 
These two elements are traditionally grouped together to 
form the Central Processing Unit (CPU), or Processor. Whwr 
this is implemented on a single silicon chip it is called a 
Microprocessor, or MPU. The complete system is a 
Microprocessor System, or Microcomputer. A microcomputer 
may be implemented as a single chip (eg the Texas 
Instruments TMS9940) or as several chips. 

ARITHMETIC 

Besides inputs and outputs, a computer will need a place in 
which to store intermediate data (a scratchpad or filing 
system). Therefore a computer will generally have data 
memory as well as program memory. 
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The inputs and outputs, more than anything else, determine 
what a computer system "looks like1' to the user, When the 
usual peripherals (card reader, visual display unit (VDU), 
line printer, magnetic tapes, etc) are connected, the system 
looks like the traditional idea of a computer. But connect 
motors, actuators, lights, switches, displays and it could 
be a part of anything from a washing machine to a car, A 
microcomputer is small and inexpensive enough to be hidden 
in almost any piece of electrical equipment, and the user 
need not even know that it is there. 

1.4 SOFTWARE DEVELOPMENT 

Because there is typically a large gap between the task to 
be performed by the system (eg "control a factory production 
line") and the instruction set of the computer ("ADD two 
numbers"), various techniques have been evolved to bridge 
the gap and make the task of software design and development 
simpler and faster. Most of these make use of development 
tools and utilities that are themselves implemented in 
software. In fact, one of the major advantages gained in 
moving from a digital electronic to a software 
implementation is that the design information itself can be 
manipulated by computer, allowing much of the design and 
development process to he automated. 

The tools of the software engineer are rather more abstract 
than the screwdriver and the soldering iron. A software 
engineer will spend much of his time typing information at- a 
keyboard, and looking at results displayed on a screen. 
However, the keyboard and screen will take on different 
roles depending on which utility program (which "software 
tool") is being used at the time. Chapters 2 and 3 of this 
book describe what is involved in the process of designing 
and developing software for a microprocessor system, and the 
tools and procedures used. Chapter 4 describes some of the 
principles of software design, and the modern techniques of 
software engineering which have been developed to make 
complex software systems manageable. 

A high level language (see Sections 2.6 and 3.5) allows the 
software designer to make strategic decisions about what the 
system will do, while the compiler determines the tactics to 
be employed by the computer (memory addresses, storage 
allocation and other "housekeeping" functions that have to 
be performed thousands of times a second). The compiler is 
a software utility that translates high level language 
programs into the detailed machine instructions required by 
the computer, 

In effect, a high level language provides a more powerful 
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csnputzr that can  deal w i t h  most of its internal functions 
automatically, allowing the software designer to concentrate 
on the application problem to be solved, 

Component Software supplies further assistance by permitting 
complete pre-written software packages, designed to 
implement whole areas of an application, Chapter 5 
describes Component Software in detail. This chapter also 
describes concurrency, which is a powerful technique for 
designing software systems which have to perform a number of 
different tasks simultaneously (as is often required in real 
systems), 

Early programming languages performed their task 
imperfectly, and were of ten designed simply as extended 
versions of the instruction set of a particular computer, 
Modern languages, with the benefit of twa decades of 
research on the requirements for specifying and solving 
application problems, come much closer to the ideal of 
requiring nothing more than a complete and unambiguous 
specification of what is to be done (an algorithm) in order 
to produce an executable program, One of the best and most 
successful of the modern languages is Pascal, Chapter 6 
describes the Microprocessor Pascal language, 

Pascal is a professional programmer's tool, designed to 
produce reliable systems and yet to give full flexibility 
for implementing complex applications, For users who do not 
wish to become professional programmers, but who need to 
write occasional programs in the course of their work, BASIC 
may be an acceptable alternative, BASIC is a simple 
language that can be learned in a few hours and is 
exceptionally easy to use, Chapter 7 describes Texas 
Instruments' implementation of Power BASIC, 

For those who wish to understand the machine architecture of 
the TMS 9900/99000 family, or to program directly in the 
instruction set of the microprocessor, Chapter 8 describes 
9900/99000 assembly language, Assembly language programming 
requires more detailed knowledge and there is more risk of 
error than when using a high level language, However, 
assembly language programming allows the designer to squeeze 
the last ounce of performance out of the machine, and may be 
especially useful in critical areas of a software design, 
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1.5 GENERAL PURPOSE COMPUTERS 

Until a few years ago, the only computers in common use were 
general purpose machines. A general purpose digital 
computer consists of a central processing unit (CPU), main 
memory and a set of standard peripherals - devices which 
enable data to be input to and output from the computer. A 
typical configuration might look something like this: 

READER 

BACKING 

STORE 

VISUAL 

DISPLAY 
UNITS (VDU's) 

SYSTEM 
CONSOLE 

Figure 1-12 A General Purpose Computer 

The input and output to a computer of this type is likely to 
be entirely textual or numeric information (customer files, 
order details, scientific results etc), and the work that it 
does is entirely information processing or data processing 
(DP for short). Human beings always act as buffers to this 
kind of system - preparing textual or numeric input data in 
the form of punched cards or keyboard input, and 
interpreting or acting on printed results or reports. 
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One of the most important peripherals is the backing store, 
This is a memory device that is slower acting than the main 
memory, but has a large capacity, Its principal function is 
to load programs and data into the computer's main memory, 
A generai purpose computer has a large repertoire of 
programs in its backing store, any one of which can be 
loaded and executed, Some of these programs are 
systems programs, which control the operation of the 
computer and provide commonly required tasks, These will 
normally be provided by the computer manufacturer, Others 
are application programs developed by the user for his 
particular needs, 

The most important systems program is that which runs the 
entire computer, and controls the loading and executing of 

I I1 IS other programs under commands from the operator, ""'- 
program is called the Operating System (0s) and is loaded 
into main memory when the computer is switched on, remaining 
in control the whole time the system is running, Other 
systems programs provide software tools for developing 
application programs, They can be called in as required by 
the Operating System, 

A general purpose computer is, therefore, a chameleon-like 
device which can perform any processing function depending 
on the application program which is loaded into it, 
However, the range of things it can do is limited by its 
input and output devices, Standard peripheral devices 
include keyboard sand visual display unit (VDU), teletype, 
line printer, punched card or paper tape readers and 
punches, and magnetic disc or magnetic tape devices, These 
last two are forms of backing store; the others are means of 
communicating with the user, 
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1 6 DEDICATED COMPUTERS 

A microcomputer can be constructed as a general purpose 
computer. But the microcomputer has brought a new 
possibility: the dedicated system. A dedicated 
microcomputer might look like this: 

PRESSURE 
SENSOR 

L 

KEYPAD 

DISPLAY 

MINIATURE PRINTER 

INPUTS OUTPUTS 

Figure 1-13 A Dedicated Microcomputer 

This system could serve as a weighing scale. A program 
would be written to read the pressure sensor and the price 
(entered on the keypad), multiply the weight by the price, 
display the result, and print a ticket. With extra 
software, the system could become a complete cash register. 
The complete microcomputer and associated circuitry could be 
fitted into one corner of the case. 

A term that is often applied to dedicated computer 
applications is real time. "Real time" means that the 
computer is responding to and controlling events as they are 
happening. Unlike a DP system, whiih provides - huge 
processing power but at a considerable remove from real 
physical events, a real time system must respond 
immediately. It will often need to respond within 
milliseconds or less. 

Dedicated microcomputers often have an executive rather than 
an Operating System. While an Operating System is likely to 
be a large, all-inclusive piece of software, an executive is 
more likely to be a set of service functions selected for 
the particular application, and occupying very little memory 
space. The program for a dedicated system may well be 
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permanen t l y  and i n e r a d i c a b l y  s t o r e d  i n  read o n l y  memory ( see  
be low) ,  and t h e  microcomputer  may on ly  e x e c u t e  one s m a l l  s e t  
of programs a l l  i t s  l i f e .  A d e d i c a t e d  microcomputer  may 
we11 have no back ing  s t o r e  from which t o  l o a d  a l t e r n a t i v e  
- - e m -  t." u 5 L  a m .  

I n  t h e  example p i c t u r e d  above,  t h e  program would r e p e a t e d l y  
check whether  o r  n o t  t h e r e  was any i n p u t  'from t h e  p r e s s u r e  
s e n s o r  o r  t h e  keypad. I f  t h e r e  was, t h e  p o r t i o n  of t h e  
program w r i t t e n  t o  d e a l  w i t h  t h a t  i n p u t  would execu te .  

1.7 ROM AND RAM - SEMICONDUCTOR MEMORY 

Computer memory can  be though t  of a s  a  c o l l e c t i o n  of p igeon 
h o l e s  o r  l o c a t i o n s  i n  which v a l u e s  ( i e ,  numbers o r  p a t t e r n s  
of  b i t s )  can  be s t o r e d .  These l o c a t i o n s  can  be r e f e r r e d  t o  
by t h e i r  c o n s e c u t i v e l y  numbered a d r e s s e s .  

Semiconductor  memory sys tems a r e  t y p i c a l l y  o rgan ized  i n  
b y t e s  ( 1  b y t e  = 8 b i t s ) .  The TMS 9900/99000 f a m i l y  can  
o p e r a t e  on bo th  b y t e s  and words (16 b i t s )  of d a t a .  A word 
i s  s t o r e d  i n  two c o n s e c u t i v e  memory l o c a t i o n s ,  s t a r t i n g  a t  
a n  even a d d r e s s .  

A g e n e r a l  purpose  computer r e q u i r e s  a  program memory t h a t  
can  be w r i t t e n  t o  a s  w e l l  a s  r e a d ,  s i n c e  d i f f e r e n t  programs 
must be loaded i n t o  i t  from t h e  backing  s t o r e .  However, 
once t h e  program i s  loaded ,  t h e  p o r t i o n  of program memory i n  
which t h e  program i s  s t o r e d  w i l l  n o t  normal ly  be changed 
u n t i l  t h e  o p e r a t i n g  sys tem l o a d s  i n  t h e  n e x t  program. (The 
program can  change d a t a  memory, bu t  n o t  t h e  program code. ) 

A s p e c i a l  t y p e  of program memory, c a l l e d  Read Only Memory 
(ROM) i s  commonly used f o r  d e d i c a t e d  microcomputer  sys tems.  
A ROM memory c h i p  i s  programmed ( i e ,  l oaded  w i t h  a  program) 
once ,  d u r i n g  p r o d u c t i o n  of t h e  sys tem i n  which i t  w i l l  be 
u s e d ,  and r e t a i n s  i t s  c o n t e n t s  permanent ly ,  even when t h e  
power i s  swi t ched  o f f .  Th i s  l a s t  f e a t u r e  i s  i m p o r t a n t  
because  t h e r e  w i l l  o f t e n  be no back ing  s t o r e  from which t o  
l o a d  t h e  program when t h e  d e v i c e  i s  swi t ched  on. 

1.7.1 ROM Types 

There  a r e  s e v e r a l  d i f f e r e n t  t y p e s  of ROM, each  w i t h  i t s  own 
c h a r a c t e r i s t i c s .  

Mask ROM h a s  t h e  program i n s e r t e d  a s  p a r t  of t h e  
manufac tu r ing  p r o c e s s .  A mask must be made t o  e t c h  t h e  
p a t t e r n  of b i n a r y  d i g i t s  which form t h e  program on t h e  
s u r f a c e  of t h e  s i l i c o n  c h i p .  Genera t ing  t h i s  mask i s  an  
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expensive process, because it must be done with great 
precision. However, once the mask has been made, programmed 
ROMs can be manufactured very cheaply. Where large 
quantities (hundreds of thousands) of identical ROMs are 
required, this method is by far the least expensive. 

Programmable ROM (PROM) is manufactured with fusible metal 
links in each memory cell. These links can be selectively 
fused by applying high voltage pulses to the PROM chip after 
manufacture using a device known as a PROM Programmer. 
Blank PROMs are supplied by Texas Instruments and can be 
programmed by the user, with appropriate development tools, 
to put in his system. Once the pattern of 0's and 1's has 
been 'burned in' in this way the PROM cannot be erased. 
PROMs are more expensive per chip than mask ROMs, but work 
out cheaper overall for small to medium quantities 
(thousands), because of the cost of manufacturing a mask. 

Erasable Programmable ROM (EPROM) is supplied blank and 
programmed in the same way as PROM. But the high voltage 
pulses do not break fusible links: instead they selectively 
establish static charges in the memory cells, which turn on 
or off switching devices (transistors) that represent the 
0's and 1's. An EPROM is a very useful device. It can be 
programmed permanently, like a fusible link PROM; the static 
charge will be retained for a period of 20 years or more. 
But by exposing it to ultraviolet light for a period of 
about 20 minutes, the EPROM becomes erased and can be 
programmed with something different. EPROMs are now 
commonly used in all medium volume applications, except for 
very high performance applications where the superior speed 
of bipolar PROMs is required. 

1.7.2 RAM Types 

Most microcomputer systems require some memory that can be 
written to as well as read, for storage of intermediate 
results. This is achieved by using RAM (Random Access 
Memory) instead of ROM. RAM is a slightly misleading term, 
since ROM can also be accessed randomly. (Read/Write Memory 
would be more descriptive, but 'RAM' is at least easier to 
say.) In a general purpose computer, the main memory is 
implemented entirely with RAM. A microcomputer system is 
more likely to have a partitioned memory - some ROM and some 
RAM. 

Semiconductor RAM is volatile; that is, the contents 
disappear when the power is switched off. There are, in 
fact, two types of RAM: 

o Static RAM retains its contents for as long as 
the power is switched on. 
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s Dynamic RAX milst be refreshed, that is, read or 
written to every few milliseconds, or its 
contents decay. Dynamic RAM requires some 
external circuitry to implement this refresh, 
and is therefore more difficult to design i n t o  
a microcomputer. However, it is less expensive 
and smaller than static RAM. Static RAM is 
normally used for systems that require a 
relatively small amount of RAM; dynamic RAM for 
larger systems where the cost of refresh 
circuitry can be justified by the savlngs on 
memory chips. 

1.7.3 ROM/RAM Summary 

The characteristics of semiconductor memory are summarised 
bn Table 1-1 below. 

Mask PROM EPROM Static Dynamic 
ROM RAM RAM 

Readable? Y 

Writeable? N 

User programmable? N 
(outside system) 

Eraseable? 
(outside system) 

Retain contents 
without power? Y Y Y N 
(non-volatile) 

Require refresh? N N N N 

Table 1-1. Semiconductor Memory Characteristics 
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1.8 APPLICATIONS 

The microcomputer has accomplished three things: 

1) It has revolutionized the design of both 
small and large-scale electrical devices, 
from toys to cars 

2) It has changed the nature of conventional 
computer systems 

3) It has made possible a completely new range 
of applications, for which the new technology 
of microsystems is uniquely suited* 

There is virtually no electrical device within which a 
microcomputer cannot be incorporated, providing cheap but 
sophisticated control, and powerful processing capability. 

Many applications previously performed by large general 
purpose computers ('mainframes') can now be carried out more 
effectively by microprocessor systems, located at the point 
where they are needed rather than isolated in a remote data 
processing department. 

With the arrival of the minicomputer several years ago, the 
death of the mainframe was predicted. That death sentence 
was premature. Rut a 'mainframe' is no longer likely to be 
a solitary monolith, isolated within a data processing 
department. It is more likely to fulfil a specialised need 
for central data storage or massive processing power, within 
a network incoporating microcomputers, minicomputers and 
possibly other mainframes too. 

Computer power now comes in sufficient shapes and sizes (and 
prices) that it can be distributed anywhere that there is a 
need for it* Large computer systems look less and less like 
traditional computers and more like communications networks, 
with processors judiciously placed at appropriate points in 
the network. The microcomputer allows the distribution of 
computing power to the place where it is needed - the 
office, the factory floor, or the home. Local processors 
can be linked to larger computers, using the telephone 
network if permanent connection is not required. Special 
purpose microcomputers can be constructed to collect 
information where it is generated and in the form that it 
already exists. Such devices can do away with the tedious 
manual process of data preparation. 

Microcomputers have been used to build 'intelligent' 
peripherals for mainframes (disc controllers, for example) 
which can handle some of the local 'housekeeping' functions 
required by the peripheral and take the load off the central 
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processor. One significant development in this regard has 
been the intelligent terminal, a visual display unit 
containing a microcomputer. The intelligent terminal 
provides local processing power for small tasks, and can be 
iinked to a network for referenee to cen t ra l  files, and for 
handling large processing tasks. 

The development of 'personal' computers and small business 
systems allows a further stage of development. A 
storekeeper, for example, might use a microcomputer to 
handle his daily transactions, and then transmit his 
accounts over a dial-up link to the central office network. 

In future, there are likely to be a number of imaginative 
applications linking the power of the microprocessor with 
rapidly deveioping communications technoiogy. Vfewdata is 
an example that makes use of television, telecommunications 
and processor technology. This is a public computer network 
which can be accessed by anyone with the right equipment (an 
adapted TV set) via the telephone network. It provides 
information and services, and can even be used to transmit 
software to a subscriber's computer. 

The development of local area networks will allow separate 
computing devices to be connected together simply and 
straightforwardly, to build distributed systems for office, 
factory and even home environments. Fibre optics technology 
promises a ,cheap, reliable and interference-free 
communication medium. 

The automation of industrial processes was first made 
possible by minicomputers, which were general purpose 
computers small and cheap enough that they could be placed 
in a factory or chemical plant and used to provide some 
degree of automatic control. However, such computers still 
typically required a room to themselves. 

Microcomputers are small and cheap enough to be incorporated 
in individual machines, and to be distributed across the 
factory floor wherever control functions or processing power 
are required. Cheap, fast microprocessors make robots of 
all kinds technically and economically feasible. Robots can 
be used to construct flexible manufacturing systems, which 
can provide the advantages of mass production in the 
manufacture of small quantities of diverse products. 

Microcomputer applications range from simple real time 
control functions (such as a weighing scale) to production 
control systems and sophisticated computer networks. In 
'real-time' applications the computer is in direct control 
of a process, event, or phenomenon such as engine control - 
monitoring electronic ignition timing and fuel mixing, for 
example, and modifying the physical parameters while the 
process is taking place. Real time applications can be on a 
small scale, or could involve control of (say) a complete 

Texas Instruments 1-21 October 1981 



SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION 

chemical plant. The TMS 9900/99000 family is particularly 
suited for real time and control applications. It has a 
fast context switch to implement multiprocessing and modular 
programs, and a flexible bit-oriented method of input and 
output (the architecture of the 9900/99000 family is 
described in Chapter 8). 

The microcomputer has a dual personality: it is both 
electronic component and computer. This is why it provides 
such a rich field for applications. The technology and the 
opportunity exist for a wide range of products; the only 
real limit is the imagination of the designer. 

1.9 FUTURE DEVELOPMENTS 

With microcomputers cheap and readily available, there is no 
need for systems to be restricted to a single processor. 
Groups of cooperating processors, each with its own software 
and possibly local input and output, can implement powerful 
and reliable systems. 

A significant development in this regard is the Electronic 
Function Package (EFP). 

LOCAL I10 I 
MEMORY 

MEMORY 

I PROCESSOR I 
I MESSAGE 

INTERFACE I 

FUNCTION BUS 

Figure 1-14 Electronic Function Package 

Each package encapsulates a local processor with program and 
data memory, I/O, and a standard functional interface to 
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other packages. The first implementation of such a package 
will be as a complete circuit board; but miniaturisation 
will quickly reduce the size and cost of such packages. 
Developments in hardware and software will make such 
packages easy to construct, and easy to connect together 
into appiication systems. c.. 3uCll ,t. packages are l i k e l y  to be 
common components in tomorrow's systems. 

Speeds of microcomputer devices are likely to increase 
significantly over the next decade, so that many new 
applications, including real time signal processing, wiii 
become possible. Among other things, real time processing 
and storage of speech, audio and even video signals is 
likely to become a reality, all at reasonable cost. The 
scope for new products and applications is considerable. 
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CHAPTER 2 

SOFTWARE DEVELOPMENT 

This chapter gives an overview of the steps required to 
design and implement software for a microprocessor system. 

The end result of software development is a program - a 
pattern of bits residing in memory that instructs the 
processor what to do. To achieve this requires several 
stages of development: 

(1) Functional. Specification 

(2) System Design 

(3) Software Design (and, in parallel, hardware 
design) 

(4) Programming (ie entering the software design 
in precisely coded source program statements 
on a development computer system) 

(5) Translation of the source program (in a 
human-readable programming language) into 
binary machine code 

(6) Configuration and linking of the software 

(7) Debugging the software 

(8) Integration and testing of hardware and 
software 

(9) Evaluation of the final system 

Each of these is an iterative process. Problems encountered 
at any stage may alter decisions taken at a previous stage, 
so that the true picture is more like Figure 2-1: 
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I FUNCTIONAL I 1 SPECIFICATION 1, 

I SYSTEM I 
I DESIGN 

I TRANSLATION I 
1 

CONFIGURATION 
& LINKING 

I DEBUGGING I 

I INTEGRATION I 

EVALUATION 0 
Figure 2-1 The Software Development Process 
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2.2 FUNCTIONAL SPECIFICATION 

Functional specification is where product requirements and 
implementation technology meet, It is the first, and most 
imp~rtant, stage in deve lop ing  any systeme 

A good functional specification will take account of the 
spectrum of possible market requirements, and the range of 
possible implementation techniques, and derive a "best fit" 
solution, Charecteristic of a good functi~nal specification 
is that it can accomodate a degree of change both in product 
requirements and in implementation technology, 

As both types of change are likely to happen during the 
development phase of a product, it is worth spending a good 
deal of time (perhaps 30 per cent of the total prsjeet 
effort) t o derive the best possible functional 
specification, Microprocessor technology, software and 
hardware, means that implementation from a well defined 
functional specification is fast and straightforward. 
Surprisingly, the major cause of delays, problems, and 
ultimately project failure is inadequate specification, 

The task of specification is to isolate and jdenTify,--from-a- - - - -  

general appreciation of what is required, precise 
definitions of the functions to be performed, Fast 
developing technology, and rapidly changing markets and user 
requirements, dictates collaboration between experts in the 
area of application and engineers with knowledge of the 
technology (software and hardware), 

Microprocessors can replace more conventional technology - 
for example digital logic - in existing applications, but 
there are other possibilities, Software is a medium that 
can be engineered in the same way as hardware, If it is 
managed correctly, software development can be done much 
more cheaply, more quickly and more flexibly than developing 
custom hardware, Software functions can provide 
"intelligent" control, information processing, and flexible 
operator interaction, With software it is possible to 
construct "working models" that can be tried out, adapted, 
tested and finally "frozen1' in silicon memory chips for use 
in a production system. 

A microprocessor is both a programmable logic device and a 
computer, Where it is being used to replace conventional 
logic, its abilities as a computer may also be used to 
advantage, and vice versa, For example, a microprocessor 
might replace digital logic in controlling a scientific 
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instrument. In this application, it can also be used to 
perform calculations on the results obtained by the 
instrument, something not easily achieved by digital logic. 
New forms of operator interface might also be considered; a 
keyboard and visual display screen, for example, rather than 
the traditional knobs and switches. The instrument can be 
given some degree of programmability, to allow the user to 
set up a series of operations to be performed unattended. 
New possibilities are introduced simply by using a 
microprocessor. 

A full functional specification for a microcomputer based 
product involves : 

(1) Defining the environment - that is the devices 
and signals with which the product must 
operate, the operator controls and displays, 
and any special interfaces 

(2) Defining how the product reacts to this 
environment - that is the actions it is 
required to take, the inputs it is required to 
respond to and the outputs it is required to 
produce. Usually, this can be done by 
defining a number of distinct functions that 
the product is required to perform - operator 
interface, data storage, machine control, 
report generation etc. The major functions 
must be identified, their operation specified 
and their interaction detailed. If the 
different functions are clearly isolated and 
well defined, they can be implemented 
straightforwardly as separate "packages". 
Some functions may be implemented directly 
using standard hardware and software 
components. 

Writing the functional specification requires some 
understanding of what is possible with microprocessor 
systems, as well as what is required by users. Functional 
specification cannot be completely isolated from system 
design, which considers some of the "how" of 
implementation. Several passes through the functional 
specification/system design cycle may be needed before an 
acceptable solution is produced. 

Nevertheless, the functional specification should be 
maintained as a separate document, which does not describe 
any of the "how1'. The functional specification is the 
interface between market (or user) requirements and 
implementation technology; changes in either can be 
incorporated in the functional specification and their 
implications worked through. Functional specifications can 
be written in a language that both engineers and marketing 
executives (or users) can understand. Other types of 
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sptcification may be incomprehensible to one or the other. 
with''both market requirements and technology changing month 
to monkh, this channel of communication is essential. 

1 

2.3 SYSTEM DESIGN 

The purpose of system desigd to derive from the - what of 
specification, a - how that scribes an implementation 
strategy. The system decide how to integrate 
hardware and software, whether any-, special interfaces are 
required, if any special hardware\is needed (for analog to 
digital conversion, for instance), an&, on. System design 
must specify how each function is to performed - in 
software, hardware or a combination o th, and with what 
mix of standard and custom-developed co 

The first step is to identify whether standat 
software packages can be used for 
identified. An existing custom IC 
function (eg control of a floppy 

cost and time, plus reliability. 

performance and, usually, cheapness. A standard Comp nent 
Software package gives tremendous savings in develoxent 

Unlike hardwah-% 
components, Component Software can also be tailored to meet 
very precise application needs (see cdapter 5). 

1 
Having eliminated those parts of the system tc/ be 
implemented with standard components, attention can be 
turned to the other functions required. System design 
requires an appreciation of the characteristics of hardware 
and software, and how they fit together. Often a function 
(say, signal averaging) can he performed in either hardware 
or software. Strictly, the comparison Ys between :dedicated 
hardware, and general purpose hardware,(eg a microprocessor) 
plus custom software. The advantages of a software 
implementation are flexibility, fast development time and 
low development cos t. The general equation governing 
microsystems production is: 

development cost 
unit cost = material, labour, overheads + 

no of items 

For products which will be produced in large quantities, 
development cost is of no importance: where a product is to 
be mass produced in tens or hundreds of thousands, 
development of a custom integrated circuit is justified. As 
the number of products to be produced falls, development 
cost becomes more and more important. For systems to be 
produced in small quantities (say 1 - 100 per year) the cost 
of development dominates all consideration of material 
costs. Microsystems technology (in particular software 
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technology) allows t h e  tre-,endous advances in integr3ted 
circuit technology to be applied to areas where a ?~bstom 
chip design could not be justified. It does ' so by 
dramatically lowering the cost of development ffr a product. 

Other considerations may apply: , a micro~rocessor is 
already present in a product and has spare capacity, it 
makes sense to use it to "mop up1' as much as possible of the 
logic. Some functions may custom hardware for speed 
reasons. Again, there functions, such as complex 
calculations, that simply performed economically 
in hardware. 

i However, software is *ot just directed to solving problems 
that, in some 

Whereas changing a hardware 
design requires, of a new printed 
circuit board, software program can be changed by typing 

at a keyboard, executing one or two 
automatic utilities (a matter of minutes), and 

Engineering changes can be made in 
trtonthr (assuming the use of PROMS 

M o d L n  techniques are integrating software and hardware in 
&w pays, and giving the system designer an expanding range ' of choices. TI'S Function to Function Architecture (FFA) is 
di~ected to defining a common set of rules for the 
inkraction of complex functions, whether implemented in 
hardware, software or a combination. In future systems, it 
will be possible to choose the appropriate mix of hardware 
and software (and a wide range of corresponding standard 
components) for every function in a system. 

A well thought out system design, with adequate appreciation 
of functional divisions, will make possible relatively 
painless evolution of t-oday's systems to make use of 
advanced functional components. Functions can be replaced 
incrementally, to incorporate new components and new 
application requirements, without requiring major redesign 
of the whole system. Chapter 5, Component Software, gives 
more details of the functional approach to system design. 

The end result of system design should be a specification of 
how each function is to be implemented, and a precise 
definition of the interface between functions. System 
design should specify all hardware/software interaction (eg 
the configuration of all 110 devices), so that hardware and 
software design can proceed independently. 
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2.3.1 Documentation 

It is important to keep a record of the design process. 
Notes, and formal documents such as specifications, can be 
collected together to form a project notebook. Some part of 
this can usefully be an "electronic notebook". Documents 
stored in files on a development system computer (see 
Section 3.3) can e a s i l y  be k e p t  up t~ date, and printed 
copies can be obtained when required. This is an ideal 
medium for specifications. 

The project notebook should record design decisions taken. 
F g r  example, an analog input (a voltage, for example) may be 
required. Decisions to be taken include: 

(1) How much precision (ie, how many bits) is 
required 

( 2 )  Bow often a reading must be taken 

(3) What type of analog/digital converter can be 
used 

(4) Whether the input should be binary or coded 
decimal 

~ardware/software trade-offs can also be recorded in the 
notebook. When writing a number to a seven segment display, 
should the conversion from binary to decimal digits, and 
then from digits to the signals used to drive the display 
segments, be handled by microprocessor software or by 
external hardware? 

If processor resources are available, it makes sense to 
perform the conversion in software and save the cost of 
extra hardware. However, this depends on the processor 
having enough spare time to handle it. 

If the situation changes (eg new technology becomes 
available), a comprehensive project notebook makes it much 
easier to backtrack and discover for what reasons the 
original decisions were made, and whether they are still 
valid. 
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2.4 HARDWARE DESIGN 

This section describes some aspects of hardware design which 
affect and are affected by software. 

In many applications, it makes sense to regard the hardware 
of a system as resources, to be controlled by the software. 
This implies an approach that is different from designing a 
purely hardware system. 

Much of the design effort consists simply of interfacing the 
outside world (the inputs and outputs) to the microprocessor 
system bus. 

I I,' - 
INPUTS < M P U  

Figure 2-2 Hardware Design for a Microprocessor System 

What must be presented to the bus is a control interface. 
The software will only have access to those signals which 
are connected to the bus. 

The design decision which must be taken when constructing 
each 1/0 interface is "how much control and information is 
to be given to the software?". The answer will be based on 

(a) the decisions taken at the system design stage on 
what is to be implemented in software and what in 
hardware 

(b) how much flexibility is required in the design. 

Where software access is provided, design changes can be 
made simply by reprogramming rather than redesigning the 
hardware. Extra software control signals may be provided 
for this reason, particularly at an early stage of the 
design. 

use of a ready-built microcomputer board (or boards) 
simplifies the process of hardware design. Texas 
Instruments supplies a range of microcomputer modules (the 
TM990 and TM990/Euroboard series) which are ready built 
microcomputers with a range of inputs and outputs, and 
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memory configurations, to suit many requirements. Expansion 
boards are available to extend both memory and 110, and to 
provide additional functions. 

2.4.1 Estimating System Load 

A single microprocessor can do only one thing at a time. If 
it is required to perform several functions in parallel (as 
a real time system usuaiiy is) i~ must do so by tackiing 
each one in turn, sufficiently fast that every one is 
performed within the required time. An important part of 
specification is defining how fast and how often the 
microprocessor needs to perform each function. (For 
exampie: an anaiog input might need to be sampled every 5 
ms, this being the minimum period in which it could change 
significantly in a particular application). An important 
part of hardware design is to determine that the processor 
can meet these specifications. 

A useful measure of this is system load, which can be 
defined as: 

Processor Time 

Rea 1-Time 

For a given task, the load on the system is the processor 
time needed to perform the task, divided by how often the 
task must be performed. If the processor spends 2 ms 
carrying out a particular task, and the task must be 
performed every 10 ms, this represents a .2 or 20 per cent 
system load. 

An estimate of the total system load can be obtained by 
calculating the system load for each task that must be 
performed, and adding them together. System load is not a 
foolproof test of a design's practicality; but it does give 
the designer an indication of the magnitude of the task, and 
quickly shows up impossible specifications. Estimating the 
load for a given task involves a consideration of the 
software algorithm that will be used to perform it. This 
need not be very detailed at this stage. A rough 
calculation often shows that use of system resources is 
dominated by a very small number of tasks. 

An estimation of 0.1 per cent could be out by a factor of 5 
without making too much difference; a task calculated at 25 
percent, however, needs careful evaluation. Usually, it is 
only necessary to look at a very small portion of program, 
which can be coded experimentally if necessary. 

If the total system load comes out at more than 50 percent, 
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t h e  d e s i g n  s h o u l d  be  r e c o n s i d e r e d .  There  a r e  two r e a s o n s  
f o r  l e a v i n g  a  wide marg in :  

( 1 )  To a l l o w  f o r  e r r o r s  i n  t h e  e s t i m a t i o n ,  and f o r  
m o d i f i c a t i o n s  t o  t h e  s o f t w a r e  

( 2 )  Most sy s t ems  have a  d e g r e e  of randomness: t h e  
a v e r a g e  r a t e  a t  which t h i n g s  happen may be 
p r e d i c t a b l e ,  b u t  i t  may sometimes be exceeded  
by q u i t e  a  l a r g e  amount. It i s  w i s e  t o  l e a v e  
some power i n  r e s e r v e  t o  d e a l  w i t h  b u r s t s  of 
a c t i v i t y .  a 

B e s i d e s  t h e  raw e s t i m a t e s  of sy s t em l o a d ,  t i m i n g  c o n s t r a i n t s  
need  t o  be c o n s i d e r e d .  The s t r a i g h t f o r w a r d  e s t i m a t e  assumes 
( n a i v e l y )  t h a t  p r o c e s s o r  t i m e  i s  s p r e a d  e v e n l y  o v e r  
r e a l- t i m e .  I f  t h e  sys t em needs  t o  do a  g r e a t  d e a l  w i t h i n  a  
p e r i o d  of 1 m s ,  and t h e n  n o t h i n g  f o r  50 ms, t h i s  o b v i o u s l y  
must  be t a k e n  i n t o  a c c o u n t .  I n  t h i s  c a s e ,  t h e  l o a d  d u r i n g  
t h e  1  m s  p e r i o d  s h o u l d  be  e v a l u a t e d  s e p a r a t e l y .  

I f  t h e  sys t em l o a d  d o e s  come t o  more t h a n  50 p e r  c e n t ,  t h e r e  
a r e  s e v e r a l  a l t e r n a t i v e s :  

( 1 )  Unload some of t h e  work from s o f t w a r e  t o  
e x t e r n a l  ha rdware  

( 2 )  Reduce t h e  s p e c i f i c a t i o n  of t h e  sys tem 

( 3 )  Use a  more power fu l  p r o c e s s o r  

( 4 )  Add a n o t h e r  p r o c e s s o r  

I f  t h e  sys t em l o a d  comes o u t  v e r y  low ( l e s s  t h a n  1 p e r  c e n t ,  
f o r  example)  t h i s  need n o t  be  a  bad t h i n g ,  i f  d e s i g n  and 
c o s t  c r i t e r i a  a r e  m e t .  However, i f  t h e r e  a r e  t a s k s  b e i n g  
per formed by e x t e r n a l  hardware  t h a t  c o u l d  e q u a l l y  be done i n  
s o f t w a r e ,  t h i s  i s  w o r t h  c o n s i d e r i n g .  

M i c r o p r o c e s s o r s  have  become i n e x p e n s i v e  enough t o  make i t  
e c o n o m i c a l l y  f e a s i b l e  i n  many a p p l i c a t i o n s  t o  have  them 
l y i n g  i d l e  f o r  much of t h e  t i m e .  On t h e  o t h e r  hand ,  h a v i n g  
t o  r e d e s i g n  b e c a u s e  d e s i g n  p a r a m e t e r s  have  been  pushed t o o  
f a r  can  be e x p e n s i v e .  

Once t h e  l o a d  h a s  been  c a l c u l a t e d  and t h e  d e s i g n  f i x e d ,  t h e  
d e s i g n  e n g i n e e r  needs  t o  beware of ' c r e e p i n g  enhancements ' .  
M i c r o p r o c e s s o r  s y s t e m s  f o l l o w  a  r e v i s e d  form of P a r k i n s o n ' s  
Law: u n l e s s  c a r e f u l l y  c o n t r o l l e d ,  d e s i g n s  expand t o  f i l l  150 
p e r c e n t  of t h e  r e s o u r c e s  a v a i l a b l e .  To a v o i d  t h i s ,  t h e  
d e s i g n e r  needs  t o  e v a l u a t e  c a r e f u l l y  t h e  e f f e c t  of p roposed  
enhancements ,  and c o n s i d e r  them i n  r e l a t i o n  t o  h i s  l o a d i n g  
e s t i m a t e s  - which can  be  checked e x p e r i m e n t a l l y  once t h e  
d e s i g n  i s  b u i l t .  
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2,4,2 Memory Size 

Naturally, one important c o ~ ~ i d e r a t i ~ n  when designing the 
hardware for a system is how much memory space to allow, 
The only way to estimate memory size is to break a system 
down into software packages and estimate the size for each, 
based on existing packages, If the software designer making 
the estimate lacks confidence in his figures, then the 
packages shohd be broken down still further and, perhaps, 
parts of them trial coded, 

Whatever the figure arrived at, the hardware designer should 
allow a sizeable margin for expansion; first, because no-one 
has yet found a completely reliable method for estimating 
the final size of a software package, and second because of 
the previously mentioned tendency for 'creeping 
enhancements', It is usually much easier to cut down an 
over-designed prototype version when producing a production 
model, than to add significant memory space not foreseen in 
the original design, The size of each software package 
can be monitored as it is produced and compared with the 
original estimate, to give a progressively better picture of 
the final memory size, 

2.5 SOFTWARE DESIGN 

Software design consists of turning the specification of 
each function the processor is to perform into precise 
software algorithms (ie step by step procedures for 
performing the desired function) and data structures. This 
is not yet programming, which occurs at a more detailed 
level, Starting to program too early, before a software 
design strategy has been worked out, will lead to a design 
that is incoherent and badly structured, At least a third 
of the software development effort should be spent on 
design, to establish the overall structure of the software 
before starting on the details, 

Software design should identify: 

(1) The data structures to be used 

(2) The routines and algorithms to be written 

(3) How the different parts of the software will 
work together, 

The basis of software is data, since this represents the 
information that will be manipulated by the algorithms. A 
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system uses two types of data: input or output data, which 
is the system's means of communication with the outside 
world, and stored data, which is held in memory and 
represents those concepts internal to the system of which a 
record must be kept. 

The first task of the software designer should be to 
determine: 

o What data is required 

o How it should be organized (structured). 

The data should be structured to reflect as closely as 
possible the information it represents, This involves: 

o identifying those aspects of the information 
which are fundamental and not superficial 

o using these as the basis for structuring 

o wherever possible using structures instead of 
single unrelated data items. This makes the 
software more coherent and more manageable, 

Older 'high level' languages such as FORTRAN, and low level 
assembly language, provide no means of grouping and 
structuring basic items of data to form more complex 
entities* Any such grouping that is done must be done 
inside the programmer's head, Newer languages such as 
Pascal provide, within the language itself, powerful means 
of building complex data entities out of simple ones. This 
means that complex software systems can be built up that 
model the outside world, and real operations, with 
surprising accuracy, A single data structure, for example, 
referred to by a single name, may contain all the 
information that needs to be known about a chemical process, 
or the operation of a machine, This data structure may be 
passed as a single item to a routine that performs a complex 
operation - say, shutting down the chemical reaction or 
using the machine to manufacture a part for a motor, The 
data structures establish a basis - an abstract model of the 
"real world" - from which program algorithms can be 
developed to perform various useful tasks, The real time 
structure of Microprocessor Pascal and Component Software 
also makes it possible to define and group complex 
operations, "packaging" a group of concurrent, closely 
interacting operations, together with the data they operate 
on as a single, higher level function, 

The process of software design is considered in detail in 
Chapter 4 ,  
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2.6 PROGRAMMING 

Programming involves turning a software design into source 
program code, following the syntax rules of a particular 
programming language. The amount of work involved depends 
on the programming language selected for implementation. 

Pascal was designed as a problem-oriented language 
incorporating modern design techniques. Turning a software 
design into a Pascal program should involve little more than 
formalizing it and writing it to conform to the syntax 
rules. The constructs used in design can be implemented 
directly in Pascal. The routine work of translating the 
design into machine instructions is handled automatically 
by a software utility - the compiler. 
BASIC, like Pascal, is a high-level language that handles 
much of the routine work (data allocation, for example) of 
translating the design into machine terms automatically. 
However, BASIC was designed for simplicity and is not as 
powerful as Pascal. It does not provide all the constructs 
required for reliable software design in a directly usable 
form. 

BASIC does have other advantages. Being simple, it is easy 
to learn. As an interpreted language, it has special 
characteristics which are explained in Chapter 7. Because 
it is designed to run on the TM990 range of microcomputer 
modules, a design can be developed very quickly and cheaply 
using standard hardware and a very low cost development 
system. BASIC is ideal for experimental and low volume 
designs. 

Assembly Language is the most powerful, the most time 
consuming and the most difficult alternative. It gives the 
programmer complete control over all the resources of the 
microcomputer, but to exploit this control requires skill 
and discipline. Program development also takes much longer 
than in a high level language. Assembly language should be 
used where code size and efficiency is crucial (for example, 
in small, high volume applications). It can also be used to 
code critical areas of a program written in a high level 
language (I/O routines, for example). In general, assembly 
language can be used very effectively in small areas; large 
programs quickly become unwieldy. 

Selecting which language to use depends very much on the 
application, the development facilities available, the 
development timescale, and the skills of the programmers. 
Later chapters of this book describe each language in more 
detail. 
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Programming, or coding, is a relatively mechanical process 
which involves expressing a software design in a precise, 
unambiguous form that conforms to strict syntax rules. The 
real creative work of development is done at the system 
design and software design stages. When choosing which 
implementation language and what type of development system 
to use, the designer is choosing how much of the programming 
process will be handled automatically by software 
development tools (compilers, linkers, etc) and how much 
will be done by a human programmer. 

Programs may be written on paper and then entered into the 
development system, or they may be written directly at the 
computer. The second method offers many advantages - no 
duplication of effort, easy modification of the program, and 
an immediate printed record if required. The development 
system acts, in effect, as an electronic notebook - 
faithfully 'recording the program as it develops, and also 
checking periodically that the programmer has followed the 
rules sf the programming language. 

The programmer uses a software tool called an editor (see 
Section 3.4) to enter and modify his program on the 
development system. A structured high level language like 
Pascal makes it easy to build up a program as it develops in 
the mind of the programmer. The Microprocessor Pascal 
System (Chapter 6) includes a syntax-checking editor, which. 
will point out language errors for immediate correction on 
the screen, during an edit session. 

2.7 PROGRAM TRANSLATION 

The source program, which is in a programming language, must 
be translated into machine executable form - that is, a 
pattern of binary 0's and 1's corresponding to the 
microprocessor's instruction set. 

This is done by software tools called compilers and linkers 
(see Sections 3.5.5, 3.6). The process of translation from 
human-readable to machine-executable form is almost entirely 
automatic, and takes only a few minutes. It will usually 
need to be done several times, as the programmer corrects 
errors in his program by changing the source program code 
and re-translating. 

Two types of error can arise: 

(1) Language errors. If what the programmer 
writes does not conform to the rules of the 
programming language, the compiler or 
assembler will give an appropriate error 
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message, and the error can be corrected 
immediately. 

(2) Logical errors. If there is an error in the 
logic of the program, this may not be found .... t 4 1 
U U L l l  the software is tested. 

To minimise frustration and development bottlenecks, it is 
important that compilers and assemblers can be called up 
simply and directly from the development system keyboard, 
and that they execute quickly. 

2 8 CONFIGURATION AND LINKING 

Most software systems are written not as one large piece of 
software, but as several smaller packages. Smaller programs 
are much easier to manage, and take less time to translate. 

This means that the pieces must be welded together into one 
complete system before they can be used, Configuration is 
the process of selecting the pieces of software required for 
an application (perhaps from a "library" of software parts), , 

taking care of any system-wide considerations (such as how 
to allocate memory, and what will be the hardware addresses 
of I / O  devices), and linking the pieces together, 
Configuration is particularly relevant to Component Software 
systems - see Chapter 5. 
The actual forging of the links between software packages is 
carried out automatically by a software tool called a 
link editor or a linker (see Section 3.6). 

2.9 DEBTJGGING 

Once a program has been written, it must be tested. 
However, a microcomputer program is often designed to run on 
a system other than the one on which it is developed, (The 
development system is often referred as the host system; the 
final application system is called the target system). The 
program is often ready for testing some time before the 
target system is built; and in any case the target system 
may not provide the facilities needed to test a program. 

2.9.1 Simulation 

To overcome this problem, some means of simulating the 
target system environment on the development system is 
required. The Texas Instruments Microprocessor Pascal 
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System provides a host debugger that permits target system 
programs to be executed and monitored interactively on the 
host development system. The debugger builds a "software 
model" of the target system on the development system. 
Inputs and outputs can be simulated via operator commands. 
Program flow can be traced, and data items examined. Using 
the debugger, the user can examine exactly what goes on when 
the program is running. A 9900 Simulator is also available 
to test assembly language programs. 

Testing should exercise every possible path through the 
software, and every possible condition, A good test 
strategy is to test each software module separately, 
simulating its interaction with the rest of the system 
(perhaps writing a test program to provide. suitable inputs 
and outputs). Modules can then be placed together with 
confidence that they work in themselves, and the interaction 
between modules ean then be tested, Without a test plan 
like this, it is almost impossible to carry out a thorough 
test. 

2 10 HARDWARE INTEGRATION AND EVALUATION 

While a simulator provides powerful debugging facilities, 
and can be used to check out completely the logic of a 
program, it does not prove that the software will work 
correctly with the target system hardware. The critical 
stage of hardware/software integration is best handled by 
emulation. 

2.10.1 Emulation 

Using emulation, the software can be tried out in the target 
system hardware, while retaining the facilities of the 
development system to monitor program execution and change 
the program if necessary. 

This is achieved by connecting the development system to the 
target by a special cable. The microprocessor is removed 
from the target system and the cable plugged in in its 
place. 

Part way along the cable is a "buffer module" containing a 
microprocessor and interface circuitry. This microprocessor 
can execute a program contained in "emulation memory" on the 
development system. Emulation memory can be loaded from the 
development system with the program under test. The program 
executes in the buffer module exactly as it would in the 
target system (in real-time) and is connected to the target 
system hardware for input and output. The development 
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system can monitor program execution, trace the program flow 
and stop execution if specified conditions (breakpoints) 
Occure 

BUFFER 
. " h h l  I, r 
I V l U U U L t  

DEVELOPMENT 

TARGET 
SYSTEM 

f (MICROCOMPUTER 
BOARD) 

STATUS INFORMATION 
DISPLAYED 
ON SCREEN 

USER ENTERS COMMANDS 
TO CONTROL EMULATION 

Figure 2-3 Emulation 

For Texas Instruments microprocessors, emulation is provided 
by the AMPL (Advanced Microprocessor Prototyping Laboratory) 
module. Emulation is controlled by a structured high-level 
language, in which sophisticated test procedures can be 
written. 

2.10.2 Evaluation 

Once the system is working in emulation, the software can be 
programmed into PROMS and the "umbilical cord" to the 
development system can be severed. At this stage the device 
should undergo a thorough evaluation and audit by someone 
not involved in its development. The designer will have 
tested the device to the best of his ability, knowing its 
internal structure and what might be likely to go wrong. 

- 
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The independent auditor will test without knowledge of the 
internal workings, according to how the device is likely to 
be used. This audit should be performed against the 
original statement of requirements; and it should use (and 
criticize) the documentation (User's Guide, etc) that is to 
be provided to the end user. 

2.11 PRODUCTION 

When a working system has been obtained that satisfies the 
design criteria, the hardware can be frozen and production 
of the device can begin. (If the device is 1-off, of 
course, this is the end of the road.) Hardware typically 
requires a much longer production lead time than software 
(for printed circuit board layout, tooling, etc) and 
therefore needs to be frozen much earlier. Minor software 
changes and enhancements can still be made, provided they do 
not affect the hardware. 

The software should not be frozen until it has been tested 
with production hardware. It may be possible to fix minor 
problems introduced by the move from prototype to production 
by modifying the software. This will usually be much easier 
than changing the hardware at this stage. 
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CHAPTER 3 

DEVELOPMENT TOOLS 

This chapter describes the hardware and software tools used 
in software development for microprocessors, and some of the 
m n f i h a n i  ~ ~ L ' C I L A I I L A A L ~ ~  n n  =f ~cftware developzent, 

3-2 DEVELOPMENT SYSTEMS 

In traditional forms of computing, software is usually 
developed on the machine on which it is to run. Such 
computers are general purpose machines capable of running 
many different programs, including the 'software tools' used 
in program development, 

With microcomputers, this is not usually possible. 
Normally, a dedicated system cannot be used to develop the 
software that is to run on it, Many dedicated systems will 
not provide the peripheral devices (keyboard, printer, 
etc,), much less the software tools, required for program 
development, 

For this reason, a general purpose computer system called a 
development system (or host system) is used to develop 
software for a microcomputer, The dedicated microcomputer 
in which the software will finally run is called the 
target system. The development system is often a 
minicomputer, such as the Texas Instruments 990 family, 990 
minicomputers have the same basic instruction set as the TMS 
9900 family of microprocessors, which makes software 
development much easier, However, it is possible to develop 
software for a microcomputer on a large mainframe computer, 
such as an IRM 370, 

A microcomputer development system is likely to have one or 
two special purpose peripherals, such as a PROM Programmer. 
The AMPL package (Advanced Microprocessor Prototyping 
Laboratory) provided by Texas Instruments also allows target 
system emulation. The target hardware is connected by a 
cable to the development system, The emulator runs a 
program contained in the development system's memory, on the 
actual hardware of the target system. All the resources of 
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the development system are available to monitor and to 
change the program if necessary, AMPL provides 
sophisticated testing aids for both hardware and software. 

Using the peripheral devices and the software tools provided 
with the development system, it is possible to write a 
microcomputer program, translate it into machine 
understandable form (ie binary digits), test it under 
simulation on the development system, try it out in the 
target system hardware, and finally write it permanently 
into the memory of the target microcomputer system. 

3.3 FILES 

Much of the mechanics of program development consists of 
creating and manipulating files on a development system. A 
file is a sequential list of information held on a backing 
storage device (disc, magnetic tape, etc). This information 
may be text, numbers or binary digits. Files are used to 
store the source program code that a programmer writes, and 
to store the machine code that can be executed by the 
microcomputer. Files can also be used to store 
documentation, user's guides etc - in fact anything that can 
he reduced to words, numbers or bits. 

Once a design has passed the paper stage, it will consist 
entirely of files stored on the development system. This 
medium may be unfamiliar to those used to working with 
circuit diagrams, printed circuit boards and soldering 
irons. However, once the basic techniques have been 
mastered, it is an easy and natural medium to work in. 
Software tools can manipulate the "stuff" of the design 
directly, and hence a large part of the design and 
development process is automated, eliminating repetitive 
work and enhancing productivity. 

A file can be read as input data by a program running on the 
development system; the program can write back a file of 
output data, 

Utility programs are provided with a development system to 
perform many of the tasks associated with program 
development - for example, translating source code written 
in a high-level language into object code that can be 
understood by the microprocessor. The source code is read 
from a file held on backing storage; the object code is 
written to another file. 
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FROM BACKING 
STORE 

TO BACKING 
STORE 

TAPE CASSEITE 

/ , I  FLOPPY DISC 

or 

'HARD' DlSC 

PROGRAM 
INPUT L.----A 

t OUTPUT 
FILE(S) FILEIS) 

SCREEN 
DISPLAYS USER CONTROLS 

STATUS FROM KEYBOARD 

F i g u r e  3-1 Sof tware  Tools  

These  u t i l i t y  programs a r e  t h e  t o o l s  of t h e  s o f t w a r e  
e n g i n e e r ;  t h e y  a r e  what h e  o r  s h e  u s e s  t o  c r e a t e  and 
m a n i p u l a t e  s o f t w a r e .  A u t i l i t y  program ( a  ' s o f t w a r e  t o o l ' )  
may have s e v e r a l  i n p u t  and s e v e r a l  o u t p u t  f i l e s ,  depending  
on  t h e  f u n c t i o n  i t  per forms.  An o u t p u t  f i l e  need n o t  go t o  
back ing  s t o r a g e :  i f  i t  c o n t a i n s  t e x t u a l  i n f o r m a t i o n  i t  might  
be  s e n t  d i r e c t l y  t o  a  p r i n t e r .  S i m i l a r l y ,  a n  i n p u t  f i l e  
might  be typed  i n  a t  a  keyboard .  

F i l e s  which c o n t a i n  r e a d a b l e  t e x t  - t h a t  i s ,  i n f o r m a t i o n  
t h a t  can  be u n d e r s t o o d  and m a n i p u l a t e d  by a  programmer - a r e  
known a s  t e x t  f i l e s .  B ina ry  codes  a r e  used  t o  r e p r e s e n t  t h e  
i n d i v i d u a l  t e x t  c h a r a c t e r s  ( s e e  s e c t i o n  3 . 8 ) .  

3 . 3 . 1  Backup 

Once programming h a s  begun, t h e  work of t h e  s o f t w a r e  
d e s i g n e r  w i l l  be h e l d  e n t i r e l y  on f i l e s  i n  back ing  s t o r a g e .  
While  s t o r a g e  media a r e  i n h e r e n t l y  v e r y  r e l i a b l e ,  e r r o r s  do 
o c c a s i o n a l l y  o c c u r  (due ,  f o r  example,  t o  d u s t  a c c i d e n t a l l y  
g e t t i n g  i n t o  a  d i s c  d r i v e )  which can  wipe o u t  d a y s  o r  even  

- 
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weeks of work. It i s  t h e r e f o r e  n e c e s s a r y  t o  have some form 
of  backup f o r  i m p o r t a n t  f i l e s  - a n  e x t r a  copy, s t o r e d  away 
from t h e  computer.  The re  a r e  many ways of do ing  t h i s :  f o r  
example ,  copying  f i l e s  a t  r e g u l a r  i n t e r v a l s  t o  magne t i c  t a p e  
o r  pape r  t a p e .  

One method which works p a r t i c u l a r l y  w e l l  f o r  f l o p p y  
d i s c- b a s e d  s y s t e m s ,  and can  a l s o  be  used  f o r  h a r d  d i s c s ,  i s  
t o  d u p l i c a t e  t h e  comple t e  d i s c  ( o r  d i s c s )  c o n t a i n i n g  t h e  
f i l e s  f o r  a  p r o j e c t .  The s u g g e s t e d  way of do ing  t h i s  i s  t o  
h a v e  2 backup d i s c s  f o r  e a c h  d i s c  i n  u se .  The 3 d i s c s  
( l a b e l l e d  A,  B, C f o r  conven ience )  can  be used  i n  a  
backup c y c l e :  

CURRENT DlSC 

FIRST BACKUP DlSC 

SECOND BACKUP DlSC 

F i g u r e  3-2 Backup Cycle - 1 

A t  r e g u l a r  i n t e r v a l s  - s a y  once a  week, b u t  depending on how 
much work h a s  been  done - t h e  c u r r e n t  d i s c  i s  backed up. 
T h i s  i s  done by copy ing  t h e  comple t e  d i s c  t o  t h e  second 
backup (C).  The copy shou ld  be v e r i f i e d  a f t e r  i t  h a s  been 
made. 

I 
COPY FIRST BACKUP DlSC 

F i g u r e  3-3 Backup Cycle  - 2 

Once t h i s  h a s  been  done, t h e  second backup (C) becomes t h e  
c u r r e n t  d i s c ,  t h e  p r e v i o u s  c u r r e n t  d i s c  ( A )  i s  r e l e g a t e d  t o  
backup,  and t h e  f i r s t  backup t o  second backup: 
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CURRENT DlSC 

FIRST BACKUP DlSC 

SECOND BACKUP DlSC 

F i g u r e  3-4 Backup Cycle - 3 

There  are two r e a s o n s  f o r  u s i n g  C a s  t h e  new c u r r e n t  d i s c  
i n s t e a d  of c o n t i n u i n g  w i t h  A: 

1) I f  t h e  c y c l e  i s  c a r r i e d  o u t  r e g u l a r l y  each  d i s c  
w i l l  g e t  t h e  same amount of u s e  

2 )  I f  f o r  any r e a s o n  t h e  copy d i d  n o t  work, t h i s  
w i l l  q u i c k l y  become a p p a r e n t  when t r y i n g  t o  u s e  
C. 

I f  t h e  c u r r e n t  d i s c  becomes c o r r u p t e d  a t  any t ime ,  t h e  f i r s t  
backup can  be used  t o  r e s t o r e  t h e  s i t u a t i o n  a t  t h e  t ime of 
t h e  las t  backup c y c l e .  

The second backup p r o v i d e s  a n  e x t r a  i n s u r a n c e  p o l i c y  a g a i n s t  
c a t a s t r o p h e s  - f o r  example i f  a  d i s c  d r i v e  f a u l t  c o r r u p t s  
b o t h  t h e  c u r r e n t  d i s c  and t h e  f i r s t  backup,  o r  a  power 
f a i l u r e  o c c u r s  d u r i n g  t h e  backup p r o c e s s .  

The e x t r a  expense  of t r i p l i c a t i n g  d i s c s  ( n o t  much f o r  
f l o p p i e s )  and t h e  t ime  s p e n t  back ing  up i s  more t h a n  p a i d  
f o r  by t h e  s a v i n g s  i f  a  f a u l t  does  occu r .  

3 . 4  Text  E d i t i n g  

The t e x t  e d i t o r  i s  a  program which a l l o w s  t h e  u s e r  t o  c r e a t e  
and  m a n i p u l a t e  t e x t  f i l e s .  The e d i t o r  i s  p e r h a p s  t h e  most 
i m p o r t a n t  t o o l  on t h e  development  system. It i s  t h e  t o o l  
which a  programmer w i l l  spend  more t ime  u s i n g  t h a n  any 
o t h e r .  So i t  i s  i m p o r t a n t  t h a t  a n  e d i t o r  i s  w e l l  d e s i g n e d ,  
e a s y  t o  u s e  and h a s  a  good set of f a c i l i t i e s .  

New t e x t  i s  e n t e r e d  a t  a  keyboa rd ,  and saved  i n  a f i l e  on 
backup s t o r a g e  ( c a s s e t t e ,  f l o p p y  o r  h a r d  d i s c ) .  The t e x t  
w i l l  u s u a l l y  c o n s i s t  of s o u r c e  program code i n  assembly  o r  
h i g h  l e v e l  l anguage ;  however most e d i t o r s  w i l l  a l l o w  any 
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k i n d  of t e x t u a l  i n f o r m a t i o n  t o  be  e n t e r e d .  The t e x t  
( w h e t h e r  newly e n t e r e d  o r  r e c a l l e d  from b a c k i n g  s t o r a g e )  can  
b e  m o d i f i e d  by e n t e r i n g  commands a t  t h e  keyboard  ( F i g u r e  
3- 5 ) .  

G e n e r a l l y  t h e  e d i t o r s  which a r e  e a s i e s t  t o  u s e  a r e  t h o s e  
which a r e  s c r e e n  based :  t h a t  i s ,  t h e  t e x t  i s  d i s p l a y e d  on a  
v i s u a l  d i s p l a y  s c r e e n  and c a n  be m o d i f i e d  by moving a  c u r s o r  
and  u s i n g  s i m p l e  key  s t r o k e s  t o  change ,  i n s e r t - o r  d e l e t e  
c h a r a c t e r s  a t  a p p r o p r i a t e  p o s i t i o n s  ( F i g u r e  3- 6) .  

(1)  Creating a new file 

ENTERS 
TEXT 

(2) Modifying an existing file 

EDITOR 
CREATES TEXT FlLE 
ON BACKING STORAGE 

TEXT FILE C MODIFIED TEXT 
READ FROM FILE WRITTEN TO 

BACKING STORAGE BACKING STORAGE 

USER ENTERS COMMANDS 
TO MODIFY TEXT 

F i g u r e  3-5 E d i t o r  F u n c t i o n  
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CURSOR 
MOVEMENT 

"INS" KEY "DEL" KEY 
= INSERT CHARACTERS = DELETE CHARACTER 
AT CURRENT CURSOR AT CURRENT CURSOR 
POSITION POSITION 

F i g u r e  3-6 Use of a S c r e e n  Based E d i t o r  
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Most editors also provide a repertoire of commands that 
allow such functions as searching for and replacing 
specified strings of characters. 

ABORT E x i t  t h e  e d i t o r  BOTTOM P o s i t i o n  c u r s o r  a t  e n d- o f- f i l e  
INPUT E d i t  a n o t h e r  f i l e  TOP P o s i t i o n  c u r s o r  a t  t o p- o f- f i l e  
QUIT Save f i l e  & ABORT +/- i n t  P o s i t i o n  c u r s o r  up o r  down " i n t "  
SAVE Save f i l e  & INPUT 

INSERT I n s e r t  a  f i l e  
CHECK Check s y n t a x  of f i l e  SHOW D i s p l a y  a f i l e  

COPY Copy t h e  s p e c i f i e d  b l o c k  a f t e r  t h e  c u r r e n t  l i n e  
DELETE D e l e t e  t h e  s p e c i f i e d  b l o c k  
MOVE Move t h e  s p e c i f i e d  b l o c k  a f t e r  t h e  c u r r e n t  l i n e  
PUT Put  t h e  s p e c i f i e d  b l o c k  i n t o  t h e  s p e c i f i e d  f i l e  

FIND(tok,n)  F ind  t h e  Nth o c c u r r e n c e  of t o k  
REPLACE(to4l9tok2,n)  Rep lace  t o k l  w i t h  t o k 2  f o r  n  o c c u r r e n c e s  
TAB(increment)  S e t  t a b  inc remen t  

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* F u n c t i o n  Keys *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* 
F1 F  2 F  4 F 5 F6 F 7 F  8 

R o l l  Up R o l l  Down D u p l i c a t e  S t a r t  Block End Block Edit/Compose S p l i t  

F i l e  = 1NPUT.FILE 
< > 

Tab = 2  

Figure 3-7 Microprocessor Pascal Editor 'Menu' of Commands 

As far as a prqgrammer is concerned, software development 
consists mainly of manipulating text files stored on a 
development system. These text files will probably be 
written in some programming language. A programming 
language is a precise form of notation that a programmer 
uses to specify what he requires the microprocessor to do. 
Software tools are used to translate the program in this 
form (in which it can be created and worked on by a software 
engineer) into a form that can be understood and executed by 
the microprocessor. Together, the language and the software 
tools form a design system for programming electronic 
parts. 
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3.5.1 Assembly Language 

The earliest computers were programmed directly in machine 
code: that is, binary digits. Each instruction in a 
computer is represented by a unique pattern of bits within a 
word of program code. Fzr example, in the TMS 9900, 

The X's carry other information (where the elements to be 
added can be found, and where to store'the result) and may 
be 0's or 1's. Some instructions require two or three 
words, because they  contain data addresses of ------ 

9 lue I U U  L j' 

locations, etc. 

Programming in machine code is extremely tedious and very 
prone to errors . Theref ore assembly language was invented. 
Using assembly language, a program can be written with 
meaningful mnemonfcs (e.g., MPP for multiply) instead of 
binary code for instructions, and symbols instead of numeric 
addresses for memory locations: 

C   WORD^,   WORD^ COMPARE WORDl WITH WORD2 
JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME" 

SAME TB 7 

WORDl BSS 2 
WORD2 BSS 2 

TEST INPUT BIT 

RESERVE STORAGE (BLOCK STARTING 
WITH SYMBOL) FOR WORDl AND WORD2 
2 BYTES = 1 WORD EACH 

3.5.2 Assemblers 

Translation from assembly language to machine code, which 
must be done before the program can be executed, is a 
tedious but fairly straightforward process; the sort of 
thing computers do well. The translation is carried out 
automatically by a software tool (a computer program) called 
an assembler. 

An assembler converts assembly language source code, which 
is produced by a programmer, into object code, which can be 
understood by the microprocessor. The input to the 
assembler will normally be a text file created by the 
editor. The output will be a file of object code. The 

Texas Instruments 3-9 October iY8i 



SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS 

assembler also generates a listing file, which is a text 
file containing details of the assembly, and any error 
messages. 

TEXT FILE I I 

STATUS CONTROL // 
COMMANDS MESSAGES 

OF SOURCE 
CODE \ 

OBJECT 

ASSEMBLER 

CODE / FILE 

LISTING 
Fl LE 

Figure 3-8 Assembler 

One of the advantages of using an assembler (instead of 
programming directly in machine code) is that programs can 
easily be changed. For example, an extra instruction can be 
inserted in an assembly language program and the program 
simply reassembled. Inserting an extra instruction in a 
machine code program would involve going through the whole 
program changing (eg) jump addresses, because the position 
of all the code after the insertion would have changed. 

3.5.3 High-Level Languages 

Assembly language, though a great improvement on machine 
code, still requires a problem to be translated into machine 
terms before it can be programmed. Each assembly language 
instruction corresponds to one machine instruction. 
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The programmer must w r i t e  a s t a t e m e n t  l i k e  

I F  t e m p e r a t u r e  l e s s  t h a n  70 d e g r e e s  AND 
p r e s s u r e  s e n s o r  i s  o f f  THEN 
netifg ope ra t e r  

i n  te rms of t h e  low- level  t e s t s  and c o n d i t i o n a l  jumps t h a t  
a r e  t h e  on ly  t h i n g s  t h e  computer u n d e r s t a n d s :  

C I  @TEMp,70 
ZNZ NEXT 
CI  @PRESS,OFF 
J N E  NEXT 
BLWP @NTFYoP 

NEXT . 

I n  a d d i t i o n ,  t h e  programmer must manage a l l  t h e  r e s o u r c e s  of 
t h e  computer ,  such  a s  which memory l o c a t i o n s  a r e  t o  be used  
t o  s t o r e  each  i t e m  of d a t a ,  h i m s e l f .  

High l e v e l  l anguages  were i n t r o d u c e d  t o  a l l o w  t h e  computer 
t o  hand le  a l l  t h e s e  'housekeeping '  f u n c t i o n s  a u t o m a t i c a l l y ,  
and t o  f r e e  t h e  programmer t o  c o n c e n t r a t e  on t h e  problem. 

One of t h e  f i r s t  h i g h- l e v e l  l anguages  was FORTRAN, which 
s t a n d s  f o r  FORmula TRANslation. It a l l o w s  programs t o  be 
w r i t t e n  i n  a  s t y l i z e d  l anguage  t h a t  combines e l emen t s  of 
mathemat ics  and E n g l i s h :  

1 O J = 4  
I = 5*J + 7 
I F  (I.EQ.27) THEN GOT0 100 

The programmer can s e t  up s t o r a g e  l o c a t i o n s  w i t h  names l i k e  
I1 1" and "J". I and J a r e  c a l l e d  v a r i a b l e s  because  t h e y  can 
b e  a s s i g n e d  any v a l u e .  The f i r s t  l i n e  of t h e  program 
( l a b e l l e d  10)  s e t s  J t o  t h e  v a l u e  of 4.  The second l i n e  
t a k e s  t h e  v a l u e  s t o r e d  i n  J (which we know t o  be 4 ) ,  
m u l t i p l i e s  i t  by 5 ,  adds  7 and a s s i g n s  t h e  r e s u l t i n g  v a l u e  
t o  I. Line  30 t h e n  t e s t s  I t o  s e e  i f  i t  h a s  t h e  v a l u e  27; 
i f  s o ,  t h e  nex t  l i n e  t o  be execu ted  w i l l  be t h e  one l a b e l l e d  
100. Otherwise  t h e  program c o n t i n u e s  w i t h  t h e  n e x t  l i n e  i n  
t h e  sequence.  

I and J r e p r e s e n t  memory l o c a t i o n s .  But t h e  programmer does  
n o t  have t o  worry abou t  where i n  memory they  a r e .  

It i s  much e a s i e r  t o  w r i t e  programs i n  FORTRAN t h a n  i n  
assembly  language .  However, i n  some r e s p e c t s  FORTRAN i s  
s t i l l  c l o s e r  t o  t h e  way machines o p e r a t e  t h a n  t o  t h e  way 
human b e i n g s  t h i n k .  The GOT0 s t a t e m e n t ,  f o r  example,  i s  
o b v i o u s l y  d e r i v e d  from t h e  assembly language  JMP; i t  i s  a 
machine c o n s t r u c t  and n o t  a  human, o r  l o g i c a l ,  one. 
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Implementation of conditional statements, for example, 
requires GOT0 statements and labels. To program "If I is 
equal to 5 then do X else do Y", it is necessary towrite: 

IF (I.EQ.5) THEN GOT0 50 

(do Y) 

(do X) 

Not only are the statement numbers an additional confusion 
and a source of error, but the order is inverted: the then 
action comes second. FORTRAN was designed simply as an 
easier and quicker way of writing assembly language 
programs. 

More recently, high-level languages have been designed with 
the intention of getting as close to the problem as 
possible. The ideal is that writing a program should 
require no more than a precise and unambiguous statement of 
what to do. Everything else (translating this precise 
statement into code to be understood by a machine, and 
allocating machine resources) should be done automatically 
by software tools. 

A precise and unambiguous statement of what to do is known 
as an algorithm, One advantage of this approach is that the 
algorithms derived are independent of a particular machine 
architecture, and can survive changes in hardware 
technology, Many of the newer languages are based on ALGOL 
(ALGOrithmic Language), which was designed in the 1960s as a 
natural language for writing algorithms. 

3.5.4 Pascal 

Pascal is acknowledged as one of the best modern high-level 
languages, Developed principally by one man, PASCAL has a 
coherence which some committee-designed languages lack. It 
implements most of the generally accepted good programming 
practices, Besides providing the fundamental constructs 
needed to write algorithms, in a much more natural way than 
in FORTRAN (say), Pascal also has powerful methods of 
organizing and structuring data. 

Algorithms can be turned directly into Pascal programs with 
very little effort. 
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A Pascal program is easy to read, and is almost 
self-documenting: 

IF input value = 5 THEN - 
B E G I N  
perform test procedure; 
print - results 
END 

ELSE 
record - value; 

perform test procedure, print results and record value will - 
be precFsely-def ined elsewhere-in the program. 

3.5.5 Compilers 

A compiler performs the same function as an assembler (see 
section 3.5.2 above), but its input will be a program 
written in a particular high level language, Some compilers 
produce object code (machine code) directly; others generate 
assembly language source, which must be run through an 
assembler to generate object code. This is an extra step, 
but it does give the user the option of hand optimizing the 
compiler output before it is assembled. The input to a 
compiler or assembler is called source code; the output is 
object code. 

Execution of a compiler or an assembler is completely 
separate from execution of the resulting program. A 
compiler or assembler is a software tool used during 
development that translates a program written in a 
programming language into a machine executable form, In 
developing a microcomputer application, the 
compiler/assembler will run on the development system and 
the compiled or assembled program will be designed to 
execute on the target system. 

3.5.6 Interpreted Languages 

Languages such as FORTRAN are compiled languages; that is, 
the source program is turned into machine code in a separate 
step (perhaps on a different machine) before it is 
executed. 

With an interpreted language, such as BASIC, there is no 
separate compilation step. The program is not stored in 
machine code but in intermediate code, which can be regarded 
as condensed source code with all unnecessary symbols 
removed. At execution time, the interpreter, a program 
which resides with the intermediate code in the target 
system, looks at each line of intermediate code, determines 
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what it means and carries out the necessary action. The 
intermediate code is not executed directly; the interpreter 
examines it to determine what it means, then calls an 
appropriate piece of assembly language code, contained 
within the interpreter, to perform the operation. 

Intermediate code is much more compact than machine code; 
however, the interpreter must always he there, whatever the 
size of the intermediate code, so that there is a minimum 
overhead in an interpretive system. Beyond a certain size, 
an interpreted program will take less memory than an 
equivalent compiled program. However, an interpreted 
program will run a lot slower (typically 5 to 10 times) due 
to the extra work that must be done at execution time in 
interpreting the intermediate code. 

3.5.6.1 BASIC 

BASIC is a simple language which is very easy to learn. 
BASIC systems also use a very simple set of software tools. 

BASIC is especially suited to systems where development and 
execution are carried out on the same hardware. BASIC 
systems usually have a special editor, which converts input 
programs to intermediate code, a line at a time, as they are 
entered. The BASIC editor checks each line for syntax 
errors as it is entered, and signals any errors for 
immediate correction. There is no separate compilation or 
assembly step; programs can be executed simply by typing 
"RUN". Programs can be halted and changed, then run again, 
which makes for very quick, interactive development. 

Texas Instruments' Power BASIC (see Chapter 7) is designed 
to run on the TM990 range of microcomputer boards. A RASIC 
program can be developed and executed using, at minimum, one 
TM990 board and a terminal. BASIC provides an inexpensive 
microcomputer system which is ideal for small applications 
and experimental work, and can be used by people without 
computer experience. 

However, BASIC does have limitations. Its "line at a time" 
nature means that there is no adequate program or data 
structuring, and very limited checks on program 
correctness. RASIC is not recommended for the development 
of complex systems. 

3.5.6.1 Interpreted Pascal 

Microprocessor Pascal programs (see chapter 6) will normally 
be executed in machine code ("native" code). This gives 
maximum execution speed. However, they can optionally be 
executed interpretively. This allows the user to trade-off 
execution speed against memory size, and to select which is 
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more important for his particular application. Interpretive 
execution is slower, but takes less memory. 

Faced with the choice of which language is best, some 
general observations can be made, 

Low-ievel (assembly) language allows t he  programmer direct 
access to all the features of the machine and thus the 
opportunity to write compact and efficient programs. To 
capitalize on this requires skill and time. The opportunity 
equally exists to make mistakes and to write inefficient 
- r . -Alnrr . - . . . . rn  

L VsI QL113. 

High-level languages can shorten development time by a 
factor of 5 or more, and produce more reliable code. With a 
high-level language it is much more difficult to make 
expensive mistakes. High-level programs are more 
understandable (if properly written, they can be 
self-documenting), so that a project is less likely to be 
dependent on one programmer. Changes are easier to make in 
the late stages of a project. The cost is some code 
inefficiency because a compiler cannot optimize as well as a 
good assembly language programmer. However, this becomes 
less true as the size of the program increases. 
Inefficiencies (and errors) may be introduced in a large 
assembly language program simply because of the intellectual 
difficulty of managing such a large amount of detail 
(especially when it is worked on by more than one 
programmer). Compilers do not suffer from this problem. 

Restrictions on code size, particularly for high volume 
products, may dictate the use of assembly language in order 
to produce the most compact code possible. Unless this is 
the case, it makes sense to use a high-level language. 
Assembly language projects ~f more than a few K (=  thousand) 
bytes should be considered very carefully because complexity 
increases very rapidly with size. (Studies have estimated 
that complexity is proportional to the square of the size of 
the program). 

For many projects, a compromise solution may be attractive. 
For example, the control aspects, where clarity of the 
design is important, can be programmed in high-level 
language, with assembly language routines for critical low- 
level areas such as input and output. 

An alternative (or complementary) solution is to 
hand-optimize compiler-produced code, once the program has 
been completely checked out; or even to rewrite it in 
assembly language after proving the design in (say) Pascal. 
Both approaches have been used very successfully by Texas 
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I n s t r u m e n t s  i n  i n t e r n a l  p r o j e c t s ,  

3.6 L i n k e r  

A l i n k e r ,  o r  l i n k  e d i t o r ,  i s  a program which w i l l  combine 
s e p a r a t e l y  compi led  o r  assembled  o b j e c t  code modules t o  form 
a  comple t e  sys tem,  

With a  sys t em of any s i z e ,  i t  i s  much e a s i e r  t o  b reak  t h e  
program down i n t o  modules  which can  be w r i t t e n  s e p a r a t e l y .  
U s u a l l y ,  t h e s e  modules w i l l  be  chosen  s o  t h a t  each  per forms  
a  f a i r l y  s e l f - c o n t a i n e d  f u n c t i o n  and c a n  be  t r e a t e d  a s  a 
l o g i c a l  u n i t ,  

The i n t e r f a c e s  between t h e s e  modules - t h a t  i s ,  t h e  way t h a t  
t h e y  w i l l  f i t  t o g e t h e r  t o  form a  comple t e  sys tem - must be 
c a r e f u l l y  c o n s i d e r e d  when t h e  sys t em i s  b e i n g  d e s i g n e d ,  
Modules w i l l  o f t e n  need t o  u s e  programs o r  d a t a  c o n t a i n e d  i n  
o t h e r  modules ,  These can  be d e f i n e d  a s  e x t e r n a l  r e f e r e n c e s  
t o  symbo l i c  names: t h e y  w i l l  be i n d i c a t e d  ( t a g g e d )  a s  
u n r e s o l v e d  a d d r e s s e s  i n  t h e  o b j e c t  code.  D e f i n i t i o n s  t o  be 
u s e d  by o t h e r  modules w i l l  a l s o  be i n c l u d e d  i n  t h e  o b j e c t  
code.  The l i n k e r  c o n n e c t s  t o g e t h e r ,  o r  r e s o l v e s ,  t h e s e  
l o o s e  ends  by l i n k i n g  r e f e r e n c e s  w i t h  t h e i r  c o r r e s p o n d i n g  

- 

d e f i n i t i o n s ,  

3.6.1 Abso lu t e  and R e l o c a t a b l e  Code 

B e f o r e  a  program can  be  e x e c u t e d ,  i t  must be l o c a t e d  a t  a  
p a r t i c u l a r  p l a c e  i n  memory, Addres se s  i n  a  program r e f e r  t o  
p a r t i c u l a r  memory l o c a t i o n s ,  and t h e  r i g h t  d a t a  o r  program 
code  must be  p r e s e n t  a t  t h o s e  l o c a t i o n s  f o r  t h e  program t o  
work, 

Some a s s e m b l e r s  f o r  t h e  9900 ( t h e  Line-By-Line Assembler f o r  
example)  produce  o n l y  a b s o l u t e  code ;  t h a t  i s ,  t h e  p o s i t i o n  
o f  t h e  code i n  memory i s  s p e c i f i e d  a t  t h e  t i m e  of assembly ,  
and  canno t  s u b s e q u e n t l y  be changed ,  

However, most a s s e m b l e r s  produce  r e l o c a t a b l e  code ,  Program 
and  d a t a  a d d r e s s e s  a r e  c a l c u l a t e d  r e l a t i v e  t o  t h e  program 
b a s e  a d d r e s s  - u s u a l l y  0. Address  f i e l d s  a r e  s p e c i f i e d  a s  
" r e l o c a t a b l e "  i n  t h e  o b j e c t  code o u t p u t .  When t h e  program 
i s  l o a d e d  f o r  e x e c u t i o n ,  s t a r t i n g  a t ,  f o r  example,  a d d r e s s  
100 ,  t h e  l o a d e r  program can  add t h i s  v a l u e  t o  a l l  t h e  f i ' e l d s  
t a g g e d  " r e l o c a t a b l e "  s o  t h a t  t h e  program w i l l  e x e c u t e  
c o r r e c t l y  ( F i g u r e  3- 9 ) .  

R e l o c a t a b l e  code a l l o w s  t h e  programmer t o  pos tpone  d e c i d i n g  
where t h e  program w i l l  be l o c a t e d  u n t i l  t h e  t ime  comes t o  
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load it, This can be very useful when a system is being 
constructed from a number of different program modules. 
Each nodule can be assembled separately without needing to 
calculate exactly where it will fit in memory - which would 
l n v o l v e  kncwing the lengths ef all the ether modules, More 
important still, one module can be changed (perhaps 
increasing its length) without the need to reassemble all 
the others in different positions to make room for it, 

Program assembled at 
base address 0 

0 

I* Branch to 
1 
I 

Loaded in memory 
at address >I00  

-4A 

5F - 

Figure 3-9 Relocatable Code 

* address >4A 
B @LABEL 

LABEL MOV R1 ,R2 

Modules to be linked will usually be relocatable. The 
linker stacks them one after the other in memory, adjusting 
all the addresses accordingly, Output from a linker can 
either be a larger relocatable module, or absolute code, 
designed to be executed at a particular position in memory. 

Linkers and relocatable code make a great difference to 
software development. It is possible to break a project 
down into manageable modules, One module can be changed 
without recompiling or reassembling the whole system, The 
linker automatically takes care of changes in module size 
and in the addresses of external variables. This can save a 
great deal of time (and money) in developing software. 

A linker also allows the use of libraries of standard 
routines. Libraries can provide, for example, mathematical 
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c a p a b i l i t i e s  o r  run- time s u p p o r t  f o r  a  p a r t i c u l a r  
programming l anguage .  A l i b r a r y  c o n s i s t s  of a  number of 
d i f f e r e n t  modules ,  which can  e i t h e r  be w r i t t e n  by t h e  u s e r  
o r  s u p p l i e d  by a  m a n u f a c t u r e r ,  These modules  a r e  s t o r e d  a s  
r e l o c a t a b l e  o b j e c t  code. A u s e r  can  r e f e r e n c e  any of t h e s e  
modules  i n  h i s  program; when t h e  t i m e  comes t o  l i n k ,  t h e  
l i n k e r  w i l l  a u t o m a t i c a l l y  se lect  from t h e  l i b r a r y  t h e  
modules  r e q u i r e d  by t h e  program, and l i n k  them i n t o  t h e  
sys tem.  See Chap te r  5, Component S o f t w a r e ,  f o r  f u r t h e r  
i n f o r m a t i o n  on t h e  u s e  of s o f t w a r e  l i b r a r i e s .  

Wi th  a  l i n k e r ,  some modules  can  be w r i t t e n  i n  h i g h  l e v e l  
l a n g u a g e  and o t h e r s  i n  a s sembly  l anguage ,  a c c o r d i n g  t o  t h e i r  
c h a r a c t e r i s t i c s .  T h i s  makes p o s s i b l e  a  v e r y  f l e x i b l e  
a p p r o a c h  t o  sys t em d e s i g n .  

3 . 7  TARGET SYSTEM EXECUTION 

Having produced  a n  e x e c u t a b l e  program u s i n g  t h e  s o f t w a r e  
t o o l s  of a  deve lopment  sys t em,  t h e r e  a r e  two ways of 
t r a n s f e r r i n g  t h e  program f o r  e x e c u t i o n  i n  t h e  i n t e n d e d  
t a r g e t  sy s t em ( a  t h i r d  method,  e m u l a t i o n ,  i s  d e s c r i b e d  i n  
C h a p t e r  2 ,  s e c t i o n  2.10.1). 

3.7.1 Loader  

A l o a d e r  i s  a  s o f t w a r e  u t i l i t y  t h a t  l o a d s  an e x e c u t a b l e  
program from some form of  back ing  s t o r a g e  i n t o  r e a d / w r i t e  
(RAM) memory, f o r  e x e c u t i o n  by t h e  p r o c e s s o r .  A l o a d e r  w i l l  
t h e r e f o r e  be used i n  a  t a r g e t  sys tem which h a s  been d e s i g n e d  
t o  e x e c u t e  more t h a n  one program, and which h a s  a  back ing  
s t o r e  of some k i n d  ( m a g n e t i c  d i s c ,  t a p e  e t c )  a v a i l a b l e ,  
However, a  l o a d e r  may a l s o  be used  i n  a  t a r g e t  sys tem 
w i t h o u t  b a c k i n g  s t o r a g e ,  t o  l o a d  a  program i n t o  RAM memory 
f o r  t e s t  e x e c u t i o n .  Here ,  t h e  " backing  s t o r e "  is  l i k e l y  t o  
b e  a  h o s t  development  s y s t e m ,  o r  a t e r m i n a l  w i t h  some form 
o f  s t o r a g e .  

Any computer  sys t em r e q u i r e s  some form of program s t o r e d  i n  
r e a d  o n l y  memory t h a t  w i l l  be e x e c u t e d  immed ia t e ly  when t h e  
s y s t e m  powers up. I n  a  g e n e r a l  pu rpose  computer ,  t h i s  
program may do n o t h i n g  more t h a n  l o a d  i n  t h e  O p e r a t i n g  
System o r  C o n t r o l  Program from back ing  s t o r e ,  and t h e n  
r e l i n q u i s h  c o n t r o l .  Such a  program i s  c a l l e d  a  " b o o t s t r a p  
l o a d e r"  . 
Some l o a d e r s  a r e  r e l o c a t i n g  l o a d e r s  - t h a t  i s ,  t h e y  can  t a k e  
a  r e l o c a t a b l e  o b j e c t  program from back ing  s t o r a g e  and p l a c e  
i t  a t  any  s p e c i f i e d  p o s i t i o n  i n  memory, a d j u s t i n g  t h e  
a d d r e s s e s  t agged  ' r e l o c a t a b l e '  s o  t h a t  t h e  program w i l l  
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e x e c u t e  c o r r e c t l y .  Other  l o a d e r s  r e q u i r e  program code i n  
image fo rma t  - t h a t  i s ,  a b s o l u t e  b i n a r y  code t h a t  can  be 
p l a c e d  d i r e c t l y  i n  t h e  computer 's  RAM memory. 

3 , 7 , 2  PROM Programmer 

A d e d i c a t e d  microrcmputer  i s  l i k e l y  t o  have i t s  program code 
a l r e a d y  s t o r e d  i n  r ead  o n l y  memory when t h e  sys tem powers 
UP 9 s o  t h a t  no i o a d e r  i s  r e q u i r e d .  A u t i i i f y  c a l l e d  a PROM 
Programmer i s  used t o  permanent ly  f i x  t h e  program i n t o  a  
PROM memory c h i p  which can  be plugged i n t o  t h e  t a r g e t  
system. ( I n  t h e  c a s e  of EPROM, t h e  program can  be e r a s e d  
a g a i n  by exposure  t o  u l t r a v i o l e t  l i g h t  - s e e  S e c t i o n  1.7, 
Semiconductor  Memory), A PXGM P r o g r a n m e r  is -.-.,<-l.,--l ~ C I I ~ L I G L Q I  

d e v i c e  a t t a c h e d  t o  a  microcomputer  development  system, 
t o g e t h e r  w i t h  a  s o f t w a r e  u t i l i t y  which t a k e s  program f i l e s  
from d i s c  on t h e  development sys tem and f e e d s  them t o  t h e  
p e r i p h e r a l  dev ice .  

For  sys tems produced i n  l a r g e  q u a n t i t i e s ,  mask RUM ( S e c t i o n  
1.7) may be used.  I n  t h i s  c a s e  t h e  developed program w i l l  
be  i n c o r p o r a t e d  i n t o  t h e  ROM d e v i c e  d u r i n g  manufac ture .  
However, PROM (Programmable ROM) i s  l i k e l y  t o  be used  t o  
prove  t h e  f i n a l  program b e f o r e  i t  i s  committed t o  mask. 

3 . 8  TEXT FILES 

I n  o r d e r  t o  s t o r e  t e x t u a l  i n f o r m a t i o n  i n  a  machine which 
r e c o g n i z e s  o n l y  b i n a r y  d i g i t s ,  some form of code must be 
used  - t h a t  i s ,  some r u l e  f o r  t r a n s f o r m i n g  t e x t u a l  
i n f o r m a t i o n  i n t o  b i n a r y  d a t a .  The code adop ted  f o r  t h e  990 
and 9900 s e r i e s  i s  ASCII (American S tanda rd  Code f o r  
I n f o r m a t i o n  I n t e r c h a n g e ) .  The ASCII code s p e c i f i e s  a  unique  
b i t  p a t t e r n  (number) f o r  each  member of t h e  ASCII c h a r a c t e r  
s e t  - l e t t e r s ,  d i g i t s ,  p u n c t u a t i o n  marks and c o n t r o l  
c h a r a c t e r s .  7 b i t s  a r e  s u f f i c i e n t  t o  u n i q u e l y  i d e n t i f y  an  
ASCII c h a r a c t e r .  ASCII c h a r a c t e r s  a r e  u s u a l l y  s t o r e d  one 
p e r  b y t e  (8  b i t s ) ,  w i t h  t h e  most s i g n i f i c a n t  b i t  o f t e n  be ing  
used  f o r  e r r o r  d e t e c t i o n  ( p a r i t y  check) .  

T h i s  means t h a t  t e x t u a l  i n f o r m a t i o n  can  be h e l d  i n  memory, 
saved  a s  a  t e x t  f i l e  on back ing  s t o r a g e  and man ipu la t ed  by 
u t i l i t y  programs. 
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Character ASCII code 
Binary Hexadecimal* 

A 01000001 41 
T 01010100 54 
1 00110001 3 1 
5 00110101 35 
? 00111111 3F 

line feed 00001010 0 A 

It is the input and output devices (Visual Display Unit, 
printer, etc) that recognize '01000001' as 'A', and so on. 
They translate key presses into ASCII coded data, and coded 
data back into displayed and printed characters, 

Program manipulation of textual data is normally limited to 
moving it around in memory (to insert or delete text), 
searching for particular sequences of characters, and 
similar operations, (Arithmetic operations on text do not 
make much sense. ) 

Numbers (decimal, hexadecimal or otherwise) can be 
represented in text as a string of ASCII digits, However, 
the bit pattern representing these digits in the computer is 
a code and bears no direct relation to the binary 
representation of that number - which the computer would use 
to perform any calculation, 

* For the hexadecimal number system, see Section 8.13,2,1 
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CHAPTER 4 

SOFTWARE DESIGN 

This book cannot present a full description of the software 
designer's craft. However, the aim of this chapter is to 
sl;ggeat d i r e z t i o r ; ~  2nd --AT.: yL,vAUG a- a starting point for f u r t h e r  

investigation. The science of software - particularly real 
time software - is inexhaustible. 
New tools and procedures are gradually automating the "lower 
levels" of software development and pushing the area where 
creative engineering is most needed back towards system 
design and requirements specification. New requirements 
will always provide scope for innovative and practical 
engineering solutions. 

This chapter is concerned with the design and structuring of 
software for microcomputer applications. What is presented 
here is independent of any particular programming language - 
though much of it is quite close to Pascal, which was 
designed with the explicit goal of implementing the 
I I  universal" elements of a programming language. 

Producing an initial language-independent software design 
has a number of advantages. It allows the overall strategy 
of the design to be worked out before it becomes cluttered 
with implementation detail; and it provides a common point 
of reference that can be returned to when making changes to 
the system, or if it is desired to implement the sane 
application using different techniques. For a large 
project, the initial design can be kept sufficiently simple 
to be manageable by one man, or a small team. This design 
specification can then be used to coordinate the efforts of 
a larger group. 

Some languages (eg assembly language, FORTRAN, BASIC) offer 
no means of developing a high level design strategy without 
descending to the details of implementation. Here a 
stylized design language must be used in the initial 
stages. Using more modern, application-oriented languages 
such as Pascal, it is possible to develop a high level 
design in the language itself. Some users may still prefer 
to use a design language to produce a separately documented 
design. 

- .Iexas instruments 
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4.2 SOFTWARE STRUCTURE 

Good structure, both of program and data, makes the 
difference between a well-ordered, reliable program that is 
easy to maintain and upgrade, and untidy ("spaghetti") code, 
with hidden bugs that may not be found until it is too 
late. Establishing a good structure may mean spending some 
time on system and software design before going near a 
keyboard or coding pad, but the time spent is well worth 
while. Errors not caught at the design stage become ten 
times more expensive to correct at the programming stage, a 
hundred times more expensive at final test, and, 
potentially, thousands of times more expensive when the 
product is in the field. 

Structure is equally important for high level and for 
assembly language programs, although a good high level 
language gives much more assistance by supplying pre-defined 
structural constructs. 

This chapter describes the basic principles of modular 
software design (ie structuring at the level of 
software/hardware packages and modules), and also some of 
the 'fine detail' of data structure and program algorithms. 
An algorithmic design language and a structured graphical 
notation that can be used for design are introduced. This 
chapter owes much to the pioneers of modern software 
engineering techniques, in particular Dahl, Dijkstra, Hoare 
and Wirth. The graphical notation used in this book was 
developed by Eric Richards * from a notation devised by 
Michael Jackson. The references at the end of this chapter 
provide material for further research. 

No accepted standard for a design language yet exists. A 
suggested notation and standard is introduced in this 
chapter. Designers who wish to adopt a strict formal 
notation for software design are recommended to use Pascal. 
Designs can then be checked automatically for consistency by 
a suitable Pascal compiler. This approach has been very 
successfully adopted within the experience of the authors. 

The present chapter describes in some detail the basic 
structuring techniques that are fundamental to modern high 
level languages. Chapter 5 describes how these have been 
extended in the Component Software environment to apply to 
real time microprocessor systems. Chapter 6 describes Texas 
Instruments' Microprocessor Pascal System. 

* Described in an article in the British journal Computing, 
May 19  1977 
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4 . 3  SOFTWARE PACKAGES 

With a  p r o j e c t  of any s i z e ,  i t  i s  h e l p f u l  t o  s p l i t  t h e  
-------I 1 
U V ~ L ~ A L  problem up i n t o  s m a l l e r  packages  which can  be 
t a c k l e d  s e p a r a t e l y .  

When a d o p t i n g  t h i s  app roach ,  two t h i n g s  must be c o n s i d e r e d  : 

(1) The d e t a i l e d  n a t u r e  of each  package 

( 2 )  How t h e  packages  w i l l  f i t  t o g e t h e r  t o  form a  
comple t e  system. 

To s i m p l i f y  t h e  t a s k  of i n t e r f a c i n g ,  packages  shou ld  be 
to be a s  a s  poss ib l e*  T- -&L - -  111 uLIler 

words ,  t h e  package b o u n d a r i e s  s h o u l d  be drawn s o  t h a t  
r e l a t i v e l y  l i t t l e  i n f o r m a t i o n  needs  t o  be exchanged between 
packages ,  compared w i t h  t h e  work done w i t h i n  each  package.  

"Mature" sys t ems ,  where s i g n i f i c a n t  t h o u g h t  and e x p e r i e n c e  
h a s  been p u t  i n t o  t h e  d e s i g n ,  and where t h e  imp lemen ta t ion  
medium i s  f l e x i b l e  enough n o t  t o  d i c t a t e  t h e  sys t em 
s t r u c t u r e ,  t e n d  t o  m i g r a t e  t o  t h i s  c o n d i t i o n .  However, f o r  
a  new sys tem,  t h e  d e s i g n e r  may have t o  p u t  i n  c o n s i d e r a b l e  
t h o u g h t  t o  e n s u r e  t h a t  t h e  sys tem s t r u c t u r e  i s  a p p r o p r i a t e  
from t h e  s t a r t .  Where t h e  d e s i g n e r  i s  implement ing  a n  
e x i s t i n g  sys tem i n  a  new way ( i e  where t h e  a p p l i c a t i o n  i s  
m a t u r e ) ,  much of t h i s  t h o u g h t  may have  been  done f o r  him. 

Packages  s h o u l d  be l o g i c a l l y  s e l f - c o n t a i n e d ,  each  pe r fo rming  
a w e l l- d e f i n e d  set of f u n c t i o n s .  The ways i n  which each  
package i n t e r f a c e s  w i t h  t h e  r e s t  of t h e  sys tem must be 
c l e a r l y  d e f i n e d .  

A d e s i g n e r  implement ing  a  f a c t o r y  c o n t r o l  sys t em,  f o r  
example,  might  i d e n t i f y  t h e  f o l l o w i n g  packages :  

FACTORY 
CONTROL 

F i g u r e  4-1 Component Packages  of a F a c t o r y  C o n t r o l  System 

I 
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Each of these packages is still a fairly complex entity, but 
the problem is beginning to look more manageable. 

This analysis identifies the logical components of the 
system. At this point, it is important to determine the 
physical distribution - where will each function need to be 
performed, and what communication paths are necessary? The 
physical analysis will determine the likely hardware 
components of the system - where processing capability is 
required, where physical operations have to be performed, 
at what points interaction with a human operator is 
required, and where the communication paths will run. 
Microsystems technology allows information processing 
capability (which includes the ability to control things, 
and the rudiments of an "intelligent" response) to be 
located wherever it is required. 

Although the example described is a factory control system, 
the same considerations, on an appropriate scale, apply to 
systems of all types and sizes. 

A software package encapsulates a particular type of 
"intelligence", a control function, or a data processing 
operation. Many such packages can be specified 
independently from the hardware environment where they will 
he used, and some may be available as standard software (see 
Chapter 5, Component Software). A standard package will 
usually need to be "configured" into the particular 
application (analagous to providing a standard socket and 
circuit elements to interface to an integrated circuit). 

Some applications may require little more than selecting 
standard software packages and configuring them into a final 
system. However, most applications will require some custom 
software to be developed. 

Each package can in turn be split into successively smaller 
packages, until thedcomplete problem has been broken down 
into manageable blocks. At every level in the structure, 
the packages can be regarded as 'black boxes' that perform 
clearly specified functions and combine in clearly defined 
ways. The programmer can focus on a particular part of the 
design, knowing that he can concentrate on the other parts 
of the structure at other times. 

4.4 DESIGN LANGUAGE 

Design language can he compared to the logic diagrams used 
by circuit designers. As yet there is no universal standard 
for software design languages, but there are some generally 
agreed "good practices". The notations used in this and the 
following sections incorporate the features generally 
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r e g a r d e d  a s  u s e f u l  i n  s o f t w a r e  d e s i g n .  

A d e s i g n  l anguage  can  be  r e g a r d e d  a s  a  g e n e r a l i s e d  
programming l a n g u a g e ,  w i t h  t h e  f o l l o w i n g  c h a r a c t e r i s t i c s :  

(1) S y n t a x  need n o t  be c o m p l e t e l y  rigid, a s  l o n g  
a s  t h e  l o g i c  i s  c l e a r l y  d e f i n e d  and 
unambiguous 

( 2 )  O p e r a t i o n s  can  be i d e n t i f i e d  by v e r b a l  
dsscription t o  s t a r t  w i t h ,  and l a t e r  d e s c r i b e d  
p r e c i s e l y  - e g  " c a l c u l a t e  mean" 

( 3 )  Only s t a n d a r d ,  81 u n i v e r s a l "  c o n s t r u c t s  - 
s e q u e n c e ,  s e l e c t i o n ,  i t e r a t i o n  ( s e e  be low)  and  
s t a n d a r d  data structures - a r e  used .  
Language- dependent  c o n s t r u c t s  a r e  n o t  
i n c l u d e d .  

The aim of t h e  d e s i g n  l anguage  i s  t o  e s t a b l i s h  t h e  p r e c i s e  
l o g i c a l  s t r u c t u r e  of t h e  a p p l i c a t i o n  b e f o r e  p r o c e e d i n g  t o  
imp lemen ta t i on .  In f a c t  t h e  n o t a t i o n  d e s c r i b e d  h e r e  i s  v e r y  
c l o s e  t o  t h e  P a s c a l  programming l anguage  ( s e e  C h a p t e r  6) .  
P a s c a l  was deve loped  a s  a  l anguage  t h a t  would implement ,  
more o r  l e s s  d i r e c t l y ,  t h e  f e a t u r e s  r e q u i r e d  f o r  s o f t w a r e  
d e s i g n .  It was n o t  d e s i g n e d  f o r  any p a r t i c u l a r  machine 
a r c h i t e c t u r e  and hence  h a s  a  " u n i v e r s a l 1 '  s t r u c t u r e .  

It i s  p o s s i b l e  t o  u s e  P a s c a l  i t s e l f  a s  a  d e s i g n  language .  
The a d v a n t a g e  of t h i s  i s  t h a t  a  d e s i g n  can  be checked 
a u t o m a t i c a l l y  f o r  l o g i c a l  c o r r e c t n e s s ,  even  i f  p a r t s  of t h e  
d e s i g n  a r e  i ncomple t e .  

The g r a p h i c  n o t a t i o n  d e s c r i b e d  below p r o v i d e s  a n  a l t e r n a t i v e  
n o t a t i o n  t h a t  implements  t h e  same c o n s t r u c t s .  E i t h e r  o r  
b o t h  can be u sed  d u r i n g  d e s i g n ;  sometimes a  g r a p h i c  n o t a t i o n  
p r o v i d e s  a  c l e a r e r  p i c t u r e ,  e s p e c i a l l y  i n  t h e  e a r l y  s t a g e s .  

4.5 ALGORITHMS 

An a l g o r i t h m  i s  a  l i s t  of i n s t r u c t i o n s :  a s t a t e m e n t  of 'how 
t o  do'  someth ing .  More p r e c i s e l y ,  i t  i s  t h e  s p e c i f i c a t i o n  
o f  a  f i n i t e  number of s t e p s  r e q u i r e d  t o  a c h i e v e  a  d e s i r e d  
end .  A f u n c t i o n  can  be per formed by a  computer  i f  and o n l y  
i f  t h a t  f u n c t i o n  c a n  be s t a t e d  a s  a n  a l g o r i t h m .  However, 
w r i t i n g  a n  a l g o r i t h m  r a t h e r  t h a n  a  program l i b e r a t e s  t h e  
d e s i g n e r  f rom c o n c e r n  w i t h  t h e  s y n t a x  and d e t a i l s  of a 
p a r t i c u l a r  programming language .  An a l g o r i t h m  s h o u l d  be  
u n d e r s t o o d  by p e o p l e  who a r e  n o t  programming s p e c i a l i s t s ;  
hence  i t  i s  v e r y  u s e f u l  when s p e c i f y i n g  a  p r o j e c t .  

Oc tobe r  1981 
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An algorithm for making tea might be as follows: 

begin 
fill kettle; 
put kettle on; 
put tea in teapot; 
wait for kettle to boil; 
fill teapot; 
delay 5 minutes; 
for number of cups required do - - 

pour cup 
end 

Figure 4-2 Tea Making Algorithm 

Two things can be identified in this (or any) algorithm. 
First, there are the fundamental operations (fill kettle, 
pour cup etc). Second, there are the control structures 
which dictate if and when these operations are to be 
performed. These control structures are identified by 
underlined keywords: 

begin . . end - 
if .. . then .. . else - - - 
for ... do ... - - 
while .. . do .. . 

etc 

It is the control structures that provide the power of an 
algorithm, and of a computer program. Algorithms can 
specify alternative or repeated operations, provided the 
conditions that determine the different actions are 
specified completely and precisely. The algorithm 
enumerates all possible options, and specifies exactly how 
to take every decision. This is what is required to write a 
computer program. 

The individual operations described in Figure 4-2 can 
themselves be analyzed into algorithms. For example, 'pour 
cup' : 

if milk is required - 
then - 
begin 
pour milk; 
pour tea 
end 

e - 
pour tea 

Figure 4 - 3  "pour cup" Algorithm 
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By combining t h e  c o n t r o l  s t r u c t u r e s  shown h e r e ,  e x t r e m e l y  
power fu l  a l g o r i t h m s  can  be deve loped  t o  c o n t r o l ,  f o r  
example,  a  complex s c i e n t i f i c  i n s t r u m e n t  o r  a n  i n d u s t r i a l  
p r o c e s s .  

It i s  p o s s i b l e  t o  d e f i n e  many d i f f e r e n t  c o n t r o l  s t r u c t u r e s ,  
However, i t  can  be  proved t h a t  any s e q u e n t i a l  a l g o r i t h m  (and 
any  computer  program) can  be w r i t t e n  u s i n g  o n l y  t h r e e  b a s i c  
c o n s t r u c t s  -- sequence ,  s e l e c t i o n  and i t e r a t i o n  -- a l l  of 
which are i n c l u d e d  i n  t h e  above examples .  

4 , 5 , 1  Sequence 

A s equence  i s  s imp ly  a  l i s t  of o p e r a t i o n s  c a r r i e d  o u t  one 
after the 0 t h 2 r ,  i n  o r d e r :  

begia 
f i l l  k e t t l e ;  
p u t  k e t t l e  on; 
p u t  t e a  i n  t e a p o t  
end  - 

The keywords " begin"  and "end" b r a c k e t  t h e  s equence ,  s o  t h a t  - 
i t  can  be  t r e a t e d  a s  one l o g i c a l  e n t i t y ,  The g e n e r a l  form 
o f  a  s equence  i s :  

b e g i n  
< s t a t e m e n t > ;  

< s t a t e m e n t >  
end  - 

< s t a t e m e n t >  d e f i n e s  a  s i n g l e  o p e r a t i o n ,  I n d i v i d u a l  
s t a t e m e n t s  a r e  s e p a r a t e d  by semico lons .  I n  t h e  d e s i g n  
l a n g u a g e ,  a  s t a t e m e n t  c a n  be  a  v e r b a l  d e s c r i p t i o n  t h a t  w i l l  
l a t e r  be  expanded i n t o  a  p r e c i s e  d e f i n i t i o n  ( a s  i n  t h e  
example above ,  which c o u l d  be expanded i n t o  a  p r e c i s e  
program f o r  a t e a  making r o b o t ) ,  

I t  i s  i m p o s s i b l e  t o  s t a r t  t h e  s equence  anywhere o t h e r  t h a n  
a t  t h e  b e g i n ,  o r  f i n i s h  i t  anywhere o t h e r  t h a n  a t  t h e  end. - 
T h i s  p r o p e r t y  of h a v i n g  a  s i n g l e  e n t r y  and a  s i n g l e  e x i t  
p o i n t  i s  s h a r e d  by a l l  of t h e  b a s i c  c o n s t r u c t s ,  
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A s equence  can  a l s o  be r e p r e s e n t e d  g r a p h i c a l l y ,  a s  f o l l o w s :  

F i g u r e  4 - 4  Sequence S t r u c t u r e  Diagram 

P 
r 
e 
P 
a 
r 
e 

The l o n g  v e r t i c a l  box r e p r e s e n t s  t h e  s equence  a s  a  whole,  
The o t h e r  boxes  a r e  t h e  e l e m e n t s  of which i t  i s  composed. 
It i s  of t e n  u s e f u l  t o  g i v e  a  s equence  a  name, because  i t  can  
t h e n  be r e f e r r e d  t o  a s  a  s i n g l e  o p e r a t i o n  i n  a  
' h i g h e r - l e v e l '  a l g o r i t h m .  The e l e m e n t s  of t h e  s equence  a r e  
c a r r i e d  o u t  i n  o r d e r ,  from t o p  t o  bo t tom,  

fill kettle 

put kettle on 

1 

put tea in 

T h i s  i s  a  s t r u c t u r e  diagram. The c o n n e c t i n g  l i n e s  show t h a t  
t h e  e l e m e n t s  b e l o n g  t o  t h e  sequence .  (The l i n e s  do n o t  
i n d i c a t e  l o g i c  f l o w ,  a s  i n  a  f l o w c h a r t ) .  The l o g i c  f l ow  i s  
o b t a i n e d  s imp ly  by p r o c e e d i n g  from t o p  t o  bo t tom,  pe r fo rming  
e a c h  o p e r a t i o n  i n  t u r n .  

teapot u 

The e l e m e n t s  of a  s equence  might  be s i m p l e  o p e r a t i o n s ,  o r  
t h e y  can  t h e m s e l v e s  be any of t h e  t h r e e  b a s i c  c o n s t r u c t s  
( s e q u e n c e ,  s e l e c t i o n  o r  i t e r a t i o n ) ,  

A comple t e  program w i l l  u s u a l l y  be a  sequence .  I n  t h e  
d e s i g n  l a n g u a g e ,  t h e  s emico lons  a r e  a n  i m p o r t a n t  p a r t  of t h e  
s equence  c o n s t r u c t .  They a r e  n o t  p a r t  of t h e  i n d i v i d u a l  
s t a t e m e n t s ;  r a t h e r  t h e y  s e p a r a t e  ( o r  d e l i m i t )  t h e  
s t a t e m e n t s ,  and s h o u l d  more p r o p e r l y  be r e g a r d e d  a s  
b e l o n g i n g  t o  t h e  b e g i n  ... end c o n s t r u c t .  Note t h a t  t h e r e  - 
i s  no semico lon  f o l l o w i n g  t h e  l a s t  s t a t e m e n t ;  t h e r e  i s  no 
need  f o r  one ,  a s  t h e  end s e r v e s  a s  a  d e l i m i t e r  i n s t e a d .  - 
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4.5.2 Selection 

The selection is a decision construct. Depending on a 
condition. one of two or more alternative o~erations is 
selected and performed. For example, 

if weather is fine - 
then open v e n t i l a t o r s  
else switch on heaters 

Graphically, this is represented as: 

is fine? 

switch on 
heaters 

Figure 4-5 Selection Structure Diagram 

The circle represents the selection as a whole: that is, a 
single component which can be either of two things* The 
boxes are the elements of the selection. For each execution 
of the selection, one and only one of the elements is 
executed. Once again, the connecting lines express that the 
components are members of the selection (they are 
subordinate to it). The logic flow through a selection 
consists of testing the condition, and executing one only of 
the elements. 
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There is a selection in the example algorithm: 

if milk is required - 

then begin 

pour pour milk; tea 'P 
end - 

else 

pour tea 

r t ~ l  milk 

Figure 4-6 "Pour cup" Structure Diagram 

Here, the first alternative is a sequence of operations. 
The begin and end indicate clearly that, as far as the - 
selection is concerned, the sequence is a single element 
that can be regarded as one statement. The single 
entrylexit property of the sequence makes this possible. 
Each of the three basic constructs "packages" a complex 
operation, so that from outside it can be regarded as a 
single, indivisible statement. 

The keywords begin ..... end can be regarded as "bracketing" - 
a sequence of statements in the same way that parentheses 
are used to bracket numerical expressions: 

The general form of a selection in the design language is: 

if <condition> then <statement> - - 
else <statement> 

<condition> is any expression which evaluates to one of the 
values TRUE or FALSE. Such an expression is called a 
Roolean expression, and the most common way to arrive at it 
is by the use of comparison operators such as =, <, >: 

if temperature > 70 then ... - 

A special case of a selection occurs when there is only one 
alternative, to be executed when the condition is 
satisfied. If it is not satisfied, nothing is done. This 
can be regarded as a selection in which one of the 
components is the null action, "do nothing". This component 
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is usually left out of the diagram. In the design language, 
this corresponds to omitting the else clause: 

if <condition> then <statement> - 
In the example, 'pour cup' can be written another way: 

begin I I n  pour milk 

if milk is required - reqd? 

then pour milk; 

pour tea 

end - 

Figure 4-7 Alternative Algorithm for "pour cup" 

Here, 'pour cup' is a sequence consisting of two elements: 
an if construct (with only one alternative), and a simple 
statement. 'Pour tea' is always executed;. 'pour milk' is 
executed only if milk is required. The effect is exactly 
the same as before. 

The semicolon (which, as indicated in section 4.5.1, is part 
of the begin ... - end construct) separates the two elements 
of the sequence, and makes clear where the end of the if - 
statement occurs. 'Pour tea' is not a part of the if - 
statement, and hence is not dependent on the condition; it 
is the next item in the begin . . . end sequence, and is - 
executed in all circumstances. If 'pour tea' was to become 
part of the - if statement, begin . . . - end brackets would be 
used as in Figure 4-6. The indentation of the text makes 
the relationship clearer. The structure diagram shows 
without doubt that "pour tea" is an element of the sequence 
and not of the selection. The strong visual resemblance of 
the diagram to the indented text makes comparison of the two 
notations easy. 
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4.5.3 Algorithm Design 

It is common in software design to start with a vague 
formulation of the problem (if - weather is fine ...) and 
gradually home in on a precisely defined, deterministic 
solution that specifies every measurement and calculation. 
Although a precise solution is finally needed (or it will 
never get past a compiler or assembler), a degree of 
vagueness (or "controlled imprecision") is actually 
beneficial in the early stages, even though it may go 
against the grain, A precise formulation too early on may 
exclude some vital elements, particularly if the software 
designer does not have direct knowledge or experience of the 
application, The design language helps here by permitting 
partial solutions to be tried out on paper before they 
become cast in silicon, The logic of the application can be 
precisely formulated before considering in detail how the 
individual operations required are to be implemented, The 
design language allows the designer to identify and 
precisely specify each operation required (reading a 
temperature, controlling motors and heaters etc) before an 
attempt is made to implement them, 

The software design can be compared to the architect's plans 
for a building, Although some of the details may be changed 
during implementation, plans for the foundations and overall 
structure must be established before starting to build 
individual rooms. 

The algorithm of Figure 4-5 might be part of a system 
controlling the environment in a greenhouse (say), The next 
stage in design might be to consider whether it is the 
inside or outside temperature (or both) that is significant, 
whether the temperature should vary according to the time of 
day, and what effect other parameters such as humidity might 
have. 

There are often several alternative ways of writing an 
algorithm to perform a particular function, The first 
solution hit upon may not always be the best, 

Just as a good data structure (see section 4.6) extracts the 
essential elements of the information being represented, so 
a good algorithm extracts the essential elements of the 
process being performed and uses these elements as the basis 
of its design. 

The best algorithms are usually those that clearly reflect 
some underlying structure of the application itself, rather 
than imposing some new structure invented by the system 
designer. It's quite easy to see why, Unless the 
specification for a piece of software is perfect the first 
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time, changes are likely to occur. Perfect specifications 
are almost unheard of. If the software is structured along 
the same lines as the application, the software will be able 
to follow changes in specification quite easily. It will 

~ c m e  t t w - 0 4  1 4  n-finrv have I = o I J - - L C L l L c  in +I.. , L l l C  -s - L - - - 2  - -  face U L  Cliauglug 
requirements. 

A software design that is structured in a significantly 
clifferefit way to the a p p l i c a t i o n  i s  l i k e l y  to be "brittle", 
and to break under the strain rather than adapt gracefully 
to new requirements. Changes in requirements may have 
unpredictable consequences in different areas of the design, 
which will either make adaptation impossible, or will reduce 
confidence in the reliability of the final system. 

WL- -a&-.-- I r r t :  ‘rcr L ~ L  t: of software aggravates the problem. Sof fware 
tends to be applied to complex problems, so that changes are 
likely to be complex. It's very easy to actually make a 
software change - simply type in something new. It is much 
more difficult to ensure that the change is correct. 

At first sight it may he very hard to tell the difference 
between a change that has only limited effect in an isolated 
software function, and a change that can have ramifications 
throughout the design. 

For this reason it's necessary to pay a lot of attention to 
software design, Programming is only a part (a relatively 
small part) of the story. Software needs to be designed and 
engineered for resilience and reliability, rather than 
stacked up like a house of cards. 

In fact, there are two types of resilience, Software should 
be able to cope with and recover from unexpected conditions 
and, ideally, minor hardware faults. Secondly, the system 
should maintain its integrity in the face of changes to 
parts of the software itself - perhaps in response to new 
requirements. A structured design methodology, such as is 
presented here, assists greatly. The framework of Component 
Software (Chapter 5) and Microprocessor Pascal (Chapter 6) 
was designed to the same purpose. 

However, a good set of tools is not enough. The system 
designer needs to spend a good deal of time understanding 
the application he is designing for, and the ways in which 
it is likely to change over the lifetime of the system. In 
this way, likely changes can actually be anticipated and the 
system can be designed to make them possible. 
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4.5.4 The CASE C o n s t r u c t  

The re  i s  a  v e r s i o n  of t h e  s e l e c t i o n  which v e r m i t s  more t h a n  
two c h o i c e s .  T h i s  i s  r e p r e s e n t e d  i n  t h e  deHign language  by 
t h e  c a s e  c o n s t r u c t :  - 

c a s e  wea the r  of - 

sunny : go f o r  walk ;  

r a i n i n g :  b e g i n  

p u t  c o a t  on; 

go f o r  walk 

end;  - 

snowing: s t a y  i n s i d e  

end - 
stay inside n 

go for 
walk 

F i g u r e  4-8 The CASE C o n s t r u c t  

a - 

The c a s e  l a b e l s  "sunny", " r a i n i n g" ,  "snowing1' s p e c i f y  t h e  
p o s s i b l e  v a l u e s  of t h e  c a s e  e x p r e s s i o n  "weather" ,  and t h e  
a c t i o n s  t o  be performed f o r  each  ("weather1'  w i l l  have been 

put coat on 
7 

d e c l a r e d  a s  a  v a r i a b l e  of t y p e  ( sunny ,  r a i n i n g ,  snowing)) .  
When e x e c u t i n g  t h e  s e l e c t i o n ,  t h e  c a s e  e x p r e s s i o n  i s  t e s t e d  

n - 

- 

and ,  a c c o r d i n g  t o  i t s  v a l u e ,  o n l y  one of t h e  o p e r a t i o n s  w i l l  
b e  performed.  (Note  t h a t  t h e  o p e r a t i o n  f o r  " r a i n i n g"  i s  a  

go forwalk 

sequence ,  e n c l o s e d  w i t h i n  a  b e g i n  ... - end b r a c k e t . )  

The c a s e  l a b e l s  can  s p e c i f y  a  l i s t  o r  a  range  of v a l u e s .  
The re  can  be any number of c a s e  a l t e r n a t i v e s .  
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Case c o n s t r u c t s  can  have  a n  o t h e r w i s e  c l a u s e  t h a t  s p e c i f i e s  
a n  a c t i o n  t o  be c a r r i e d  o u t  i f  t h e  c a s e  e x p r e s s i o n  h a s  a  
v a l u e  n o t  e x p r e s s e d  i n  any of t h e  c a s e  l a b e l s :  

c a s e  number $5 - 

0 . . 3 , 8  : add number t o  t o t a l ;  
4 , 6 , 7  : s u b t r a c t  number from t o t a l ;  
5 9 9  : d i v i d e  t o t a l  by 2 
o t h e r w i s e  w r i t e  ('number o u t  of r ange ' )  

end - 

G r a p h i c a l l y ,  t h i s  i s  r e p r e s e n t e d  a s :  

write ('number 7 
F i g u r e  4-9 CASE C o n s t r u c t  w i t h  OTHERWISE Clause  
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The general syntax of the case statement is: 

case <expression> - of 

. 
<case label> : <statement> 
otherwise <statement> 

end ; 

The otherwise clause is optional. 

4.5.5 Iteration 

The third and final algorithmic construct is the iteration, 
or loop. The iteration allows an operation to be repeated 
either H specified number of times, or while some condition 
remains true. There is an example of the first kind of 
iteration in the algorithm of Figure 4- 2.  

for number of cups required do - - 
pour cup 

Graphically, an iteration can be represented by a 
lozenge-shaped box: 

number of 

while 
buffer 
not full 

milk 

read 
character 

Figure 4- 10 Iteration Structure Diagrams 
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Once again, the left hand box represents the iteration as a 
whole, which can form a single element in another 
algorithm. This single element consists of a (possibly 
zero) number of executions of the right hand box. The right 
hand box represents an individual execution of the operation 
to be performed. The distinction may appear subtle at 
first, but it is important. It allows a repeated operation 
to be included as a single element of, say, a selection 
construct. Like the sequence and selection, the iteration 
packages a complex operation as one element with a single 
entry and exit point, 

Usually, it is a sequence of operations that will be 
repeated. As most computer programs carry out some 
operation repeatedly (otherwise there would be little point 
netting a computer to do it), the iteration is a xjery useful v -  - 

construct. 

In many iterated operations, it is useful to know which 
iteration is currently being performed. Most programming 
languages that implement the - for construct therefore specify 
a for-loop variable : 

FOR I := 1 TO 10 DO 
BEGIN 
START MACHINE (I); 
DISPL~Y (START - MESSAGE, I) 
END 

The variable I keeps a count of the repeated execution, and 
can be referred to within the code of the for-loop. This 
feature is often required, and this convention will be 
adopted in the design language. The general form of the 
for-loop, then, is: 

for <variable> := <initial expression) to - - 
<final expression) - do 

<statement> 

<statement> is executed for all possible values of 
(variable), in order, starting at <initial expression) and 
ending with <final expression>. <statement> will usually be 
a sequence, enclosed within begin ... end brackets. - 
<initial expression) and <final expression) must be 
compatible with the type of <variable>, which can be any 
enumeration type (see section 4.6). <initial expression) 
and <final expression) are only evaluated once, on entry to 
the for loop (so it is not possible to change the value of 
<final expression>, for example, within the loop). If 
<initial expression) is greater than <final expression) to 
begin with, <statement> is not executed at all. * 
* Some programming languages differ slightly from these 
conventions. However, some standards must be specified to 
maintain consistency in the design language. These 
standards represent generally agreed opinion on language 
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A variant is: 

for <variable> := <initial expression) downto - 
<final expression) - do 

<statement> 

Here <variable> is decremented from <initial expression), which 
should be the larger of the two, down to <final expression>. 
This may be more useful in some applications. 

The alternative form of the iteration construct is: 

while buffer is not full do - 
read character 

The while construct is used where it is not possible, or not 
convenient, to find out in advance how many times the loop 
must be executed. The general form is 

while <condition> do <statement> - 
The condition is checked before each execution of the loop; 
as long as it remains TRUE, the loop is executed one more 
t ime . 
4.5.6 Structured Programming 

Although many programming languages provide additional 
control structures, programs written using only the three 
constructs described above have been shown to be easily 
understood, easily amended, and above all likely to be 
correct. This discipline is known as 
structured programming. 

The three constructs sequence, selection, and iteration are 
basic mental structures, representing very closely the way 
the human mind analyzes a problem. Consequently they are 
very easy and natural to "think in1', once the notation has 
become familiar. The single entry and exit properties of 
each construct mean that "high level1', application-oriented 
algorithms can be developed without worrying (yet) about 
what happens at the detailed level of the operations 
described. It is known that the effect of each operation is 

design, and most modern languages (including Pascal) behave 
exactly like this. When translating a software design into 
a particular programming language, it is important to 
determine how the language implements the standard 
programming constructs - eg does the iteration construct 
allow for the special case of zero iterations? Pascal 
directly implements all the constructs of the design 
language; implementation of these constructs in Power BASIC 
and Assembly Language is discussed in Chapters  7 and 8. 
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localised, and that the operation will complete and return 
control to the high level algorithm without (say) jumping 
unexpectedly to another part of the program. 

Other notatiozs, such as flcwcharts, have sometimes been 
used for designing computer programs. Flowcharts may be 
useful at the lowest levels of implementation, when coding 
in Assembly Language for instance (see Chapter 8). However, 
flowcharts are designed to represent the way machines 
operate rather than the structure of an application. Trying 
to understand a problem using flowcharts involves bending 
the mind, and the application, to work in the way machines 
do. This may be necessary at some point, but it is not 
advisable in the earlier stages of a design. Flowcharts 
concentrate on the details of implementation, and have no 
----- -c ---uA.-.rr-.t: e r r  A t  -.a, +..-A w a y  U L  L ~ ~ L T D T L L L I L I ~  DLLULLULC. 

4.6 DATA 

Data elements, which are implemented in the computer simply 
as a collection of bits, can he used to represent any kind 
of information. Often the information represented will be 
numeric, but this need not be the case. A single bit may 
signal the state of a digital input or output line; or a 
group of bits may be coded to represent text or any other 
information. 

Most programming languages provide some pre-defined data 
types (eg FORTRAN defines integers and real numbers) that 
can be used directly in a program. A data type definition 
can be regarded as a code that translates some kind of 
information into an internal representation in the 
computer. Some languages allow users to define new data 
types, either by combining already existing data types into 
new st-ructures, or by specifying the characteristics of a 
new data type from scratch. These capabilities are very 
useful when developing software designs. 

Structured data types allow related data items to be grouped 
together and referred to as a single entity. This is much 
easier than remembering that the information about (say) a 
piece of production machinery is contained in several 
different integer and real variables, all with different 
names. Programs with well thought out data structures are 
likely to be more reliable and much easier to maintain. 

Even where the programming language chosen for 
implementation does not support flexible data structures, 
such structures can be worked out by developing a paper 
design using a design language. This can then be translated 
into the implementation language. This method, which seems 
roundabout, will often result in a faster development 
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turnround than coding directly in the implementation 
language. Certainly, it will produce a more reliable 
system. 

Effective use of data depends on identifying the essential 
elements of what is to be represented, and,choosing the most 
appropriate representation in terms of numbers or binary 
digits. For example, if a temperature is to be input from 
the outside world to a microprocessor system, how should it 
be represented? Does the system need to know the actual 
temperature value? To what precision? Or is a single bit, 
indicating that the temperature is above or below some 
threshold, sufficient? 

HIGH 
LOW 

Figure 4-11 Data Representation of a Temperature 

This decision will, of course, dictate the choice of sensor 
used to measure the temperature. 

Data items can also represent things that are much more 
abstract than a temperature - for example the root mean 
square of a collection of statistical figures, It is this 
ability to represent and manipulate anything that can be 
defined exactly that gives software its power. Data items 
can represent things which only have meaning within a 
particular piece of software - intermediate results in a 
calculation, for example, or codes representing which of a 
number of possible operations should be performed. 

How the data types are chosen defines the environment within 
which software algorithms can work. A program can only 
manipulate things which have previously been defined as data 
items. Hence, data design is the key to any piece of 
software. 

4.6.1 Data Types 

The first step in building a software design is to identify 
the different kinds of information that need to be dealt 
with, and to define appropriate data types, A 
type declaration identifies a particular type of variable 
that will be dealt with in the program, and the range of 
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v a l u e s  t h a t  v a r i a b l e s  of t h i s  t y p e  might  have.  For example, 
a  p a r t i c u l a r  sys tem might  need t o  make d e c i s i o n s  a c c o r d i n g  
t o  what day of t h e  week i t  is,  It makes s e n s e  t o  d e f i n e  a  
d a t a  t y p e  c a l l e d  "day": 

t y p e  day = (Monday, Tuesday, Wednesday, Thursday, 
F r i d a y )  ; 

The i t e m s  i n  b r a c k e t s  i d e n t i f y  t h e  v a l u e s  t h a t  v a r i a b l e s  of 
t y p e  "day" might  have.  Note t h a t  t h i s  d e c l a r a t i o n  does  n o t  
a c t u a l l y  s p e c i f y  any v a r i a b l e s  of t y p e  "day", It s imply  
i n t r o d u c e s  t h e  n o t i o n  t h a t  v a r i a b l e s  of t h i s  t y p e  can  
e x i s t .  A f t e r  t h i s  d e c l a r a t i o n ,  w e  can  t a l k  abou t  "days" i n  
t h e  s o f t w a r e  d e s i g n  and know e x a c t l y  what i s  meant. ( I n  
o r d i n a r y  c o n v e r s a t i o n  we t h i n k  we know what days  a r e ,  b u t  i n  
s o f t w a r e  i t ' s  n e c e s s a r y  t o  be more p r e c i s e .  The d e f i n i t i o n  
makes c l e a r  t h a t  we're t a l k i n g  abou t  days  of t h e  week, n o t  
days  of t h e  month, and i n  p a r t i c u l a r  t h a t  we're t a l k i n g  
about workdays: Sa tu rday  and Sunday a r e n ' t  i n c l u d e d , )  

A t  t h i s  s t a g e  i t  i s  n e i t h e r  n e c e s s a r y  n o r  d e s i r a b l e  t o  
c o n s i d e r  how t h i s  d a t a  t y p e  w i l l  be implemented,  Data i t e m s  
of  t y p e  "day" must be c a p a b l e  of t a k i n g  f i v e  d i f f e r e n t  
v a l u e s  r e p r e s e n t i n g  t h e  days  of t h e  week. These i t e m s  cou ld  
be  s t o r e d  a s  t h e  v a l u e s  0-4 ,  1-5 o r  a s  a r b i t r a r y  p a t t e r n s  of 
b i t s ,  That  d e c i s i o n  can  be made l a t e r .  A t  t h i s  p o i n t  i t  i s  
n e c e s s a r y  s imply  t o  u n d e r s t a n d  what ' s  needed t o  s a t i s f y  t h e  
a p p l i c a t i o n .  

From t h e  computer 's  p o i n t  of view, what h a s  been s a i d  s o  f a r  
i s :  

( 1 )  There  w i l l  be d a t a  i t e m s  t h a t  can  t a k e  one o u t  
of f i v e  p o s s i b l e  v a l u e s  

( 2 )  The d e s i g n e r  i s  go ing  t o  r e f e r  t o  t h e s e  a s  
"dayVs 

( 3 )  The d e s i g n e r  i s  going  t o  r e f e r  t o  t h e  
d i f f e r e n t  v a l u e s  of t h e s e  "day"s a s  Monday, 
Tuesday, Wednesday, Thursday,  F r i d a y ,  

The g e n e r a l  form of a  t y p e  d e c l a r a t i o n  is:  

t y p e  <name> = < t y p e  d e f i n i t i o n ) ;  

The a n g l e  b r a c k e t s  i n d i c a t e  a  g e n e r i c  name; i n  a n  a c t u a l  
t y p e  s t a t e m e n t ,  "<name>" w i l l  be r e p l a c e d  by a n  a c t u a l  t y p e  
name. The form " ( < v a l u e  l i s t > ) " ,  a s  i n  t h e  "day" 
d e c l a r a t i o n ,  i s  one k i n d  of t y p e  d e f i n i t i o n .  Other  k i n d s  of 
t y p e  d e f i n i t i o n  a r e  p r e s e n t e d  below. 

For  t h e  purpose  of a  s o f t w a r e  d e s i g n ,  t h e  f o l l o w i n g  d a t a  
t y p e s  can  be r e g a r d e d  a s  p r e d e f i n e d :  
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i n t e g e r  (-32768,,32767) 
r e a l  (= f l o a t i n g  p o i n t )  
c h a r  (= ASCII c h a r a c t e r  s e t )  
b o o l e a n  (= TRUE o r  FALSE) 

4 , 6 , 2  V a r i a b l e s  

Type d e c l a r a t i o n s  s imp ly  s p e c i f y  a  k i n d  of i n f o r m a t i o n  t h a t  
i s  t o  be r e p r e s e n t e d ,  To d e f i n e  a c t u a l  d a t a  s t o r a g e  i t e m s ,  
o r  v a r i a b l e s ,  of a  p a r t i c u l a r  t y p e ,  a  v a r i a b l e  d e c l a r a t i o n  
i s  needed:  

v a r  s t a r t d a y ,  endday : day ;  - 
T h i s  s t a t e m e n t  d e c l a r e s  two v a r i a b l e s ,  which wSl l  u l t i m a t e l y  
b e  s t o r a g e  l o c a t i o n s  w i t h i n  a computer .  These v a r i a b l e s  a r e  
c a l l e d  " s t a r t d a y "  and "endday". They are of t y p e  "day", 
which means t h a t  t h e  v a l u e s  t h e y  can  t a k e  a r e  Monday, 
Tuesday e t c ,  Whatever i m p l e m e n t a t i o n  i s  l a t e r  d e c i d e d  on 
f o r  "day", t h a t  amount of s t o r a g e  and t h a t  r e p r e s e n t a t i o n  
w i l l  be  a s s i g n e d  t o  " s t a r t d a y "  and "endday". 

The g e n e r a l  form of a  v a r i a b l e  d e c l a r a t i o n  i s :  

v a r  ( v a r i a b l e  l i s t >  = < t y p e > ;  - 

S e p a r a t i n g  o u t  t h e  t y p e  d e c l a r a t i o n  from t h e  v a r  d e c l a r a t i o n  - 
means t h a t  t h e  d e c i s i o n  on how t o  r e p r e s e n t  "dayf's i s  t a k e n  
once  and once  on ly .  T h e r e ' s  no need t o  t a k e  t h i s  d e c i s i o n  
a g a i n  ( p e r h a p s  d i f f e r e n t l y  - p a r t i c u l a r l y  i f  more t h a n  one 
d e s i g n e r  i s  working  on t h e  same s y s t e m )  e v e r y  t ime  a  
v a r i a b l e  of t h i s  t y p e  i s  needed ,  Also ,  i f  t h e  r e q u i r e m e n t s  
change  and  i t ' s  n e c e s s a r y  ( s a y )  t o  i n c l u d e  S a t u r d a y  and 
Sunday, t h i s  can  be done s imp ly  and r e l i a b l y  t h r o u g h o u t  t h e  
s y s t e m  s imp ly  by chang ing  t h e  one t y p e  d e c l a r a t i o n .  

T h i s  i s  a  r e l a t i v e l y  t r i v i a l  example;  b u t  m u l t i p l i e d  by t h e  
t h o u s a n d s  of d e c i s i o n s  r e q u i r e d  d u r i n g  i m p l e m e n t a t i o n ,  
c l e a r l y  t h o u g h t  o u t  d a t a  t y p i n g  can  make t h e  d i f f e r e n c e  
be tween  manageable  programs and i n t r a c t a b l e  ones ,  

< t y p e >  i n  t h e  v a r  d e c l a r a t i o n  need n o t  be a  t y p e  name, b u t  
c a n  be  a n  e x p l i c i t  t y p e  d e f i n i t i o n :  

v a r  s t a r t d a y  : (Monday, Tuesday,  Wednesday, - 
Thursday ,  F r i d a y ) ;  

However, i f  more t h a n  one - v a r  d e c l a r a t i o n  u s e s  t h e  same 
r i g h t  hand s i d e  d e f i n t i o n ,  i t  i s  p r e f e r a b l e  t o  d e f i n e  a  
t y p e ,  and t h e n  u s e  t h e  t y p e  name i n  t h e  - v a r  d e c l a r a t i o n .  
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Where the values of a data type follow a predefined 
sequence, only the start and end need be enumerated: 

type weeknumber = (1..52); - 
Suck t y p e s  are c a l l e d  s u b r a n g e  t y p e s  b e c a u s e  t h e y  are 
defined as a specific subrange of an already defined type. 
The above declaration works because the type "integer1', 
consisting of the values -32768, -327&7,.....-1, 0, 
1,....32766, 32767 (for a 16-bit processor) is predefined. 
"Weeknumber" is a subrange of integer. 

It is also possible to define subranges of type "day": 

type first - half - week = (Monday..Wednesday); 

4 , 6 , 3  Operators 

Having defined data items, it's necessary to do something 
with them. In a program, variables of particular types can 
be combined using operators. In the statement 

"+" is an operator. "+" means "add the values of b and c to 
give a third value". 

In ordinary mathematical. language, the above formula is 
simply a statement of fact: "a is equal to b plus c". In 
computer language, it's more likely to signify an operation: 
"make a equal to the value of b plus c", or, to put it 
another way, "a becomes equal to b plus c". This is one of 
the most common of algorithm statements, namely the 
assignment statement. Here "=" is an operator too - the 
assignment operator, whose effect is to assign the value of 
whatever expression is on its right to the variable on its 
left. 

To avoid confusion between the assignment operator and the 
mathematical "=" , which mean quite different things, modern . , for languages such as Pascal use a special symbol, "*-" 

assignment: 

read, "a becomes equal to b plus cl'. This convention will 
also be used in the design language. The left hand side of 
an assignment statement must always be a variable, because a 
value will be assigned to it. However, the right hand side 
can be an expression: that is, any combination of variables, 
operators and constant values that can be evaluated: 
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5*a + b - c/2 
The general from of the assignment statement is 

(variable > : = <expression>; 

The expression should evaluate to a type that is compatible 
with the variable on the left hand side. It makes no sense 
to assign a temperature value to a day of the week. 

Some programming languages make no check that the type of 
the expression is compatible with the type of the variable: 
they simply assign the bit code representing the value of 
the expression to the storage location for the variable. 

While this can be made use of in special cases, ninety per 
cent of the time an unmatched statement indicates that the 
programmer has made an error. Programming languages that 
check for exact compatibility of types in assignment and 
other statements are said to implement strong data typing. 

Even when an unmatched statement is written deliberately *, 
it is a rather risky operation: it depends on a certain 
relationship between the internal bit representations of the 
two data types (some examples of internal representations 
are given in Chapter 8). If the software is transported to 
another machine, or even if the compiler is changed, this 
relationship may no longer hold. In developing a software 
design, it is wise not to make use of such relationships; or 
if they are used, to isolate them to certain routines which 
are known to be machine dependent. 

In general, an operator will apply only to certain data 
types. In developing a software design, all the standard 
mathematical operations (+ - * / )  (* = multipy, / = divide) 
can be regarded as pre-existing for numeric data types. But 
multiplying days of the week makes no obvious sense, either 
in the real world. or in a software design. Any operations 
to he performed on non-numeric data types must be defined, 
perhaps as separate procedures (see section 4.10 below). 

Types such as "day" and "weeknumber" (and "integer") are 
called enumeration types, because their possible values are 
specified by enumerating them, in sequence. The order of 
values in the sequence is significant. The operators PREC 
(preceding) and SUCC (succeeding) can be regarded as 
pre-defined for all sequenced data types: 

eg PREC(Wednesday)is Tuesday 

* Microprocessor Pascal, which is a strongly typed language, 
provides a type transfer operator which can be used to 
override type checking. However, the programmer nust 
explicitly tell the compiler that he is doing something out 
of the ordinary, and exactly what he is doing (Section 
6.6.14). 
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SUCC(Thursday) is Friday 

The assignment operator can also be applied to all data 
types. More complex operations can, of course, be devised, 
but they must be specified precisely. 

Suhrange types can be used to specify the range and 
precision of numbers that will be used in calculations: 

type temperature = (-50..+100); 
pressure = (0..900); 

(Note that the keywords type, var etc need not be repeated - - 
for multiple declarations. The declarations are separated 
by semicolons.) For Pascal designs, the compiler can 
optionally perform automatic checks to ensure that variables 
never exceed the bounds specified. 

In addition to the type "integer" the numeric type 
11 longinteger" ( -2147483648. .+2147483647,  ie 32 bit signed) 

is often useful, and is directly implemented in 
Microprocessor Pascal and in some other languages. 

Obviously, use of certain facilities of the design language 
will he conditioned by what is expected to be available in 
the final implementation language - for example, is a 
floating point package available? Nevertheless, the freedom 
of the design language is useful at least in the early 
stages of working out what is needed to implement the 
application. 

Note that "real" is not an enumeration type. With 
enumeration types, it is always possible to identify a 
unique predecessor and/or successor for any value (eg with 
integers, 5 is preceded by 4 and succeeded by 6). However, 
what is the successor of the real number 2.414? Is it 2.415? 
2.4141?or2.41401? Given any two real numbers, it is 
possible to define a third real number that lies between 
them in value (up to the limit of precision of the 
computer). The representation of real numbers follows a 
completely different principle from the representation of 
integers. Real numbers are stored differently within the 
computer,* and cannot, for example, be used as an index to 
an array (see below, section 4.7.2). 

The discipline of data typing makes it much harder to make 
mistakes - such as using variables in the wrong place - and 
much easier to find mistakes if they are made. Data types, 
and variables, can also be given meaningful names (in the 
design language at least, and in some implementation 
languages). With variables called I, J, K, or even K2RCPLZ, 
and all implemented as (say) integers, it's quite easy to 
mistake a variable representing a day of the week for one 

* The representation of real and other numbers is discussed 
in Section 8.13.2 
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representing (say) the mean of 25 temperature values, and 
hence to perform a completely inappropriate operation. Such 
errors can easily propogate right through to implementation, 
and may only be discovered when the system doesn't work. 
For software designs executed in Pascal, the compiler will 
automatically check compatibility of data types. 

4.6.4 Data Design 

Designing good data types and data structures is not easy, 
and there is no standard way to go about it. It is perhaps 
the biggest challenge of software design. 

Some languages (eg Pascal) implement the data type 
constructs described here directly. Others implement only a 
small range of data types (such as INTEGER and REAL). 
Whichever language is to be used for the final 
implementation, the software design can be developed using a 
design language, as described here. When the design is 
complete, each data type can be "mapped" onto a suitable 
implementation in the programming language to be used. 

One advantage of this approach is that much of the design 
work is done in a medium that is not tied to any particular 
hardware implementation. This means that the design will be 
much more transportable. It also means that details of the 
implementation which might sidetrack design thinking at this 
stage (such as precise syntax and punctuation, and the 
idiosyncracies of a particular programming language) can be 
left until a later stage. 

Besides documenting the system and the design process, the 
software design can be referred to when making changes to 
the system. It contains relevant information that may be 
lost or obscured in implementation. The design is also a 
starting point for implementation using different 
programming languages. 

4.7 DATA STRUCTURES 

Single data items, of whatever type, are of little use in 
real applications. Usually, the data required to describe 
anything in the real world is much more complex than this. 
It is useful to group single data items together into data 
structures. As with program algorithms, there is a set of 
simple constructs which can be used in a variety of 
combinations to represent data structures of any 
complexity. The principle data constructs are the record 
and the array,. 
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4.7.1 Records  

The r e c o r d  e n a b l e s  d a t a  i t e m s  t h a t  a r e  a s s o c i a t e d  i n  some 
way t o  he grouped t o g e t h e r ,  and r e f e r r e d  t o  by a  s i n g l e  
name. A r e c o r d  i s  s imp ly  a  c o l l e c t i o n  of ( p r o b a b l y  
d i s s i m i l a r )  d a t a  t y p e s .  

C o n s i d e r  a n  a p p l i c a t i o n  t h a t  c o n t r o l s  a  number of pumps a t  a  
s e l f - s e r v i c e  f i l l i n g  s t a t i o n .  A r e c o r d  can  be d e f i n e d  t o  
c o n t a i n  i n f o r m a t i o n  a b o u t  a  pump a s  f o l l o w s :  

t y p e  pump r e c o r d  = 
r e c o r d  - - 

s t a t u s  : ( o f f ,  f i l l i n g ,  comple t ed ) ;  
g r a d e  : ( r e g u l a r ,  premium, u n l e a d e d ) ;  
g a l l o n s  : (0 . .30)  

end ;  - 
v a r  pumpl, pump2 : pump r e c o r d ;  - - 

The t y p e  d e c l a r a t i o n  d e f i n e s  t h e  s t r u c t u r e  of t h e  r e c o r d ;  
the v a r  s t a t e m e n t  d e c l a r e s  two r e c o r d  v a r i a b l e s ,  pumpl and - 
pump2, of t h e  newly d e f i n e d  t y p e  "pump reco rd" .  The r e c o r d  
c o n s t r u c t  i s  a n o t h e r  form of < t y p e  d e f i z i t i o n ) ,  a s  d e s c r i b e d  
i n  s e c t i o n  4.6.1. "end" - c l o s e s  t h e  r e c o r d  d e f i n i t i o n .  
" " i s  used  t o  make pump r e c o r d  i n t o  one word. - - 

The r e c o r d  i n  t h i s  example c o n t a i n s  t h r e e  f i e l d s  ( s t a t u s ,  
g r a d e  and g a l l o n s ) ,  e ach  of which h a s  a un ique  name. The 
r e c o r d  g roups ,  i n  one p l a c e ,  t h e  s t a t u s  of o p e r a t i o n s  a t  a 
p a r t i c u l a r  pump (whe the r  t h e  pump i s  o f f ,  i n  t h e  p r o c e s s  of 
f i l l i n g ,  o r  h a s  c o m p l e t e d ) ;  t h e  g r a d e  d e l i v e r e d ;  and t h e  
number of g a l l o n s  d e l i v e r e d .  

The s t a t u s  i n f o r m a t i o n  f o r  t h e  f i r s t  pump can  be r e f e r r e d  t o  
unambiguously a s  "pump 1. s t a t u s " .  11 . s t a t u s 1 '  i s  c a l l e d  t h e  
f i e l d  q u a l i f i e r .  A l l  of t h e  i n f o r m a t i o n  a b o u t  t h i s  pump can  
be r e f e r r e d  t o  c o l l e c t i v e l y  a s  "pumpl". T h i s  i s  a  v e r y  
u s e f u l  s h o r t h a n d  when d e a l i n g  w i t h  l a r g e  and complex 
c o l l e c t i o n s  of d a t a .  

The f i e l d s  i n  a  r e c o r d  can  be  of any t y p e ,  i n c l u d i n g  
s t r u c t u r e d  types .  T h i s  a l l o w s  t h e  b u i l d i n g  of v e r y  power fu l  
d a t a  s t r u c t u r e s .  
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Types of f i e l d s  i n  a  r e c o r d  c a n  be p r e d e f i n e d ,  eg:  

t y p e  s t a t u s  v a l u e s  = ( o f f ,  f i l l i n g ,  c o m p l e t e d ) ;  - 
t y p e  pump r e c o r d  = 

r e c o r d  
s t a t u s  : s t a t u s  - v a l u e s ;  

end : 

The a l g o r i t h m  f o r  t h e  f i l l i n g  s t a t i o n  a p p l i c a t i o n  i n v o l v e s  
c o n t i n u a l l y  c h e c k i n g  t h e  s t a t u s  f i e l d  of each  pump r e c o r d  i n  
t u r n .  When a  s t a t u s  of " completed"  i s  r e a d ,  t h e  program 
c a l c u l a t e s  t h e  c o s t ,  d i s p l a y s  i t  a t  t h e  c a s h  desk  and r e s e t s  
t h e  pump: 

p u m p l . s t a t u s  = comple t ed  t h e n  
b e g i n  
c a l c u l a t e  c o s t ;  
d i s p l a y  - c o s t  ; 
reset  pump-1 - 
end  - 

c a l c u l a t e- c o s t ,  d i s p l a y  c o s t  and r e se tpump- 1 a r e  a l l  
o p e r a t i o n s  t h a t  a r e  expanded e l s e w h e r e  i n  t h e  s o f t w a r e  
d e s i g n .  

The c o s t  c a l c u l a t i o n  i s  based  on t h e  "grade" and " g a l l o n s"  
f i e l d s  of t h e  pump r e c o r d  and a  t a b l e  of p r i c e s .  
" C a l c u l a t e  - c o s t "  c a n  be  expanded a s  f o l l o w s :  

c o s t  := pumpl .ga l lons  * c o s t  - t a b l e [ p u m p l . g r a d e ]  

" c o s t  - t a b l e "  i s  a n  example of a n o t h e r  s t r u c t u r e d  d a t a  t y p e  
c a l l e 3  t h e  a r r a y .  

4.7.2 Ar rays  

An a r r a y  i s  a n  o r d e r e d  l i s t  of d a t a  i t e m s  of i d e n t i c a l  
t y p e .  The whole a r r a y  i s  g i v e n  one name; a n  i n d i v i d u a l  
e l emen t  of t h e  a r r a y  i s  r e f e r r e d  t o  ( r e f e r e n c e d )  by g i v i n g  
t h e  a r r a y  name and a n  i n d e x  o r  s u b s c r i p t ,  which i d e n t i f i e s  
which e l emen t  i n  t h e  a r r a y  i s  r e q u i r e d .  

t y p e  b u f f e r  = a r r a y  [1 . .80]  of  c h a r ;  - 
v a r  b u f l  : b u f f e r ;  - 

o r ,  e q u i v a l e n t l y  
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v a r  buf 1 : a r r a y  [ l ,  .80]  of  c h a r ;  - - 
"char"  i s  a  p r e- d e f i n e d  t y p e ,  The number of e l e m e n t s  i n  t h e  
a r r a y  (80  i n  t h i s  c a s e )  i s  s p e c i f i e d  by l i s t i n g  t h e  p o s s i b l e  
v a l u e s  of the indexg i n  square b r a c k e t s .  

The f o u r t h  e l emen t  of t h e  a r r a y  ( i e ,  t h e  f o u r t h  c h a r a c t e r  i n  
t h e  b u f f e r )  c a n  t h e n  h e  r e f e r r e d  t o  a s  " b u f l [ 4 ] " ;  t h i s  
e l emen t  i s  of t y p e  

In t h e  des ign  language (and in "- rasca l ) ,  - - any e n u m e r a t l o n  t y p e  
c a n  be  u sed  t o  i n d e x  a n  a r r a y ,  So " c o s t  - t ab l e 1 '  ( above )  i s  
d e c l a r e d :  

v a r  c o s t  t a b l e  : a r r a y  [ r e g u l a r ,  premium, u n l e a d e d ]  - - 
ef p r i c e ;  - 

The r e f e r e n c e  c o s t  t a b l e [ p r e m i u m ]  w i l l  t h e n  g i v e  t h e  p r i c e  
o f  premium g r a d e  ("price" i s  a  t y p e  d e f i n e d  e l s e w h e r e ) .  

To g a i n  a  f e e l  f o r  t h e  n o t a t i o n ,  and i t s  p r a c t i c a l  
a p p l i c a t i o n ,  it"s wor thwhi l e  c o n s t r u c t i n g  a few t r i a l  
examples .  Fo r  example:  d e s i g n  a  r e c o r d  t y p e  named 
" c a l l  - r e c o r d"  t o  c o n t a i n  a l l  t h e  e s s e n t i a l  i n f o r m a t i o n  a b o u t  
a n  i n d i v i d u a l  t e l e p h o n e  c a l l  ( o r i g i n a t i n g  number, 
d e s t i n a t i o n ,  d i s t a n c e  e t c ) .  D e c l a r e  two o r  t h r e e  r e c o r d  
v a r i a b l e s  of t h i s  t y p e ,  D e c l a r e  a n  a r r a y  t o  h o l d  t h e  t a r i f f  
i n f o r m a t i o n ,  and w r i t e  t h e  a l g o r i t h m  t o  c a l c u l a t e  t h e  c o s t  
of  t h e  c a l l .  D e c l a r e  a n o t h e r  a r r a y  t o  h o l d ,  f o r  e v e r y  
s u b s c r i b e r ,  t h e  c u r r e n t  b i l l ,  W r i t e  t h e  a l g o r i t h m  s t a t e m e n t  
t o  add t h e  c o s t  of a  new c a l l ,  t o  t h e  b i l l  f o r  t h e  
a p p r o p r i a t e  s u b s c r i b e r .  

What i s  i n s i d e  t h e  s q u a r e  b r a c k e t s  of an  a r r a y  d e c l a r a t i o n  
h a s  t h e  same form a s  t h e  r i g h t  hand s i d e  of a t y p e  
d e c l a r a t i o n .  I n  f a c t ,  a  t y p e  name can  be u sed  i n  p l a c e  of 
a n  e x p l i c i t  l i s t  of v a l u e s ,  An a r r a y  c o n t a i n i n g  t h e  d a i l y  
r e c e i p t s  of a  s t o r e  can  he d e c l a r e d :  

v a r  d a i l y  t a k i n g s  : a r r a y  [ d a y ]  of money; - - 
( a s suming  t h e  p r e v i o u s  d e c l a r a t i o n  of t y p e  "day", a s  i n  
s e c t i o n  4 .6 .1 ) .  The r e c e i p t s  f o r  Tuesday can  t h e n  be 
r e f e r e n c e d  by 

d a i l y  - t a k i n g s  [Tuesday ]  

Ar rays  can  he employed f o r  any l i s t  of i d e n t i c a l  items. The 
e l e m e n t s  can  be any d a t a  t y p e ,  i n c l u d i n g  r e c o r d s  and o t h e r  
a r r a y s ,  

.A,.. Octobe r  IYUI 
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It i s  c o n v e n i e n t  t o  u s e  t h e  same t y p e  t o  d e c l a r e  a n  a r r a y  
and  any  v a r i a b l e  u sed  t o  i n d e x  i t :  

t y p e  buf - s i z e  = 1..80; 

v a r  b u f l  : a r r a y  [bu f  s i z e ]  of  c h a r a c t e r ;  - - - 
v a r  i n d e x  : buf s i z e ;  - - 

T h i s  makes changes  t o  t h e  b u f f e r  s i z e  much e a s i e r ,  and a l s o  
a i d s  documen ta t i on .  With a n  a p p r o p r i a t e  c h o i c e  of names, 
d e s i g n s  such  a s  t h i s  can  be l a r g e l y  s e l f- documen t ing .  I f  
t h i s  d e s i g n  i s  t u r n e d  i n t o  P a s c a l ,  c o m p i l e r  checks  can  be 
u s e d  t o  e n s u r e  t h a t  t h e  a r r a y  i n d e x  n e v e r  e x c e e d s  t h e  
s p e c i f i e d  bounds i n  e x e c u t i o n .  

Wi th  a n  i n d e x  v a r i a b l e ,  t h e  same p o r t i o n  of a  program can  be 
u s e d  t o  o p e r a t e  on different a r r a y  e l e m e n t s ,  a c c o r d i n g  t o  
t h e  v a l u e  of t h e  i n d e x .  T h i s  i s  r e l e v a n t  t o  t h e  g a s  s t a t i o n  
example  ( above ) .  A s  i t  s t a n d s ,  a  s e p a r a t e  p i e c e  of program 
n e e d s  t o  be w r i t t e n  f o r  e a c h  pump. I n s t e a d  of d e c l a r i n g  
pumpl,  pump2 a s  s e p a r a t e  v a r i a b l e s ,  d e c l a r e  a n  a r r a y  of pump 
r e c o r d s  : 

t y p e  n o o f  pumps = 1..10; - - 

v a r  pump : a r r a y  [ n o  of  pumps] of pump r e c o r d ;  - - - - 

v a r  pump no  : no of  pumps; - - - - 

The same s t a t e m e n t s  c a n  t h e n  be u sed  f o r  any pump, f i r s t  
s e t t i n g  pump - no t o  t h e  r e q u i r e d  v a l u e ,  t h e n  r e f e r r i n g  i n  t h e  
program t o :  

f o r  t h e  g r a d e  f i e l d  of t h e  pump s p e c i f i e d  by pump-no. The 
n o t a t i o n  works l i k e  t h i s :  

pump i s  an  a r r a y  
pump[pump n o ]  i s  a n  e l emen t  of t h e  a r r a y ,  and i s  a  r e c o r d  
pump[pump~no]  . g r a d e  i s  a  f i e l d  of t h i s  r e c o r d ,  and i s  of 

t y p e :  ( r e g u l a r ,  premium, u n l e a d e d )  

Any a r r a y  can  be i ndexed  by a d d i n g  " [ i n d e x ] " ;  any  r e c o r d  c a n  
b e  q u a l i f i e d  by a d d i n g  " . f i e l d" .  By n e s t i n g  d e f i n i t i o n s  i n  
t h i s  way, d a t a  s t r u c t u r e s  p r o v i d e  power fu l  t o o l s  f o r  
managing t h e  complex d a t a  found i n  t h e  r e a l  wor ld .  

It i s  n o t  n e c e s s a r y  t o  g r a s p  t h e  whole of a  l a r g e  d a t a  
s t r u c t u r e  a t  once.  Beyond a  c e r t a i n  p o i n t ,  i t  i s  m e n t a l l y  
i m p o s s i b l e .  TJsing t h e  t e c h n i q u e s  d e s c r i b e d  h e r e ,  i f  e ach  
l e v e l  of t h e  s t r u c t u r e  i s  c o r r e c t  and w e l l  u n d e r s t o o d ,  t h e  
d e s i g n e r  c a n  be c o n f i d e n t  t h a t  t h e  whole  i s  c o r r e c t .  T h i s  
i s  t h e  p r i n c i p l e  on which most modern s o f t w a r e  d e s i g n  
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t e c h n i q u e s  a r e  based ,  and i t  a p p l i e s  t o  a l g o r i t h m s  and 
programs a s  w e l l  a s  d a t a ,  

4 , 7 , 3  Dynamic Data  S t r u c t u r e s  

R e t u r n i n g  t o  t h e  f i l l i n g  s t a t i o n  example, one problem 
a p p e a r s  i n  t h e  o r i g i n a l  des ign .  I n  o r d e r  t o  s a v e  t h e  c o s t  
i n f o r m a t i o n ,  a  new customer cannot  u s e  a  pump u n t i l  i t s  
p r e v i o u s  cus tomer  h a s  p a i d  h i s  b i l l ,  S e v e r a l  s o l u t i o n s ,  
however,  a r e  p o s s i b l e ,  For  example, an a r r a y  of 
pump r e c o r d s  cou ld  be d e f i n e d  f o r  each  pump, one r e c o r d  p e r  
customer.  A d e c i s i o n  w i l l  t h e n  have t o  be made a s  t o  how 
many cus tomers  w i l l  queue a t  each  pump, I n  a n o t h e r  
so~ution,  "I.- - A * '  *^C^..-..t<*" AO.. I.- 

L r l =  C U a L  LLILuluaCluLl "= s t o r e d  in a separa te  
d a t a  s t r u c t u r e  ( o r  p r i n t e d  o u t )  a s  soon a s  i t  becomes 
a v a i l a b l e ,  and t h e  pump c l e a r e d ,  

A t h i r d  p o s s i b i l i t y  i s  t o  s t r u c t u r e  t h e  d a t a  n o t  by pumps, 
b u t  by cus tomers  -- one r e c o r d  p e r  cus tomer ,  A customer 
r e c o r d  might look  something l i k e  t h i s :  

t y p e  customer r e c o r d  = - - 
r e c o r d  

pump number : no of - pumps; 
s t a t u s  : ( o i f ,  f i l l i n g ,  comple ted ) ;  
g r a d e  : ( r e g u l a r ,  premium, u n l e a d e d ) ;  
g a l l o n s  : (0,,30) 

end;  

Each t ime a  cus tomer  a r r i v e s ,  a  new r e c o r d *  i s  c r e a t e d .  An 
a r r a y  of cus tomer  r e c o r d s  cou ld  be d e c l a r e d ,  These r e c o r d s  
cou ld  be a s s i g n e d  t o  cus tomers  a s  they  a r r i v e ,  However, 
cus tomers  l e a v i n g  would c r e a t e  " holes"  i n  t h e  a r r a y ,  Th i s  
problem can  be s o l v e d  ( e g ,  by a  " t i d y i n g  up" a l g o r i t h m ) ,  
Such a  s o l u t i o n ,  however, i s  messy, I n  t h e  a r r a y  s t r u c t u r e  
i n  t h i s  a p p l i c a t i o n  t h e r e  seems t o  be no obvious  meaning f o r  
t h e  index ,  T h i s  i s  one i n d i c a t i o n  t h a t  an  a r r a y  i s  n o t  t h e  
r i g h t  s t r u c t u r e  t o  u s e  i n  t h i s  a p p l i c a t i o n ,  

A s t r u c t u r e  c a l l e d  t h e  l i s t  i s  more a p p r o p r i a t e  t o  t h e  
s i t u a t i o n  s p e l l e d  o u t  above, Records and a r r a y s  must have 
t h e i r  s i z e  ( t h e  amount of s t o r a g e  a l l o c a t e d  t o  them) d e f i n e d  
when t h e  program i s  w r i t t e n ,  These a l l o c a t i o n s  cannot  be 
changed w h i l e  t h e  program i s  runn ing ,  L i s t s ,  on t h e  o t h e r  
hand,  c o n s i s t  of d a t a  e l e m e n t s  ( u s u a l l y  r e c o r d s )  which a r e  
dynamica l ly  a l l o c a t e d  from a  p o o l ,  o r  heap ,  of s t o r a g e  space  
w h i l e  t h e  program i s  e x e c u t i n g .  Elements  can  be d e l e t e d  
from anywhere w i t h i n  t h e  l i s t  when no l o n g e r  r e q u i r e d ,  and 
t h e  s t o r a g e  w i l l  be r e t u r n e d  t o  t h e  heap,  Thus, cus tomers  
can  be added t o  t h e  l i s t  when t h e y  a r r i v e ,  and d e l e t e d  when 
t h e y  l e a v e ,  The d a t a  s t r u c t u r e s  change dynamica l ly  t o  
r e f l e c t  t h e  r e a l  s i t u a t i o n ,  
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L i s t s ,  and o t h e r  u s e f u l  d a t a  s t r u c t u r e s  such  a s  trees, a r e  
d e s c r i b e d  i n  more d e t a i l  i n  t h e  r e f e r e n c e s  g i v e n  a t  t h e  end 
of  t h i s  c h a p t e r  ( i n  p a r t i c u l a r  s e e  r e f e r e n c e  [ l ]  i n  t h e  
B i b l i o g r a p h y ,  s e c t i o n  4.13). L i s t s ,  and o t h e r  dynamic d a t a  
s t r u c t u r e s ,  a r e  g e n e r a l l y  managed th rough  a n o t h e r  d a t a  t y p e  
c a l l e d  t h e  p o i n t e r .  P o i n t e r s  and t h e  s t r u c t u r e s  t h e y  can  he 
u s e d  t o  implement a r e  d e s c r i b e d  i n  r e f e r e n c e  [ I ] ,  and i n  t h e  
M i c r o p r o c e s s o r  P a s c a l  System User's Manual. 

The d i f f e r e n t  s o l u t i o n s  i l l u s t r a t e  a  p o i n t  made e a r l i e r :  
t h a t  d a t a  can  be  s t r u c t u r e d  i n  many ways, and i t  i s  wor th  
e x p l o r i n g  t h e  a l t e r n a t i v e s .  Data  d e s i g n  d e t e r m i n e s  t h e  
b a s i c  e l e m e n t s  w i t h  which t h e  sys t em w i l l  work and a f f e c t s  
b o t h  a l g o r i t h m s  and i n p u t / o u t p u t .  The b e s t  way t o  a r r i v e  a t  
a n  optimum s o l u t i o n  i s  t o  be aware of t h e  c h o i c e s  t h a t  can  
be  made. 

4.7.4 Data Diagrams 

The g r a p h i c a l  n o t a t i o n  d e s c r i b e d  above f o r  a l g o r i t h m s  can  
a l s o  be used f o r  d a t a  s t r u c t u r e s .  The sequence  n o t a t i o n  can  
b e  used  t o  r e p r e s e n t  r e c o r d s ,  and t h e  i t e r a t i o n  c o n s t r u c t  t o  
r e p r e s e n t  a r r a y s .  Thus, t h e  a r r a y  'pump' of  'pump - r e c o r d s '  
i n  s e c t i o n  4.7.2 c a n  be  drawn: 

The s e l e c t i o n  
r e c o r d  v a r i a n t ,  

P 

r e c o r d  can  have 

u 
- m -  

P 

c o n s t r u c t  can  be r e g a r d e d  a s  r e p r e s e n t i n g  t h e  
a  r e c o r d  s t r u c t u r e  i n  which p a r t  of t h e  
a l t e r n a t i v e  forms.  For example,  a  p e r s o n n e l  

r e c o r d  f o r  a  c o l l e g e  might  need t o  c o n t a i n  d i f f e r e n t  
i n f o r m a t i o n  depend ing  upon whe the r  i t  r e p r e s e n t e d  a  s t u d e n t ,  
f a c u l t y  member o r  a  member of t h e  a d m i n i s t r a t i v e  s t a f f  
( F i g u r e  4-13). 

status 
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college 

Figure 4-13 The Record Variant 
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I n  t h e  d e s i g n  l anguage ,  t h i s  can  be w r i t t e n :  

t y p e  p e r s o n n e l  - r e c o r d  = 
r e c o r d  

name : name r e c o r d ;  
a g e  : 0.*15-0; 
c o l l e g e  : ( c a s ,  t e c h ,  music ,  j o u r ) ;  
s t a t u s  : ( s t u d e n t ,  f a c u l t y ,  admin);  
c a s e  s t a t u s  of - 

,& t.. ,,dent : (graduate status : s t a t u s  t y p e ;  - 
y e a r  : 1..7); 

f a c u l t y  : ( t e n u r e  : boo lean ;  
r ank  : rank  t y p e ) ;  

admin : ( p o s i t i o n  : p o s i F i o n  - t y p e ;  
l e n g t h  - of - s e r v i c e  : 1. ,50)  

end - 
end - 

assuming t h e  p r e v i o u s  d e f i n i t i o n  o f :  

t y p e  s t a t u s  t y p e  = ( g r a d u a t e ,  u n d e r g r a d u a t e ) ;  
r a n k  - t y p e  = ( i n s t ,  a s s t ,  a s s o c ,  p r o f ) ;  
p o s i i o n  - t y p e  = ( a s s t d e a n ,  dean ,  chairman,  o t h e r ) ;  

According  t o  t h e  v a l u e  of s t a t u s  ( c a l l e d  t h e  t a g  f i e l d ) ,  
o n l y  one of t h e  v a r i a n t s  w i l l  be used t o  d e t e r m i n e  t h e  
s t r u c t u r e  of t h e  r e c o r d  i n  any p a r t i c u l a r  case .  

Examples of f u r t h e r  c o n s t r u c t s  which can  be used ( i n c l u d i n g  
t h e  p o i n t e r  t y p e  and dynamic d a t a  s t r u c t u r e s )  a r e  g i v e n  i n  
t h e  M i c r o p r o c e s s o r  P a s c a l  System User 's  Manual, The 
c o n s t r u c t s  of P a s c a l  a r e  des igned  t o  be " u n i v e r s a l" ,  and 
many of them can  be adap ted  f o r  d i r e c t  u s e  i n  t h e  d e s i g n  
l anguage ,  

4.8 DESIGN APPROACHES 

A completed s o f t w a r e  d e s i g n  c o n s i s t s  of a  complex 
m u l t i- d i m e n s i o n a l  mass of i n f o r m a t i o n ,  r a n g i n g  from o v e r a l l  
s t r u c t u r e  t o  d e t a i l s  of implementa t ion .  When c o n s t r u c t i n g  
such  an  e d i f i c e  from s c r a t c h ,  what i s  t h e  b e s t  way t o  
approach  i t ?  

A t  t h e  s t a r t ,  two 'ends '  of t h e  problem a r e  known: 

1) What t h e  sys tem i s  supposed t o  do, and 

2 )  The b a s i c  o p e r a t i o n s  t h a t  t h e  p r o c e s s o r  i s  
c a p a b l e  of pe r fo rming ,  
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This leads to two approaches to software design: 

1) Starting from the problem and working down 
towards the details of implementation. This 
involves splitting the problem into smaller 
segments, considering each in turn and 
further subdividing until the basic processor 
operations are reached. 

2) Starting from the basic processor 
instructions, putting them together into 
larger units that will perform more complex 
operations, and so working up towards a 
solution of the complete problem. 

The second method is the traditional way of designing 
software. It has been called the 'bottom-up' approach. For 
example, if it was thought that a system required a keyboard 
input routine and a display routine, these functions would 
be written, together with other routines, and used as 
building blocks to construct larger modules which would then 
be put together to make the complete system. 

However, it has been found by experience that the first 
method, 'top-down' design, produces software that is better, 
clearer and easier to maintain. The problem with bottom-up 
design is that usually not very much thought is given to the 
precise requirements of each function, and the ways in which 
functions will fit together, before they are. implemented. 
Therefore the designer ends up with .blocks that are of 
-5mzmtpatible size or shape, and he either has to reconstruct 
the blocks, or make the best of what he has and design some 
special pieces of software to overcome the problems of 
incompatibility. This does not lead to very robust 
systems. 

The major problem of software, unlike other technologies, is 
not in the actual construction of functions. Once a 
requirement has been precisely identified, implementing a 
stand alone piece of software to perform it is fairly 
straightforward. The problem lies in organizing a 
collection of functions so that they will cooperate to 
perform a complex task. This is the problem that is 
addressed by top-down design. The requirement and the 
interface for each function is identified before it is 
implemented. 

Actually, pure bottom-up design is not possible. The 
designer must have given the problem some 'top-down' thought 
or he would have no idea what building blocks to construct. 
What top-down design does is to make this thought much more 
systematic. It provides the designer with some tools to 
attack the problem (such as the design language), which are 
better than his bare hands. Traditionally, the only 
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l a n g u a g e s  a v a i l a b l e  f o r  d e s i g n  were programming l a n g u a g e s ,  
which  t y p i c a l l y  r e q u i r e d  s o  much a t t e n t i o n  t o  machine d e t a i l  
t h a t  t h e  ma jo r  i s s u e s  were obscu red .  Also ,  e a r l y  
programming l a n g u a g e s  were u n s t r u c t u r e d ,  s o  t h a t  i t  was 
d i f f i c u l t  t o  i s o l a t e  and f o c u s  on p a r t i c u l a r  d e s i g n  i s s u e s  
o r  t o  l o o k  a t  t h e  sys t em a s  a  whole w i t h o u t  becoming 
i n v o l v e d  i n  a  mass of d e t a i l .  

Des ign  ' l anguages  and n o t a t i o n s  l i k e  t h o s e  i n t r o d u c e d  above 
have  largely s o l v e d  this problem* 

A d e s i g n  might  be conce ived  i n i t i a l l y  l i k e  t h i s :  

F i g u r e  4-14 I n i t i a l  Des ign  Algor i thm 

T h i s  c o u l d  be  a  d e v i c e  which ,  a f t e r  i n i t i a l i z a t i o n ,  would 
w a i t  f o r  a n  o p e r a t o r  command, pe r fo rm t h e  a p p r o p r i a t e  
a c t i o n ,  and t h e n  r e t u r n  t o  w a i t  f o r  t h e  n e x t  command. The 
d e v i c e  i s  s p e c i f i e d  i n  v e r y  g e n e r a l  t e r m s ,  b u t  i t s  b a s i c  
o p e r a t i o n  i s  a l r e a d y  c l e a r .  

The o p e r a t o r  i n t e r f a c e  might  be  a  t e l e t y p e  keyboa rd ,  on 
which t h e  u s e r  would t y p e  a  command t e l l i n g  t h e  sys t em what 
t o  do. Suppose a  command c o n s i s t s  of a l i n e  e n t e r e d  on a  
t e l e t y p e  keyboa rd ,  t e r m i n a t e d  by a  c a r r i a g e  r e t u r n  ( C R ) .  
The d e v i c e  prompts  t h e  o p e r a t o r  f o r  a  command by o u t p u t t i n g  
' ? '  t o  t h e  t e l e t y p e .  
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"Read Ir.putl '  could then be expanded l i k e  t h i s :  

F i g u r e  4-15 "Read I n p u t"  Algor i thm expans ion  

r 
e 
a 
d 

The t e r m i n a l  boxes of t h i s  d iagram can  be f u r t h e r  expanded 
u n t i l  a  comple te  s o l u t i o n  i s  d e r i v e d ,  

I 1 

output "?" 

Because of t h e  s i n g l e  e n t r y  and e x i t  p r o p e r t i e s  of t h e  
s t r u c t u r e d  programming c o n s t r u c t s  u sed ,  t h e  d e s i g n e r  can  be 
c o n f i d e n t  t h a t  however he  expands t h e  d e s i g n  o f ,  f o r  
example, t h e  box l a b e l l e d  ' t a k e  a p p r o p r i a t e  a c t i o n ' ,  i t  w i l l  
n o t  a £  f e c t  any of t h e  o t h e r  boxes i n  t h e  diagram, o r  t h e  
s t r u c t u r e  of t h e  diagram, 
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It is this property of structured notation which makes it 
possible to hold off consideration of details and to design 
from the top downwards (or, more accurately, from 
application towards implementation). 

In a practical system, top-down design must often be 
tempered with bottom-up considerations. It is impossible to 
start designing at the top without some idea of what is 
possible at the bottom. For example, it may be necessary to 
code and try out an 1/0 routine or a critical piece of code, 
in order to check the feasibility of the design. With a 
complex problem, it may be necessary to attack the 
intractable mass in the middle from both ends. However, the 
most important progression in design remains from problem 
towards implementation. 

4.9 BLOCK STRUCTURE 

In a software design, the general form of any programming 
unit can be expressed as follows: 

TYPE DECLARATIONS 

VARIABLE DECLARATIONS 

PROCEDURE STATEMENTS 

Such a program unit is called a block. The type 
declarations specify the types of data that will be used in 
the program (in addition to predefined types); the variable 
declarations specify actual data items of these types; and 
the procedure statements define what the program will do 
with these data items. 

Most modern programming languages are block-structured - 
that is they make use of the block construct to modularise 
p rograms . 
The a d v a ~ t a g a s  of b l ~ z k s  tec~ i i i e  apparent when caaaiderifig 
how a large software design can be broken down into smaller 
parts for separate implementation (by the same programmer or 
by others). Each part can be implemented as a separate 
block, with its own types, variables and procedure 
statements. 

A block encapsulates the complete programming environment 
for a particular program unit. The declarations made within 
a block apply only to that block. They constitute a local 
"language" invented and spoken (or rather written) by the 
programmer of that block. This language (the types of data 
permitted, the actual data items declared, and the 
procedures available for doing things) is designed to be 
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appropriate to the specific problem to be solved by that 
block, and is unknown outside the block, 

Thus different parts of the same software design can be 
developed separately with no possibility of interference o r  
confusion, It's even possible for two programmers to use 
the same name for two completely different variables. 
("TEMP", for example, could be chosen to represent a 
temperature by one programmer, and to represent a temporary 
variable by another. While such name duplication should not 
be encouraged, it's difficult to ensure that it doesn't 
happen among the many separate decisions that are made in 
developing a software design,) There are standard and 
controlled means by which information is exchanged between 
different blocks, 

The block construct can be used wherever a self-contained 
programming unit is to be defined. A complete program is a 
block; so is a subprogram, Blocks can be nested one within 
another. 

A smaller block nested within a larger can be regarded as 
existing within the environment (or context) of the outer 
block, Thus, type and variable declarations in the outer 
block apply in the inner block, However, local declarations 
override global ones: if by chance a variable is declared in 
an inner block with the same name as one already declared in 
an outer block, the local declaration applies in the inner 
block, This is shown in Figure 6-2, Section 6.3.6. 

The block structure defines a hierarchy, or tree, of 
relationships between programming dnits, These are called 
lexical relationships, In Figures 6-2 and 6-3, the lexical 
parent of PROCEDURE P is PROGRAM A (both PROCEDURE P and 
PROGRAM A are blocks), PROCEDURES P and Q are lexical 
brothers; P, Q and A, as well as R and R, have SYSTEM X as a 
common lexical ancestor. This lexical relationship simply 
describes the (static) context in which the individual 
blocks are declared, and the data items, types etc which 
they share. It does not determine the (dynamic) order in 
which blocks will be executed when the system is running, 

Block structure is a way of managing complex logical 
entities by splitting them into smaller entities with 
clearly defined relationships. From experience, this kind 
of structure is required to manage all but the smallest 
software systems, 

4-10 PROCEDURES AND FUNCTIONS 

The most common way of implementing a smaller block within a 
larger program is as a procedure or function. A procedure 
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(sometimes known a s  a s u b r o u t i n e )  i s  a  s e p a r a t e  b lock  t h a t  
i s  d e c l a r e d  w i t h i n  a  program. A name i s  a s s i g n e d  t o  a  
p r o c e d u r e  t o  e n a b l e  t h e  u s e r  t o  r e f e r e n c e  i t .  

D e c l a r i n g  a p r o c e d u r e  i s  s i m i l a r  t o  d e f i n i n g  a  new s t a t e m e n t  
o r  o p e r a t i o n  i n  t h e  programming language .  Once a  p r o c e d u r e  
h a s  been  d e c l a r e d  i t  can  be a c t i v a t e d  o r  c a l l e d  from t h e  
main program s imply  by w r i t i n g  i t s  name. For example,  i f  
t h e  programmer h a s  w r i t t e n  a  p r o c e d u r e  c a l l e d  
c a l c u l a t e  - mean, t o  f i n d  t h e  mean of a s e r i e s  of numbers, he  
c a n  s i m p l y  w r i t e  

c a l c u l a t e  - mean; 

i n  t h e  main program wherever  t h i s  o p e r a t i o n  needs  t o  be 
per formed.  (Some l a n g u a g e s  r e q u i r e  a keyword, such  a s  CALL, 
t o  p r e c e d e  t h e  p r o c e d u r e  name.) 

I n  a  c a s e  l i k e  t h i s ,  t h e  o p e r a t i o n  w i l l  p r o b a b l y  have t o  be  
per formed on s e v e r a l  d i f f e r e n t  s e t s  of numbers which a r e  
s t o r e d  as d i f f e r e n t  v a r i a b l e s .  T h i s  can  be accompl ished  by 
p a s s i n g  v a r i a b l e  names a s  p a r a m e t e r s  t o  t h e  p rocedure  i n  
o r d e r  t o  s p e c i f y  t h e  d a t a  o b j e c t s  on which i t  is  t o  o p e r a t e :  

c a l c u l a t e  - mean ( a r r a y  - of - numbers)  

L a t e r  t h e  same p r o c e d u r e  might  be  c a l l e d  by: 

c a l c u l a t e  - mean ( d i f f e r e n t  - a r r a y  - of - numbers)  

When a  p r o c e d u r e  i s  d e c l a r e d ,  t h e  number and t y p e  of 
p a r a m e t e r s  a r e  s p e c i f i e d  i n  t h e  p r o c e d u r e  heade r .  The 
v a r i a b l e  names w r i t t e n  h e r e  a r e  used  i n  t h e  s t a t e m e n t s  i n  
t h e  p r o c e d u r e  body. They a r e  t h e  f o r m a l  pa rame te r s .  When 
t h e  ~ r o c e d u r e  i s  e x e c u t e d  ( c a l l e d ) ,  t h e  fo rma l  p a r a m e t e r s  . - 
w i l l  %e r e p l a c e d  by t h e  a c t u a l  p a r a m e t e r s  s p e c i f i e d  i n  t h e  
p r o c e d u r e  c a l l .  

P r o c e d u r e  d e c l a r a t i o n :  

- r a n n d . . r n  o n e  I n  . ;rrtnner.  ,,..,,,,,, ,,, ., . b : r e a l ;  e : a r r a y  [I. .8!?] 
of  c h a r ) ;  - 

b e g i n  

(* p r o c e d u r e  body *) 
a  := 5; 
b  := 6.2; 
c [ a ]  := ' p ' ;  

end ; 
7 

F i g u r e  4-16a P rocedure  D e c l a r a t i o n  
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Procedure  c a l l :  

F i g u r e  4-16b Procedure  C a l l  

The number and t y p e  of t h e  a c t u a l  pa rame te r s  must e x a c t l y  
match t h e  fo rma l  pa ramete r s .  Thus, X must  be d e c l a r e d  a s  
11 i n t e g e r " ,  Y a s  " r e a l "  and Z a s  a n  " a r r a y  [ l .  .80] of char" .  - 
A f u n c t i o n  i s  a  s p e c i a l  t ype  of p rocedure  t h a t  r e t u r n s  a  
s i n g l e  v a l u e  of a  p a r t i c u l a r  type .  (" f u n c t i o n"  u n d e r l i n e d  
h a s  a  s p e c i f i c  t e c h n i c a l  meaning, a s  d e s c r i b e d  h e r e .  
171 . b l l a S w l l S L S  nar.+knrn in this b ~ ~ k ,  " f u n c t i a n "  is used Tn 8 more general 

s e n s e . )  A f u n c t i o n  can  be t r e a t e d  a s  a  v a r i a b l e  and 
i n c l u d e d  i n  a n  e x p r e s s i o n ,  even though c a l c u l a t i o n  of t h e  
v a l u e  t o  be r e t u r n e d  i n v o l v e s  some a l g o r i t h m i c  p r o c e s s .  The 
t y p e  of t h e  f u n c t i o n  i s  s p e c i f i e d  i n  t h e  f u n c t i o n  h e a d e r :  

f u n c t t o n  number <a : boo lean ; - -b  : -ch-a-r) : i n t e g e r ;  
b e g i n  

end ; - 
and t h e  f u n c t i o n  can  be w r i t t e n  a s  p a r t  of an  e x p r e s s i o n :  

p  := 5 * number ( t r u e ,  ' x ' )  

F i g u r e  4-17 Func t ion  D e c l a r a t i o n  and Refe rence  

B e s i d e s  v a r i a b l e s ,  v a l u e s  o r  e x p r e s s i o n s  can  u s u a l l y  be 
p a s s e d  as pa ramete r s ,  p rovided  t h e y  a r e  of t h e  r i g h t  type.  
P r o c e d u r e s  can  d e c l a r e  l o c a l  v a r i a b l e s  which a r e  on ly  used  
w i t h i n  t h e  procedure .  I n  a  b lock  s t r u c t u r e d  language t h e  
p r o c e d u r e  a l s o  has  a c c e s s  t o  t h e  v a r i a b l e s  of t h e  program i n  
which i t  i s  d e c l a r e d ,  I n  P a s c a l ,  p r o c e d u r e s  can  be d e c l a r e d  
w i t h i n  p rocedures .  

P r o c e d u r e s  form a  n a t u r a l  method of w r i t i n g  modular 
programs,  p a r t i c u l a r l y  i f  t hey  can  be n e s t e d  ( d e c l a r e d  
w i t h i n  o t h e r  p r o c e d u r e s )  t o  any d e p t h  a s  i n  P a s c a l ,  I n  
implemen ta t ion ,  p rocedures  save  code. An i n s t r u c t i o n  
sequence  t h a t  can  he used i n  s e v e r a l  p l a c e s  i n  t h e  program 
o n l y  o c c u r s  once i n  t h e  o b j e c t  code. 
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CALLING PROGRAM PROCEDURE CODE 

. 
seq(5,2.4,buf£er);----~procedure s e q ( a : i n t e g e r ; b : r e a l ;  . c : a r r a y [ l .  .80] - of c h a r ) ;  

F i g u r e  4-18 P r o c e d u r e  C a l l  Mechanism 

. . 

When a  p r o c e d u r e  c a l l  i s  e x e c u t e d ,  t h e  p r o c e s s o r  t r a n s f e r s  
e x e c u t i o n  t o  t h e  p r o c e d u r e ,  s a v i n g  t h e  a d d r e s s  of t h e  t h e  
c a l l i n g  i n s t r u c t i o n  i n  t h e  main program. Once t h e  c a l l e d  
p r o c e d u r e  h a s  f i n i s h e d ,  t h e  p r o c e s s o r  r e t u r n s  t o  t h e  
s t a t e m e n t  i n  t h e  maih program f o l l o w i n g  t h e  p r o c e d u r e  c a l l  
and  resumes p r o c e s s i n g  of t h e  main program. 

b e g i n  . . . . 
end ; 

Q u i t e  a p a r t  from code s a v i n g ,  p r o c e d u r e s  a r e  a  u s e f u l  way of 
s t r u c t u r i n g  a program, and may be used  even  when t h e  
p r o c e d u r e  i s  c a l l e d  o n l y  once.  I n  a  b l o c k  s t r u c t u r e d  
l a n g u a g e  such  a s  PASCAL, v a r i a b l e s  d e c l a r e d  w i t h i n  a  
p r o c e d u r e  a r e  c o m p l e t e l y  l o c a l  t o  t h a t  p r o c e d u r e ,  and c a n n o t  
i n t e r f e r e  w i t h  t h e  o p e r a t i o n  of a  p r o c e d u r e  t h a t  i s  
s e p a r a t e l y  d e c l a r e d .  ( P r o c e d u r e s  s t i l l  have  a c c e s s  t o  t h e  
v a r i a b l e s  o f  t h e  program o r  p r o c e d u r e  t h a t  c o n t a i n s  them, s o  
t h i s  h a s  t o  be c a r e f u l l y  c o n t r o l l e d * )  

- 

Most programming l a n g u a g e s  a l l o w  a  program t o  make u s e  of 
p r o c e d u r e s  d e f i n e d  elsefwhere i n  t h e  sys t em,  p e r h a p s  i n  
a n o t h e r  program module. ' such p r o c e d u r e s  a r e  d e c l a r e d  w i t h i n  
t h e  program b l o c k  which i s  t o  u s e  them by some -form of 
EXTERNAL d e c l a r a t i o n :  

p r o c e d u r e  s e l e c t  ( a  : i n t e g e r ;  b : r e a l ) ;  e x t e r n a l ;  
i 

The s t a n d a r d  model f o r  a  program b l o c k  ( s e c t i o n  4.9) shou ld  
t h e r e f o r e  be  expanded a s  follow$,:  

TYPE DECLARATIONS 

VARIABLE DECLARATIONS 

EXTERNAL DECLARATIONS 

PROCEDURE STATEMENTS 
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4.10.1 Parameter Passing 

There are two distinct ways of passing parameters to a 
procedure or function. Passing by value will simply cause 
the value of the actual parameter to be found and assigned 
to a new storage location in the procedure or function. Any 
changes made to the formal parameter variable in the 
procedure will have no effect on the actual parameter 
variable in the calling program. In fact, actual parameters 
passed by value can be arbitrary expressions (of appropriate 

test ( 5 % ~  t 2 j  

Passing by variable reference (sometimes called "passing by 
location") transfers not a value. but the address of the 
actual parameter variable in the calling program. 
Operations in the procedure are performed using the actual 
varia6Te -in the calling- program, not a local copy. ResuIts 
can therefore be returned from the procedure to the calling 
program (by assigning a new value to a parameter). However, 
the call to "test" above would be illegal in this case as 
the actual parameter must be a variable. 

A simple procedure will illustrate the difference: 

Declaration: 

procedure modify (x : integer),; 
beein - 
x : = 2 * x  
end 
-9 

Call : 

modify (a) 

If "xff is passed by value, there will be no effect on "a". 
If "x" is passed by variable reference, "a" will be doubled 
by the call to modify. However, a call such as "modify 
(5*a)" would be illegal. The differences are summarised in 
Table 4-1. 
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Allows expression as 
actual parameter 

Allows variable as 
actual parameter 

Modifies value of actual 
parameter variable in 
calling program 
(ie returns results) 

METHOD OF PARAMETER PASSING 

VALUE VARIABLE 
REFERENCE 

Table 4-1 Methods of Parameter Passing 

When writing a procedure or function, it is important to be 
clear about the method of parameter passing, If a value is 
to be returned, variable reference must be used, If not, 
value passing gives additional security against accidental 
modification of the calling program's data. 

Some programming languages provide only one method of 
parameter passing, or determine the method required from the 
context, But problems can arise: in some versions of 
FORTRAN it's possible to change the value of a constant by a 
call such as "modify (5)".  Strongly typed languages avoid 
such anomalies by checking the correspondence of parameter 
declarations and calls, 

Most modern languages allow the programmer to choose the 
method of passing for each individual parameter. In the 
design language, parameters to be passed by variable 
reference should be identified in the procedure declaration 
by the prefix "var": - 

procedure example (var - x : integer; y : real); 

All other parameters are assumed to be passed by value, In 
the above, "x" is passed by variable reference and "y" by 
value. 

4,11 REAL TIME SOFTWARE 

Much of what has been described so far applies to sequential 
software. An algorithm is a sequential construct, 
representing a single thread of logic designed to perform a 
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p a r t i c u l a r  f u n c t i o n ,  

But p u r e l y  s e q u e n t i a l  sy s t ems  a r e  of l i m i t e d  u s e  i n  a  
p a r a l l e l  wor ld .  I n  r e a l  l i f e ,  many t h i n g s  a r e  happen ing  
s i m u l t a n e o u s l y ,  % i c r = p r = c e s s o r  a p p l i c a t i c f i s  ifi part-culhr 

o f t e n  need t o  be  aware  o f ,  and t o  c o n t r o l ,  s e v e r a l  t h i n g s  
t h a t  d o n ' t  have  a  s i m p l e ,  o n e- a f t e r- t h e- o t h e r  r e l a t i o n s h i p  
i n  t i m e .  A sy s t em c o n t r o l l i n g  a n  i n d u s t r i a l  p r o c e s s  nay  
need  t o  m o n i t o r  s e v e r a l  d i f f e r e n t  t e m p e r a t u r e s ,  p r e s s u r e s  
and  f l o w  r a t e s ,  and t a k e  a p p r o p r i a t e  a c t i o n  t o  c o n t r o l  t h e  
p r o c e s s .  It may need t o  open and c l o s e  v a l v e s  and s t a r t  
pumps i n  a  p r e d e t e r m i n e d  sequence .  And i t  may need t o  
r e spond  t o  commands from a n  o p e r a t o r ,  which can  come a t  any 
t i m e  . 
A microptocessor wrll - - - L - L ~  p L V U Q U ~ y  have the c a p a c i t y  t o  do a T l  

t h i s .  The problem l i e s  i n  o r g a n i z i n g  i t s  t ime  and o t h e r  
r e s o u r c e s  s o  t h a t  e v e r y t h i n g  g e t s  done when i t  i s  r e q u i r e d .  
A g e n e r a l  s o l u t i o n  t o  t h i s  problem r e q u i r e s  someth ing  more 
t h a n  t h e  s e q u e n t i a l  m o d u l a r i t y  d e s c r i b e d  above. What i s  
r e q u i r e d  i s  a m o d u l a r i t y  based  on a p p l i c a t i o n  f u n c t i o n ,  t h a t  
comprehends b o t h  t h e  s e q u e n t i a l  and p a r a l l e l  n a t u r e  of t h e  
wor ld .  

A p r o c e d u r e  c a l l  i s  a  s e q u e n t i a l  mechanism: t h e  c a l l i n g  
program suspends  e x e c u t i o n  u n t i l  t h e  p r o c e d u r e  h a s  
comple ted .  But r e a l  t ime  a p p l i c a t i o n s  do n o t  s p l i t  e a s i l y  
i n t o  PROCEDURES and FUNCTIONS w i t h  a  s i m p l e  s e q u e n t i a l  
r e l a t i o n s h i p .  Squeez ing  such  a p p l i c a t i o n s  i n t o  a  s e q u e n t i a l  
package  means a  d e p a r t u r e  f rom n a t u r a l  program m o d u l a r i t y ,  
and u s u a l l y  r e s u l t s  i n  " b r i t t l e "  d e s i g n s  which a i e  d i f f i c u l t  

1 

t o  t e s t  and may be u n r e l i a b l e  i n  o p e r a t i o n .  

It would be  much e a s i e r  t o  d e f i n e  i n d i v i d u a l  t a s k s  t o  be 
per formed a s  s e p a r a t e  program b l o c k s ,  which c o u l d  be 
c o n s i d e r e d  t o  be e x e c u t i n g  a t  t h e  same t i m e .  Concurrency 
p e r m i t s  t h i s .  S e p a r a t e  t a s k s  can  be w r i t t e n  a s  i n d i v i d u a l  
p r o c e s s e s .  When t h e  sys t em i s  e x e c u t i n g ,  p r o c e s s o r  t ime  and 
o t h e r  r e s o u r c e s  w i l l  be  s h a r e d  o u t  a u t o m a t i c a l l y  between t h e  
p r o c e s s e s  a c c o r d i n g  t o  demand and p r i o r i t i e s  s e t  by t h e  
d e s i g n e r .  T h i s  s h a r i n g  o u t  of p r o c e s s o r  t i m e  i s  known a s  
s c h e d u l i n g .  

Each p r o c e s s  i s  a  s e p a r a t e  s e q u e n t i a l  b l o c k  which can  be  
w r i t t e n  s e p a r a t e l y  from t h e  o t h e r  p r o c e s s e s .  P r o c e s s e s  c a n  
s i g n a l  t o  e a c h  o t h e r  and exchange  messages  t o  c o o r d i n a t e  t h e  
o p e r a t i o n  of t h e  sys tem.  

A b r i e f  d e s c r i p t i o n  of semaphores ,  e x e c u t i v e s  and i n t e r r u p t s  
i s  g i v e n  h e r e .  Concurrency  and i t s  i m p l e m e n t a t i o n  i s  
d e s c r i b e d  i n  more d e t a i l  i n  t h e  f o l l o w i n g  c h a p t e r .  
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4.11.1 Semaphores 

A semaphore is a signalling mechanism that represents an 
explicit event, It can be used for signalling between 
individual processes, and between processes and the external 
world. 

Semaphores can indicate the occurrence of any kind of event 
that is of importance to more than one process in a system, 
A semaphore may indicate an external event - eg 
"character received" from a terminal device - or an event 
purely internal to the software of the system - eg 
"text huf fer full". - - 
There are two primitive operations that can be performed by 
a process on a semaphore - signal and wait. A process that 
completes an event signals the appropriate semaphore; the 
semaphore "remembers" that the event has taken place. 
Another process can execute a wait operation on the 
semaphore, which means that it will be suspended until the 
semaphore is signalled from somewhere else. (If the 
semaphore has already been signalled, the waiting process 
will be released immediately and can continue.) Thus a 
semaphore is a simple signalling mechanism, mutually 
understood by two or more processes: 

Process # 1  Process 82  

a a 

for i := 1 to bufsize do • 

begin 
wait (char-received); wait(buffer-full); 

/ r e a d c h a r  (a) ; process-buffer; 
char- buffer [i] := a 
received end ; 

signal (buffer-full); • 

Figure 4-19 Semaphore Signalling 
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A process can synchronize its operation on an event taking 
place anywhere else in the system. A semaphore is a very 
simple signalling mechanism that conveys only that some 
event (mutually understood by signaller and waiter) has 
taken place, 

The most useful type of semaphore is a counting semaphore, 
which will count and store the number of times it has been 
signalled if several signals have been received without a 
wait, A counting semaphore will also establish a queue of 
- 

waiting processes if more than one wait is received without 
a signal, Thus semaphores can provide a degree of 
flexibility in a system, to cope with temporary "peaks" and 
"troughs1'. 

The implementation of a semaphore must ensure that a process 
can complete its signal or wait operation without being 
interrupted by another process, so that the semaphore does 
not become corrupted, 

Semaphores can be used to construct more powerful 
communication and synchronization mechanisms between 
processes, that allow for the exchange of messages as well 
as signalling the occurence of an event, Such mechanisms 
are discussed in Chapter 5, Component Software, and in the 
Microprocessor Pascal System User's Manual. 

4.11,2 Executives 

Because the processor instruction set does not directly 
implement concurrency and semaphores, a set of software 
routines executing on top of the bare' machine are required 
to provide these facilities, This set of routines is known 
as an executive. 

A "bare" software system can be written to run on a 
processor without an executive. This was often done in the 
early days of microprocessors, However, a standard 
executive makes things considerably easier and can provide 
services such as concurrency and standard management of 
interrupts and 1/0 (see below), An executive tailored to 
the needs of a microprocessor need not be large: Texas 
Instruments' Realtime Executive can be configured down to a 
size of 3K bytes, 

4.11.3 Interrupts 

There are two ways that a processor can become aware of 
something that is happening in the external world, One is 
to execute a software instruction at a particular point in a 
software algorithm to read or test an external input, This 
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t e c h n i q u e  i s  c a l l e d  p o l l i n g ,  U n t i l  t h e  a p p r o p r i a t e  
i n s t r u c t i o n  i s  e x e c u t e d ,  t h e  s o f t w a r e  i s  comple te ly  unaware 
o f  t h e  c u r r e n t  v a l u e  of t h a t  i n p u t  ( i t  may have s t o r e d  t h e  
v a l u e  r ead  l a s t  t i m e  t h a t  i n p u t  was p o l l e d ) .  

The o t h e r  t e c h n i q u e  i s  t o  connect  a  s i g n a l  i n  hardware s o  
t h a t  i t  immedia te ly  i n t e r r u p t s  t h e  p r o c e s s o r  when a  c e r t a i n  
c o n d i t i o n  o c c u r s  ( d e f i n e d  by e x t e r n a l  hardware) .  When t h e  
p r o c e s s o r  r e c e i v e s  a n  i n t e r r u p t ,  i t  w i l l  c a r r y  o u t  a  
c o n t e x t  s w i t c h  t o  comple te ly  save  wha teve r  i t  was doing  a t  
t h e  t ime t h e  i n t e r r u p t  was r e c e i v e d ,  and w i l l  t h e n  e x e c u t e  
a n  i n t e r r u p t  s e r v i c e  r o u t i n e .  (The hardware  mechanism 
implemented on t h e  9900 and 99000 m i c r o p r o c e s s o r s  f o r  
i n t e r r u p t s  and c o n t e x t  s w i t c h e s  i s  d e s c r i b e d  i n  Chapter  8). 
I n  a  sys tem c o n t a i n i n g  a n  e x e c u t i v e ,  t h e  i n t e r r u p t  s e r v i c e  
r o u t i n e  w i l l  p robab ly  s i g n a l  a  semaphore a s s o c i a t e d  w i t h  t h e  
i n t e r r u p t  r e c e i v e d ,  and c a u s e  a  r e s c h e d u l i n g  o p e r a t i o n .  
T I 'S  Rea l t ime  E x e c u t i v e  i s  e v e n t  d r i v e n :  t h a t  i s ,  o c c u r r e n c e  
o f  a n  e x t e r n a l  e v e n t  ( a n  i n t e r r u p t )  w i l l  c ause  t h e  p r o c e s s o r  
t o  immedia te ly  r e s c h e d u l e  i t s  o p e r a t i o n s  t o  d e a l  w i t h  t h e  
e v e n t ,  The e v e n t  may cause  a  p r o c e s s  t h a t  h a s  been 
suspended on t h e  i n t e r r u p t  semaphore t o  r e a c t i v a t e ,  and t h i s  
i n  t u r n  may s i g n a l  o t h e r  p r o c e s s e s ,  s o  t h a t  an e x t e r n a l  
e v e n t  may p r o p a g a t e  a  c h a i n  of a c t i v i t y  throughout  t h e  
sys tem.  

Event  d r i v e n  s c h e d u l i n g  i s  what i s  r e q u i r e d  i n  r e a l  t i m e  and 
c o n t r o l  s i t u a t i o n s ,  a s  i t  p r o v i d e s  immediate  r e sponse  t o  
e x t e r n a l  happenings .  The hardware i n t e r r u p t  p r i o r i t y  scheme 
may be used t o  p r i o r i t i s e  t h e  r e s p o n s e  t o  d i f f e r e n t  e x t e r n a l  
e v e n t s ,  i f  more t h a n  one o c c u r s  a t  once,  The e x e c u t i v e  
p r o v i d e s  a  s t a n d a r d  means of managing and c o n t r o l l i n g  
i n t e r r u p t s ,  s o  t h a t  s y n c h r o n i z a t i o n  w i t h  e x t e r n a l  e v e n t s  i s  
h a n d l e d  i n  t h e  same s t a n d a r d  way a s  s y n c h r o n i z a t i o n  w i t h  
i n t e r n a l  p r o c e s s e s ,  It i s  a l s o  p o s s i b l e  t o  w r i t e  i n t e r r u p t  
s e r v i c e  r o u t i n e s  t h a t  e x e c u t e  o u t s i d e  t h e  e x e c u t i v e  
env i ronmen t ,  s o  t h a t  v e r y  f a s t  r e s p o n s e  can  be provided  f o r  
t h o s e  s i g n a l s  which r e q u i r e  i t ,  w i t h o u t  i n v o l v i n g  t h e  
e x e c u t i v e  o r  o t h e r  p r o c e s s e s .  
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4.12, MAKING TEA 

The tea making algorithm (Figure 4-2) can be updated to run 
in a real time environment: 

begin 
fill - kettle; 
put - kettle on; - 
put teain teapot; 
wait (kettie - boiling) ; 
C f  1 1  C,.A...AC. 
1111 L C a p V L )  

delay (5*60*1000) ; 
for number := 1 to cups required do - - - - 

pourcup 
end 
7 

Figure 4-20 Real Time Algorithm 

"kettle boilingf1 is now a semaphore, and the process 
containTng this algorithm performs a "wait1' on it. The 
semaphore will be signalled, and the process will be 
revived, by the external event of the kettle boiling. (A 
steam sensor will probably be wired up to generate an 
interrupt to the *.processor, which will signal the 
semaphore), While this process is suspended, other 
processes can be executed. If this is really a domestic 
robot, it might have a table laying or washing up algorithm 
which could be carried out. Similarly, a concurrent system 
is likely to include a standard delay routine which will 
suspend the process for the required time. The parameter 
for this routine is assumed to be the number of milliseconds 
delay required. The other operations (eg fill - kettle) can 
be declared as procedures. 

This algorithm now conforms to standard Pascal syntax and 
can actually be compiled (omitting the underlines, which 
Pascal does not require), Figure 4-21 shows the compilation 
listing which was obtained from the Microprocessor Pascal 
System. "fill kettle" etc are declared as EXTERNAL 
procedures, to ?;e defined elsewhere, 
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DX Mic roprocesso r  P a s c a l  System Compiler  3.0 10/23/81  11:41:52 

0  PROGRAM make - t e a ;  
0  

VAR number, cups  r e q u i r e d  : i n t e g e r ;  
k e t t l e  - b o i l i n g  : semaphore; 

PROCEDURE f i l l  k e t t l e ;  EXTERNAL; 
PROCEDURE pu t  E e t  t l e  on;  EXTERNAL; 
PROCEDURE p u t t e a  i n t  eapo t ; EXTERNAL; 
PROCEDURE f  ili t eapoT; EXTERNAL ; 
PROCEDURE wait- (sema : semaphore);  EXTERNAL; 
PROCEDURE d e l a y  ( m i l l i s e c o n d s  : INTEGER); EXTERNAL; 
PROCEDURE pour - cup;  EXTERNAL; 

B E G I N  
f i l l  k e t t l e ;  
p u t  F e t t l e  on;  - - 
p u t  t e e  i n  t e a p o t ;  - - -  

! 104 
w a i t  ( k e t t l e  - b o i l i n g ) ;  
f i l l  t e a p o t ;  
d e l a y  (5*60*1000) ; 

7 FOR number := 1 TO cups  - r e q u i r e d  DO 
8 p o u r c u p  
8  END, 

F i g u r e  4-21 Compi la t ion  L i s t i n g  f o r  t h e  
Tea Making Algor i thm 

E r r o r  104 i s  d e s c r i b e d  i n  t h e  Mic roprocesso r  P a s c a l  System 
User ' s  Manual a s  ' ' i d e n t i f i e r  n o t  dec la red" .  The compi l e r  i s  
p o i n t i n g  o u t  t h a t  "put  t e e  i n  t e a p o t"  i s  m i s s p e l l e d .  T h i s  
must be c o r r e c t e d  i n  t F e  f T n a i  s o f t w a r e  des ign .  A c o r r e c t e d  
c o m p i l a t i o n ,  w i t h  t h e  "(* MAP *)" o p t i o n  s e t  t o  show t h e  
a c t u a l  v a r i a b l e  s t o r a g e  a l l o c a t e d  f o r  t h e  module, i s  
d i s p l a y e d  i n  F i g u r e  4-22, 

F i g u r e  4-23 shows t h e  r e v e r s e  assembled  TMS9900 o b j e c t  code 
t h a t  was o u t p u t  from t h e  compi l e r ,  With a  l i t t l e  more work, 
t h i s  module cou ld  form p a r t  of a  r e a l  sys tem,  
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DX M i c r o p r o c e s s o r  Pascal S y s t e m  C o m p i l e r  3.0 10/23/81 11:31: 7 
0 (* MAP *) 
0 PROGRAM m a k e  - tea ;  
0 
0 rr A n v n n  n u m b e r ,  cups  r e q u i r e d  : i n t e g e r ;  
4 k e t t l e  - b o i l i n g  : s e m a p h o r e ;  
6 
0 PROCEDURE f i l l  k e t t l e ;  EXTERNAL;  
0 PROCEDURE p u t  Fe t t l e  on ; EXTERNAL ; 
0 PROCEDURE p u t t e a  i n t  eapo t ; EXTERNAL;  
o PROCEDURE f i lT  teapot;  EXTERNAL; 
0 PROCEDURE w a i t- ( s e m a  : s e m a p h o r e ) ;  EXTERNAL; 
0 PROCEDURE de lay  ( m i l l i s e c o n d s  : I N T E G E R ) ;  EXTERNAL; 
0 PROCEDURE pour - cup; EXTERNAL; 
0 
1 

-- -- -- 
B E G I N  

1 f i l l  k e t t l e ;  
2 pu t  Fe t t le  on; 
3 * p u t t e a  i n t e a p o t  ; 
4 w a i t  (kgt t i e  - b o i l i n g )  ; 
5 fill t e a p o t ;  
6 delay (5*60*1000); 
7 FOR n u m b e r  := 1 TO cups - r e q u i r e d  DO 
8 p o u r c u p  
8 END. 

PROGRAM MAKE T E A ;  
STACK SIZE = 0006 

V A R I A B L E  D I S P  T Y P E  S I Z E  
NUMBER 0,o 0 0 I N T E G E R  2 
C U P S  REQ 0 0 0 2  I N T E G E R  2 
KETT~TE - B 0 0 0 4  SEMAPHORE 2 

PROCEDURE F I L L  - K E T ;  EXTERNAL; 

PROCEDURE P U T  - K E T T ;  EXTERNAL; 

PROCEDURE P U T  T E A  ; EXTERNAL; - - 
PROCEDURE F I L L  - T E A ;  EXTERNAL;  

PROCEDURE W A I T  ( SEMA :SEMAPHORE) ;  EXTERNAL;  

PROCEDURE DELAY ( M 1 L L I S E C : I N T E G E R ) ;  EXTERNAL;  

PROCEDURE POUR - C U P ;  EXTERNAL; 

MODULE - MAKE T E A  
R 1 5  - CONTXINS VALUE O F  LOCAL V A R I A B L E  AT D I S P L A C E M E N T  0006 
R 1 4  - C O N T A I N S  VALUE O F  LOCAL V A R I A B L E  AT D I S P L A C E M E N T  0008 

* L I T E R A L  CODE LENGTH = OOOE, TOTAL CODE LENGTH = 0060 

F i g u r e  4- 2 2  C o r r e c t e d  C o m p i l a t i o n  L i s t i n g  
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IDT 'MAKE - TEA' 

PSEG 
EQU $ 
EQU 7 R7 
EQU 8 R8 
EQU 9 R9 
EQU 10 R10 
EQU $ 
DATA LOOOE-LO 
DATA L0054-LO 
DATA >0000 
DATA >0000 
DATA >0006 
DATA >0001 
DATA >93EO 

EQU $ 
MOV @D0008-LO(CODE),*Sp+ 
MOV @DOOOA-LO(CODE),*SP+ 
SET0 *SP+ 
CLR *SP+ 
CLR *SP+ 
DATA CALL$,S$PRCS 
DATA CALL$,FILL K 
DATA CALL$ ,PUT ZE 
DATA CALLS, PUT-TE 
MOV @>ooo~(LF~,*sP+ 
DATA CALL$,WAIT 
DATA CALL$ ,FILL T 
MOV @DOOOC-LO(EODE), *SP+ 
DATA CALL$,DELAY 
LI R15,>0001 
MOV @>0002(~~),~14 
EQU $ 
C R15,R14 
JGT LO054 
DATA CALL$,POUR - C 
INC R15 

DEF 
REF 
REF 
REF 
REF 
REF 
REF 
REF 
REF 
REF 
REF 
REF 

SYSTMS 
FILL K 
PUT XE 
PUT-TE 
FILE T 
WAIT- 
DELAY 
POUR C 
SSPR~S 
ESPRCS 
CALL$ 
EXIT$P 

SYSTMS 
PR 
CODE 
LF 
SP 
LO 

DO008 
DOOOA 
DOOOC 
* 
LOOOE 

SOFTWARE DESIGN 

LC HEX CHAR 

0004 
0006 
0008 
OOOA 
OOOC 
LC 

OOOE 
00 12 
00 16 
0018 
OOlA 
OOlC 
0020 
0024 
0028 
002C 
0030 
0034 
0038 
003C 
0040 
0044 

0048 
004A 
004C 
0050 

CEA8 0008 
CEA8 OOOA 
07 3A 
04FA 
04FA 

CEA8 OOOC 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK 

JMP LO048 
LO054 EQU $ 

MOV @DOOOA-LO(CODE),*SP+ 
DATA CALL$,E$PRCS 
B @ E X ~ S P  
END 

SOFTWARE DESIGN 

0054 CEA8 OOOA 
0058 
005C 0460 0000 

Figure 4-23 Reverse Assembled Object Code 
for the Tea Making Algorithm 
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CHAPTER 5 

COMPONENT SOFTWARE 

5.1  WHAT IS COMPONENT SOFTWARE ? 

Component Software is a means of packaging software to 
address what is perceived as the major problem of 
microsystems development for the next decade - the "software 
crisis". 

Studies have shown that up to 90% sf the development esst for 
a typical system using programmable hardware will be spent on 
software. Micraprocessor hardware is cheap, but software 
development is expensive, With software forming the major 
investment for users, it is vital to manage software 
development effectively, and to make the most effective use 
of scarce software skills, 

Where the product being developed is to be produced in large 
quantities (tens or hundreds of thousands), development &ost 
is not significant - divided by a hundred thousand it does 
not add much to the selling price, But for an increasing 
number of microprocessor products that will be sold only in 
tens, hundreds or thousands, development cost is all 
important. For a 100-off product a single man-month of 
software development (at around $6000) will add $60 to the 
cost of each product - before any profit, A typical project 
will involve at least 4-6 months of software development, 

Component Software is a way of providing packaged functions 
that are significantly more powerful than any currently 
available, either in software or in hardware, These 
functions consist of "encapsulated software" that can be 
purchased ready written and tested, and "plugged in" to a 
user's application, IJnlike conventional applications 
software, the Component Software environment allows packaging 
of real time functions that can execute either concurrently 
or in sequence with other functions in an application system, 
This capability overcomes most of the restrictions of 
sequential software for writing real time control systems, 
and many other types of application, The framework .ensures 
complete security of function packages, so that functions 
cannot interfere with one another, 

Because of the flexible packaging of Component Software, 
systems can be designed and constructed in terms of 
ngan iung f u 1 oriented functions, rather , a  than 
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abstract software routines. Many of these functions can be 
purchased off the shelf, or reused from previous systems. 

Component Software is the first step in a more radical 
approach to systems design using programmable components. 
Many functions first identified and packaged in this way will 
eventually be "canned" in silicon, as dedicated hardware 
functions. 

Component Software is supplied as libraries of software 
modules stored on magnetic media (such as floppy discs), 
together with full documentation. The packages are designed 
to be configurable in many different ways, to suit individual 
application needs. Configuration involves selecting the 
software modules required from the library supplied, and 
linking them together with the user's application program. 
This semi-automatic process gives the system designer a 
higher level of programming capability (he can manipulate 
complete functional blocks in a real time environment), 
supplementing already available software development tools. 

CONFIGURATION OF 
SOFTWARE COMPONENTS 

Figure 5-1 Configuration of Component Software Packages 
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Individual features of the package can be selected or left 
out, according to the needs of each application. Packages 
are designed to permit several levels of access - from a high 
level, trouble-free interface that requires minimum 
knowledge, to a low level interface that gives direct csntrol 
over the workings of the package, but requires greater 
expertise to use effectively. System designers can choose 
whichever level is most appropriate for each particular 
application, 

A typical Component Software package can be used in different 
ways in many different applications, A library of common 
application functions can be built up, which can supply 
component parts for new applications, Users can write their 
own Component Software packages - the Component Software 
Handbook, MP918, describes haw to do this. Texas Instruments 
(TI) encourages the production and sale of Component Software 
packages by other companies, 

It is expected that configuration from pre-compiled object 
modules will supply most application needs, but TI also 
supplies source code as standard for all routines, For those 
applications which require it, functions can be customised at 
the most detailed level using standard Microprocessor Pascal 
and/or assembly language development tools, 

5.1.1 The Functional Approach 

Component Software makes possible a functional, application- 
oriented approach to system design, First, an application is 
analysed into the individual functions that are to be 
performed. This functional analysis can be done in whatever 
way is naturally appropriate for the application, Next, the 
requirements for each fgnctioa, and the -interaction between 
the separate functions, are unambiguously specified, A 
precise algorithmic description of the operation of each 
function will lead straightforwardly to a high level language 
software implementation (which can he optimised in assembly 
language if required). The structure of Component Software 
means that separately developed, concurrent functions can be 
connected together simply and with confidence. Testing can 
he carried out on each function individually, and on the 
system as a whole. Finally a choice of hardware can be made, 
from a range of options, to provide the required cost, 
performance and environmental suitability, 

Traditional forms of system design rarely start with the 
application - they usually require choosing a hardware 
configuration, often with barely adequate information, at the 
start; and then building up software on top of this to adapt 
the hardware to the application requirements. 
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Figure 5-2 The Traditional Approach 

Bridging the gap between the chosen microprocessor hardware 
and application requirements usually involves major design 
effort, with skills that are rare. In addition, the design 
produced is likely to be "brittle1' rather than flexible, 
because built into it are assumptions about a particular type 
of hardware and a particular set of application requirements. 
Incorporating new hardware or new requirements usually means 
major redesign of both hardware and software, and consequent 
problems of testing and reliability. 

The functional approach places few arbitrary restrictions on 
the development process. Both the software algorithms (which 
determine how an application functions) and the hardware 
(which determines price and performance) can be varied 
independently, with minimal effect on the rest of the design. 
The constructs of Component Software are sufficiently 
flexible that systems can be structured according to the 
nature of the application, whatever it is, rather than being 
shaped by the necessities of the technology. Systems built 
like this are both more responsive to application 
requirements in the first place, and easier to change if the 
requirements alter. 
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Figure 5-3 TI Functional Architecture 

How to divide an application into functional parts for 
separate development may be immediately obvious from the 
nature of the application; or functional "packages" may be 
chosen according to the division of available engineering 
resource to implement them. Packages may also: Be chosen to 
encapsulate areas of a system which may be reused, or areas 
which are likely to change. In any case, the ability to 
encapsulate real time functions (which may have a concurrent 
structure - see below) can be used to advantage. 
Systems can be upgraded incrementally ,by changing or 
replacing separately developed functions. The Component 
Software environment ensures that separate functions are 
enclosed, so that changes will have no effect on other parts 
of the system. 

I %,:Am- V l U W  Process 

TI'S microprocessor hardware provides a wide range of price, 
performance and environment options (available either as 
individual LSI and VLSI components, or in a range of 
prepackaged board modules), all with a common software 
interface. The 9900/99000 instruction set defines a low 
level standard interface; the Realtime Executive (Rx) defines 
a standard at a higher level of capability - the Software 
Function Bus - that incorporates concurrency, standard 
management of system resources, and all the features required 
to implement Component Software. Versions of Rx will be 
available to adapt the standard software interface to 
multiple processors and various types of memory 
configuration. 
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The functional. approach can be seen as a generalisation of 
the "Top Down" and "Structured Programming" approaches which 
have been successful in achieving reliable software design. 
Here, the approach is applied to system design, in particular 
to the design of real time systems, 

5.1.2 Function to Function Architecture 

The functional approach of Component Software forms part of a 
broader architectural scheme called Function-to-Function 
Architecture, which integrates both hardware and software in 
the service of useful functions, Function-to-Function 
Architecture (FFA) defines a standard interconnect mechanism 
between complex functions, however they are implemented - in 
hardware, software, or a combination of both, It makes 
possible early definition and implementation of functions in 
the flexible medium of Component Software, Once the 
usefulness and reliability of a function has been proved, it 
can be migrated to progressively "harder" implementations. 
Those functions which justify it will eventually end up as 
custom VLSI silicon chips, The standard interconnect 
mechanism means that systems will be upgraded gradually by 
replacing individual functions to give improved cost, 
performance or features, without having to redesign the whole 
system, 
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5.2 THE COMPONENT SOFTWARE ENVIRONMENT 

The Component Software Handbook, from which this chapter is 
extracted, gives further information on the construction and 
use of Component Software packages, and precise terminology. 
This section provides an everview of the Component Software 
environment. Terms such as "function", "program" etc are 
used here in a general rather than a specific technical 
sense, except where capitalised. 

5.2.1 Concurrency 

Component Software supports concurrency - i.e. simultaneous 
execution of a number of different software programs. 

Conventional programming environments only allow the user to 
run one program at a time. However, a typical microprocessor 
system may be required to perform a number of different 
functions at once. 

Sensor monitoring 

Motor control 

0 Display/operator interface 

Concurrent program 
'parallel' execution 

CONCURRENCY 

Figure 5-4 Concurrency 
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For example, 2 system controlling a group of manufacturing 
machines may be required to monitor and control each machine, 
continuously check safety conditions, select and record 
information for costing each job as it appears, and still to 
respond immediately to commands from its operator, 

Reducing all of this to one sequential list of instructions 
(a conventional program) is a very difficult task. The 
result (if it turned out to be possible) would be a very 
convoluted program that breaks off in the middle of doing one 
thing to perform another, halts that to carry out a third, 
and so on. Such programs are difficult to understand and 
awkward to maintain. They are also nearly impossible to 
test, 

Conventional software is built on the assumption that 
functions will be executed one at a time, in sequence, Each 
function must start, execute and terminate before another 
function can begin. 

But the real world does not always (or even usually) behave 
like this. A typical real time application system will need 
to do several things "at once". Even though each individual 
task may only require periodic attention, the system must 
keep track of everything that is going on, carry out each 
task when it is required, and must also respond immediately 
and correctly if an unexpected event occurs, A control 
function, for example, may need to check the status of a 
machine or a chemical process continuously over a period of 
hours, However, the check may only require a small 
calculation every half second (say), 

To dedicate a complete processor to this function would be 
wasteful; yet conventional application software provides no 
standard means of using the processor to perform another 
function in the meantime, while ensuring that the check gets 
made every half second, and that the two functions do not 
interfere. 

Demands on the system may occur not only at fixed time 
intervals: from the system's point of view, it is completely 
impossible to predict when an operator is going to press a 
button, or when a temperature will exceed a safe margin - but 
it is important to respond quickly and reliably, and without 
disrupting the operation of the rest of the system, 

For a specific application, it may be possible to solve these 
problems in a sequential program. However, to do so would 
require a great deal of effort, and would result in an ad hoc 
solution, very specific to one application. With software 
constructed in this way, it is not unknown for an apparently 
simple change in the specification (say, the need to check 
the status of a machine every quarter second rather than half 
second) to require a complete redesign of the system, 
Additional problems arise when trying to test such systems. 
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What is needed is a standard framework in which this class of 
problem is handled autsnat5cally, The system designer can 
then specify and write each individual function separately, 
and evaluate and test it independently, Applications can be 
built up by selecting the required functions and linking them 
together (semi-automatically) to construct a complete system 
- analogous to the process of connecting together ICs using a 
printed circuit board, This standard framework is provided 
by Component Software, 

In the Component Software environment, functions are 
considered to be independent, and may have a sequential 
and/or a concurrent relationship with other functions, The 
designer may specify that one function must wait for another 
function to complete before it executes, but (unlike 
conventional software environments) he can also specify that 
the two functions should take place concurrently. For 
example, a user's program can initiate an 1/0 request (such 
as a read from floppy disc), but need not wait for it to 
complete before going on to do something else. The system 
will automatically complete the transfer, taking care of the 
hardware timings and delays sf t h e  floppy disc controller azd 
the necessary format conversions, in a way that is completely 
transparent to the rest of the software, 

Explicit support for concurrency is an important element in 
the framework, It makes possible the construction of systems 
which perform real tasks, easily, cheaply and reliably, and 
permits software to be structured in a natural way that 
reflects the real world, It allows a functional approach (as 
outlined above) to be applied to software - because the 
natural analysis of an application will rarely re~ult in 
functions that have a simple sequential relationship. 

5.2,l.l Packaged Functions 

Software libraries have existed before, but they have 
generally been libraries of routines that only execute 
sequentially, There is a limit to the type of function that 
can be placed in a purely sequential package, 

Sequential software is well suited to a restricted class of 
operations - those operations that can be specified by a 
single list of instructions. Unfortunately, by no means all 
of the tasks to be performed in the real world can be 
specified as simply as this. Microprocessors, by virtue of 
their cheapness and effectiveness, are required to perform a 
wide variety of tasks which mainframe computers were never 
called upon to do. Consequently, a more powerful medium is 
needed to program them effectively - a framework which 
incorporates concurrency. 

A "package" such as a process control function looks quite 
different from a sequential software routine. The package 
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may include a piece cf code to be executed automatically 
every (say) half second, plus some routines callable by a 
user's program to set up and change the control parameters, 
obtain status information etc; and maybe some logging 
routines, again executed automatically at fixed intervals, to 
record selected data regularly on disc. The package contains 
a number of functions which must be executed at different 
times and in different ways - some automatically .at fixed 
time intervals, some on demand from the user's application 
program (perhaps halting the flow of the user's program while 
they execute, and perhaps not), and some on detecting a 
particular out-of-range condition (say). 

& 

Component Software is designed to accomodate such complex 
"packages" as this. Using the basic constructs provided by 
the Software Function Bus, algorithms written in a high level 
programming language (or in assembly language) can be 
combined in a variety of sequential and concurrent 
relationships to build a complete package implementing, say, 
a file manager or a machine controller. The simplicity of 
the basic constructs means that parts of any package can be 
isolated and tested independently, using interactive 
debugging tools. 

The complete package (or such parts of it as are required) 
can be incorporated in a larger system easily and quickly, 
with the knowledge that it will not interfere with any other 
function in the system. 

5.2.1.2 Implementation of Concurrency 

Functions which execute concurrently can be regarded as 
taking place independently and simultaneously. Functional 
design, and the Component Software environment, makes no 
fundamental assumptions about how this concurrency is 
implemented. The "simultaneity" may involve two or more 
separate hardware processors, or may be simulated in software 
with a single processor. 

In a single processor environment, concurrency is implemented 
by switching the processor between the different functions to 
be performed, according to the demands of the system and 
priorities set by the user. This switching is called 
scheduling. More generally, scheduling can be regarded as 
the allocation of available system resources to the different 
functions competing for them. The statement that "a function 
is separately scheduled" means that it competes independently 
for system resources, according to priorities set by the 
system designer. In a Component Software system, the 
designer chooses which functions are actively independent, 
and hence need to be separately scheduled. Generally, 
functions which have independent timing requirements, or 
which take place over long periods of time, should be 
separately scheduled. 
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Functions which are not separately scheduled can be regarded 
as "passive

q

', and only execute when called on by an "active" 
function. The scheduling policy is designed to ensure that 
the task being performed by the processor is always the most 
urgent onei and in particular that external events (eg a 
signal from a device connected to the system) are responded 
to immediately. Scheduling is described in detail in the 
Microprocessor Pascal System User's Manual (MP351) and the 
Realtime Executive user's Manual (MP373), 

With a single processor, concurrency provides the advantages 
of increased clarity of system design (which means easier 
maintenance, testing and upgrade), functional packaging, and 
improved throughput (because the processor need never be 
idle, waiting say for a slow output device to respond - it 
can switch to performing some other function), Concurrency 
means that the system has some degree of dynamic flexibility: 
it can respond to changes in the demand for any function by 
reallocating resources from less urgent functions, 

With multiple processors, throughput will be further 
increased because there is more than one active processing 
element. Reliability may also be increased, because (with 
appropriate design) the whole system need not collapse if one 
processor fails. However, a multiple processor system is 
likely to be more expensive, It is intended that Component 
Software programs can be executed on the same processor or on 
a distributed network of processors, with minimal impact on 
the programs themselves or their interaction. The system 
designer will then choose the hardware to implement his 
functional design purely on the basis of cost and performance 
tradeoff s. Adding another processor, say, to increase 
throughput will no longer be a major design exercise. 
Currently, multiple processor systems can be built in which 
functions executing in different processors interact through 
file level messages across standard communication links (eg 
HDLC or EIA), Future versions of Rx will support more 
closely coupled multiple processor systems, 

5.2a1.3 Levels of Concurrency 

The Component Software environment permits concurrency not 
only between complete function packages, but within packages 
themselves, This means that a complex function, such as the 
HDLC Data Communications package, can be designed as a 
collection of subfunctions that may execute sequentially 
and/or concurrently. 

Typically, a users program will pass a data record to the 
HDLC subsystem, for transmission over the HDLC communications 
network. The HDLC subsystem then performs all the work 
needed to transmit the record to its destination. Within the 
HDLC package are a number of concurrent functions which 
manage the different levels of HDLC protocol, interact with 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE 

the physical data link, and check t h a t  receipt of correct 
data is acknqwledged within a specified time interval. If 
acknowledgement is not received, or if an error is signalled, 
the HDLC subsystem will retransmit the data. Efficient and 
reliable implementation of this kind of "intelligent" 
operation requires concurrency. The Component Software 
environment permits such an intelligent function to be 
encapsulated in a single package which has a simple interface 
with the users program (for example, it can be accessed 
through straightforward sequential procedure calls). 

The internal structure of such a function package is 
completely invisible to the user, unless he chooses to 
interact with the package at that level of detail. The 
package can be initialised automatically at power up, and 
will perform throughout as an'enclosed operation, complete in 
itself. 

5.2.2 Code, Data and Re-entrancy 

Component Software is designed to make efficient use of the 
memory space available in a microprocessor system, and to 
maintain strict separation between program code and data. 
Separation of code and data improves system integrity (making 
accidental modification of code less likely), makes possible 
re-entrancy (as described below), and permits easy 
partitioning into read only and readlwrite memory (ROM and 
RAM), which is often required in a microprocessor system. 

The fundamental unit of instruction code in a Component 
Software system is the routine. A routine is a sequence of 
processor instructions that performs a particular operation. 

Component Software provides a set of constructs that group 
routines together, define which routines will have access to 
which other routines, and determine how routines will 
interact (sequentially or concurrently). The Component 
Software Handbook describes the detailed structure of a 
Component Software package, and how to construct one. Within 
a separately compiled Component Software module (which will 
probably include several routines), the rules of scope define 
exactly which routines and which data structures are 
accessible at each point in the software. (See the 
Microprocessor Pascal System User's Manual for a complete 
discussion of scope,) Between modules, explicit EXTERNAL 
declarations in each module specify exactly what connections 
are to be permitted with other modules. 

The structure of a Component Software system is shown in 
figure 5-5. 
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Figure 5-5 SYSTEMS, PROGRAMs and PROCESSes 

For implementation as a Component Software package, 
application functions must be implemented as groups of 
PROGRAMS, PROCESSes, PROCEDURES, and FUNCTIONS. A SYSTEM is 
likely to contain a number of independent, separately 
scheduled PROGRAMS. However, a PROGRAM may also have a 
hierarchy of dependent PROCESSes - separately scheduled, but 
related. Strictly, the term PROGRAM applies only to the 
single, "top level" routine in the group. The complete 
structure of a PROGRAM with all subordinate PROCESSes (and 
PROCEDURES and FUNCTIONS - see below) is referred to as a 
PROGRAM family. Continuing the analogy, routines further up 
the hierarchical tree are referred to as "ancestors"; those 
lower down are "descendants". The PROGRAM family is a 
convenient package for a complete, independent function 
within a system. 

PROGRAMs and PROCESSes are independent routines which are 
separately scheduled; however the hierarchical relationship 
makes it possible to isolate and develop separately not only 
single routines, but also complete groups of concurrent 
routines implementing a complex function. 

PROGRAMs and PROCESSes are the "active" elements in a 
Component Software system. "Passive" routines can also be 
defined, which may be called on by an active PROGRAM or 
PROCESS to perform a specific function. These are PROCEDURES 
and FUNCTIONS. (NB "FUNCTION" capitalised has a precise 
technical meaning, as distinct from the more general use of 
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A PROCEDURE o r  FUNCTION neve r  competes d i r e c t l y  f o r  system 
r e s o u r c e s ;  i t  a lways  e x e c u t e s  under  t h e  wing of a  PROGRAM o r  
PROCESS, and p r o v i d e s  a  p a r t i c u l a r  " s k i l l "  t h a t  t h e  PROGRAM 
o r  PROCESS may need a t  t h e  t ime ,  PROCEDURES and FUNCTIONS 

c a n  be used t o  e n c a p s u l a t e  f u n c t i o n s  which a r e  s imple  enough 
n o t  t o  r e q u i r e  t h e  power of t h e  PROGRAM f a m i l y  c o n s t r u c t  t o  
implement them, 

Depending on where a  PROCEDURE o r  FUNCTION i s  d e f i n e d ,  i t  may 
be  a c c e s s i b l e  t o  some o r  a l l  of t h e  r o u t i n e s  i n  t h e  system, 
PROCEDURES and FUNCTIONS d e c l a r e d  a t  t h e  l e v e l  of t h e  SYSTEM 
a r e  a v a i l a b l e  t o  any r o u t i n e ,  They may a l s o  be d e c l a r e d  a t  
some p o i n t  i n  t h e  h i e r a r c h y  of a  PROGRAM f a m i l y ,  s o  t h a t  
a c c e s s  t o  t h e  PROCEDURE o r  FUNCTION i s  r e s t r i c t e d  t o  t h a t  
PROGRAM f a m i l y  o r  p a r t  of t h a t  f a m i l y ,  

The Mic roprocesso r  P a s c a l  System Use r ' s  Manual (MP351) and 
t h e  Rea l t ime  Execu t ive  User ' s  Manual ( M ~ 3 7 3 )  g i v e  more 
d e t a i l s  abou t  t h e  s t r u c t u r e  of Component Sof tware  sys tems.  

5.2.2.1 Memory A l l o c a t i o n  

B e f o r e  i t  i s  a c t i v a t e d ,  a  s o f t w a r e  sys tem i s  s imply  a  
c o l l e c t i o n  of dormant i n s t r u c t i o n  code ,  grouped i n t o  
r o u t i n e s ,  and p robab ly  s t o r e d  5n ROM, To per form any u s e f u l  
work, a  r o u t i n e  must be a c t i v a t e d  and a l l o c a t e d  d a t a  space  
w i t h  which t o  work, The s t o c k  of dormant r o u t i n e s  can be 
r e g a r d e d  a s  t h e  " r e p e r t o i r e "  of t h e  sys tem,  which i s  c a l l e d  
upon a s  needed,  The t a s k  of t h e  system d e s i g n e r  i s ,  f i r s t ,  
t o  e n s u r e  t h a t  t h e r e  a r e  a d e q u a t e  f u n c t i o n s  i n  t h e  
r e p e r t o i r e ;  s econd ,  t o  a c t i v a t e  them a s  needed t o  per form t h e  
t a s k  r e q u i r e d ,  When a  Component Sof tware  SYSTEM i s  powered 
up,  sys tem d a t a  s t r u c t u r e s  w i l l  be i n i t i a l i s e d ,  any 1 / 0  
subsys tems ( s e e  below) w i l l  be i n i t i a l i s e d ,  and any u s e r  
d e f i n e d  i n i t i a l i s a t i o n  w i l l  be per formed,  T y p i c a l l y ,  t h e  
PROGRAM(s) p r e s e n t  i n  t h e  SYSTEM w i l l  t h e n  be s t a r t e d ,  A l l  
a c t i o n  beyond t h i s  p o i n t  i s  dependent  on t h e  sys tem d e s i g n e r .  
He may 

1. d e s i g n  a sys tem t h a t  i s  a  s i n g l e  s e q u e n t i a l  PROGRAM 

2 .  u s e  two o r  more c o n c u r r e n t  PROGRAMS, each  of which 
i s  s e q u e n t i a l  

3 ,  w i t h i n  a  PROGRAM, s t a r t  more c o n c u r r e n t  PROCESSes t o  
c r e a t e  a  PROGRAM f a m i l y  

4 ,  i n c o r p o r a t e  Component Sof tware  packages ,  of which he 
h e  may o r  may n o t  know t h e  i n t e r n a l  s t r u c t u r e  
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Each c a l l  t o  s t a r t  a PROGRAM o r  PROCESS i s  s a i d  t o  a c t i v a t e  a  
new s i t e  of e x e c u t i o n  w i t h i n  t h e  sys tem,  which e x e c u t e s  
i n d e p e n d e n t l y  of e v e r y  o t h e r  s i t e  of e x e c u t i o n .  I n  t h e  
f o l l o w i n g  d i s c u s s i o n ,  what i s  s a i d  abou t  PROCESSes a p p l i e s  
a l s c  t~ PROGRAMS: a PROGRAM is a spec ia l  case of a " top  
l e v e l "  PROCESS, Whenever a  PROCESS i s  a c t i v a t e d ,  i t  i s  
a l l o c a t e d  by t h e  e x e c u t i v e  a n  a p p r o p r i a t e  amount of d a t a  
memory from a  poo l  (known a s  t h e  heap) .  T h i s  a l l o c a t e d  
memory i s  r e t u r n e d  t o  t h e  heap when t h e  PROCESS t e r m i n a t e s ,  
s o  t h a t  i t  can  be a l l o c a t e d  t o  o t h e r  PROCESSes, P r o c e s s o r  
t i m e  i s  a l l o c a t e d  t o  each  PROCESS a c c o r d i n g  t o  demand and t h e  
p r i o r i t y  g i v e n  t o  t h e  PROCESS when i t  was s t a r t e d ,  

PROCEDURES and FUNCTIONS t h a t  a r e  c a l l e d  by a  PROCESS borrow 
memory from t h a t  PROCESS'S a l l o c a t i o n ,  and u s e  p r o c e s s o r  t i m e  

4-- LU +I... L L ~ Q L  t E)WOCESSe The PROCESS gives its l?eSDtIrCP, t Q  

e x e c u t e  t h a t  PROCEDURE o r  FUNCTION, and canno t  do a n y t h i n g  
e l s e  u n t i l  i t  i s  complete .  Each PROGRAM o r  PROCESS can  be 
though t  of a s  a n  independen t ,  s i n g l e  " th read"  of l o g i c  w i t h i n  
t h e  sys tem,  w i t h  i t s  own t i m i n g  c h a r a c t e r i s t i c s  and s e p a r a t e  
e x i s t e n c e .  PROCEDURES and FUNCTIONS p r o v i d e  a  k i n d  of 
" s t o r e d  l o g i c"  t h a t  can be i n s e r t e d  i n  t h e  t h r e a d  of a 
PROGRAM o r  PROCESS a t  a n  a p p r o p r i a t e  t i m e .  PROCESSes may 
r e q u e s t  a d d i t i o n a l  memory from t h e  heap w h i l e  t h e y  a r e  
e x e c u t i n g .  

5.2.2.2 M u l t i p l e  A c t i v a t i o n s  

Because t h e  i n s t r u c t i o n  code f o r  a  PROCESS i s  comple te ly  
s e p a r a t e  from i t s  d a t a  s p a c e ,  and i s  neve r  changed,  i t  can  be 
a c t i v a t e d  more t h a n  once. For example, a  f a c t o r y  may c o p t a i n  
s e v e r a l  i d e n t i c a l  machines ,  a l l  c o n t r o l l e d  by one sys tem,  
The c o n t r o l  program f o r  each  machine i s  i d e n t i c a l ,  and ~ n l y  
one copy of t h e  i n s t r u c t i o n  code need e x i s t ,  However, 
s e v e r a l  a c t i v a t i o n s  of t h e  c o n t r o l  program may be p r e s e n t  a t  
t h e  same t ime ,  u s i n g  t h e  same i n s t r u c t i o n  code b u t  d i f f e r e n t  
d a t a  spaces .  There  w i l l  be no c o n f l i c t ,  The same a p p l i e s  t o  
PROCEDURES and FUNCTIONS: a s  t h e  d a t a  space  f o r  e x e c u t i n g  
any PROCEDURE o r  FUNCTION i s  a l l o c a t e d  from t h e  d a t a  s p a c e  of 
t h e  c a l l i n g  PROCESS, s e v e r a l  PROCESSes may c a l l  a  g e n e r a l  
pu rpose  PROCEDURE ( a  m a t r i x  m u l t i p l i c a t i o n  r o u t i n e ,  f o r  
example)  a t  t h e  same t i m e  w i t h o u t  problems. The r o u t i n e  code 
need on ly  e x i s t  once w i t h i n  t h e  system. Th i s  p r o p e r t y  of 
s o f t w a r e  i s  known a s  r e- en t rancy ,  

5.2.3 The Rea l t ime  Execu t ive  

The Rea l t ime  E x e c u t i v e  (Rx) i s  t h e  backbone and a r t e r y  of a  
Component Sof tware  sys tem;  i t  s u p p o r t s  t h e  o t h e r  f u n c t i o n s  
and p r o v i d e s  commonly needed s e r v i c e s ,  Wi th in  Rx a r e  t h e  
r o u t i n e s  t h a t  a l l o c a t e  sys tem r e s o u r c e s  ( p r o c e s s o r  t ime ,  
memory, I /O)  between t h e  d i f f e r e n t  PROCESSes, a c c o r d i n g  t o  
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demznd and priorities. Also within Rx are the standard 
procedures that allow one routine to call or start another* 
Finally, Rx contains the code that permits concurrent 
PROCESSes to synchronise their operation with other PROCESSes 
or external events, and allows PROCESSes to pass data to 
other PROCESSes. 

The most basic synchronisation is achieved using a low level 
software mechanism called a semaphore. A semaphore allows 
one PROCESS to signal occurrence of an event (eg - 
machine - operation - complete) to another, 

It is Rx which sets up the Component Software environment, 
and maintains it. Rx establishes a "Software Function Bus" - 
a standard, concurrent interface into which Component 
Software functions can be "plugged". 

5 . 2 . 3 , l  Channels and Interprocess Files 

Data communication between PROCESSes can take place over 
channels. A channel is simply a means of passing data from 
one PROCESS to another in a way which ensures that the 
integrity of the data is preserved (eg that one PROCESS does 
not try to read data until the other has finished writing 
it), and that the data is placed in an area of memory that 
will be accessible to both PROCESSes. Channels can also be 
used to provide a higher level of synchronisation. 

A further method of communication is the interprocess file 
mechanism. This allows a PROCESS to write to another PROCESS 
exactly as if it were writing to an input/output device, 
using the standard file 1/0 primitives (see below). 

The hierarchical system structure defines a clear 
relationship between the concurrent PROGRAMS and PROCESSes in 
a Component Software application, However, this may not be 
sufficient in all circumstances. The channel and 
interprocess file mechanisms allow any PROGRAM or PROCESS to 
connect to and exchange data with any other PROGRAM or 
PROCESS in the system (provided both "ends" prepare for and 
understand the exchange). These connections are made 
dynamically while the system is running. Connections of this 
kind can be "hard coded" into the routines when they are 
written, in which case they cannot be altered. However, it 
is also possible to write systems in which the connections 
can be modified at run time, either by an operator or by a 
piece of "intelligent" software , in response to changing 
requirements, or perhaps in response to failure of part of 
the system. With a system constructed using interprocess 
files, connections can be rerouted from a local PROCESS to an 
external device, or perhaps via a data link to a PROCESS in a 
completely different computer system. Requests for dynamic 
connections of this kind are made via executive routines 
which ensure that system integrity is preserved in making the 
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connection. 

5.2.3.2 Rx vs Operating Systems 

Many of the functions performed by the Realtime Executive 
(Rx) would be handled in a mainframe computer by an Operating 
System, Early computers suffered from the problems outlined 
above in the section on concurrency - namely, how to adapt a 
basically sequentially machine to a range of independent, 
probably simultaneous requirements. However, the scale of 
the problem for mainframe computers was different - requiring 
solutions to problems typically within hours or days rather 
than milliseconds. So human operators were introduced to 
share out the resources of "mainframett computers between 
different users ,  L a t e r ,  =oftware n n n ~ ~ t ; n m  

v,,La,Au, S y s t e m  (OSs)  
were designed to partially automate the process. 

For mainframe computers, the tasks of programming and 
operating the computer remained very separate, Separate 
disciplines evolved, and people were trained to perform one 
job or the other, 

A microsystem designer needs .to have direct control over both 
the programming of the functions to be performed, and the 
operation of the system. Typically, operation of the system 
(as regards controlling the execution of different functions) 
needs to be completely automatic in the final system, but the 
system designer should have a good measure of control over 
how this operation takes place - that is, just how the 
computer makes its millisecond-to-millisecond decisions on 
what to do next. 

The requirements of an Operating System for a large general 
purpose computer, and an executive for a dedicated 
microcomputer system, are very different. 

Traditional Operating Systems were designed to maximise the 
use of the computer's hardware resources - which at the time 
represented a huge capital investment. With cheap, 
distributed microcomputer power, the balance has shifted, and 
other factors - such as development, support and maintenance 
costs, and software correctness - are now more important than 
keeping the processor occupied 100 per cent of the time. In 
addition, a large, centralised general purpose computer has a 
complete set of resources, hardware and software, on hand at 
all times. There is no incentive for selecting the minimum 
set of resources required to implement a particular 
application, Where a product is to be produced in large 
quantities, the tradeoffs are quite different. 

Operating Systems can afford to be large, monolithic 
structures that are always present for every application. An 
executive needs to be small, and tailored for each 
application (by configuring from a standard "kit of parts"). 
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Thus 
of 
dif f 

, although Rx draws ow techniques iearnt from the design 
operating systems, its structure is significantly 

erent in many respects. 

An Operating System is usually pictured as a set of 
concentric circles, centred on the (single) mainframe 
processor. 

Figure 5-6 Conventional Operating System Structure 

This structure is large, monolithic, and difficult to get 
inside (the shell is "hard"). An Operating System tends to 
be a union of all possible system requirements, and is 
difficult to split apart. Rx looks more like a "bus": 

Software Function Bus 

Figure 5-7 Software Function Bus 
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The Rx Software Function Bus establishes a set of conventions 
which are expected by the Component Software functions, This 
set of conventions can be implemented on virtually any 
hardware architecture, Versions of Rx will implement the 
standard Seftware Function Bus across a range of different 
single- and multiple-processor configurations, and memory 
schemes, Different Component Software functions can be 
"plugged into" the standard bus to expand the total 
capability of the system, 

The requirements that led to the adoption of Component 
Software for application programs apply equally to systems 
software, Rx is itself a Component Software package - a "kit 
of parts" for constructing an executive customised to each 
application, 

The Rx executive is "built" for each particular application 
by selecting (automatically) the functions actually used by 
the application, from a library of executive functions, 

5.2.4 File I / O  Standards 

The Component Software environment standardises input and 
output so that systems can be built up using any combination 
of 1/0 devices without danger of conflict. Systems can 
incorporate a wide range of standard hardware and software, 
and can also include custom I/O, 

The concurrent nature of the Component Software environment 
permits many asynchronous devices to be handled 
simultaneously. An independent process is assigned to each 
device, associated with an appropriate interrupt. The 
execution of this device process is synchronised with the 
device, and the process is activated according to the needs 
of the device, 1/0 routines called by the user's process 
will be synchronised with the user, and will respond to the 
user's needs, The two will interact via channels, The 
concurrent structure thus manages automatically the timing 
and synchronisation between user program requests and 
hardware I/o operations. 

5.2,4,1 I/o Subsystems 

1/0 software is grouped into subsystems, each subsystem 
handling a particular class of devices - rotating mass store 
(magnetic discs), for example, or HDLC data communication 
devices, 
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F i g u r e  5-8 I / O  Subsystems 

Many Component S o f t w a r e  packages  w i l l  t a k e  t h e  form of a  
c o m p l e t e  1 / 0  Subsystem. The 1 / 0  s t a n d a r d s  d e f i n e  a  common 
s e t  of h i g h  l e v e l  o p e r a t i o n s  on f i l e s  ( r e a d ,  w r i t e ,  open,  
c l o s e  e t c ) ,  s o  t h a t  programs can  be w r i t t e n  w i t h o u t  knowledge 
o f  t h e  p a r t i c u l a r  t y p e  of d e v i c e  t h e y  w i l l  be u s i n g ,  I n  t h i s  
c a s e ,  a l l  dev i ce- dependen t  d e t a i l s  w i l l  be h i d d e n  w i t h i n  t h e  
1 / 0  subsys tem.  

The 1 / 0  s t a n d a r d s  a l s o  s p e c i f y  lower  l e v e l s  of i n t e r f a c e ,  so  
t h a t  u s e r s  c a n  i n t e r f a c e  w i t h  1 / 0  d e v i c e s  a t  a  d e v i c e  
dependen t  l e v e l ,  T h i s  w i l l  r e d u c e  t h e  code s i z e  of t h e  f i n a l  
a p p l i c a t i o n ,  b u t  r e q u i r e s  knowledge of t h e  s p e c i f i c  
c h a r a c t e r i s t i c s  of t h e  d e v i c e ,  and of c o u r s e  means t h a t  
a p p l i c a t i o n  programs must be r e w r i t t e n  f o r  u s e  w i t h  a  
d i f f e r e n t  d e v i c e ,  I n  a l l ,  5  l e v e l s  of I f 0  i n t e r f a c e  a r e  
d e f i n e d ,  D e s i g n e r s  c a n  choose  t o  i n c l u d e  a s  much o r  a s  
l i t t l e  of t h e  1 / 0  s t r u c t u r e  a s  r e q u i r e d ,  

Texas  I n s t r u m e n t s  Oc tobe r  1981 



SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE 

Pascal 110 Traditional 
Verbs Language Support 

File I10 File-level, device 
Decoder independent 

File-level within 
Subsystem device 

I iriieriace Asynchrcn~us 
Device Interface 

Interface Handler Je-]S$;hronized Data I 
I 

Figure 5-9 5 Levels of Interface to 110 Subsystems 

The I/O standards provide for grouping of all hardware 
related details (I/O addresses, interrupt levels etc) in one 
system configuration module, for ease of system design. A 
standard method is provided for initialising I/O subsystems 
and for handling device interrupts. The I/O Standards and 
1/0 Subsystems are discussed in more detail in the Component 
Software Handbook, MP918, and in the Device Indepedent File 
I/O User's Manual, MP355. 

Texas Instruments supplies standard Component Software 1/0 
subsystems for use with TM990 board modules and TMS99XX 
peripheral components. The I/O subsystems supplied by Texas 
Instruments are extensively documented and supplied with 
source code (as are all TI Component Software packages), and 
can be modified or used as templates to write I/O subsystems 
for custom hardware devices. 

5.2.5 Configuration 

Microcomputer systems typically differ in two respects from 
general purpose mainframe and mini computers. First, a 
microcomputer application is likely to be more cost 
sensitive. Second, a microcomputer system is likely to be 
dedicated to a specific application or range of applications, 
and will often be embedded in another piece of equipment. 
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These two requirements dictate the need for configuration. A 
microcomputer system cannot afford to include features 
(hardware or software) not actually used by the application. 

A Component Software package is supplied as a library of 
software functions and subfunctions stored on a magnetic 
medium - such as a floppy disc. To build a system, the 
designer will write an application program that makes use of 
some of these functions, select the functions from the 
Component Software Library, and then link them together with 
his application program to build a target system. The 
process of selection and linking is largely automatic, and is 
called configuration. 

COMPONENT 
SOFTWARE 
LIBRARIES 

LlNK 
EDITOR LlNK 

EDIT 
CONTROL 
Fl LE 

USER'S 
APPLICATION 
PROGRAM 

CONFIG 
MODULE 

APPLICATION 
LOAD 
MODULE 

Figure 5-10 Configuration 

Success of this approach depends on the division between 
functions being well chosen, so that a designer is not faced 
with having to include a software module only part of which 
he wants to use. This must be a prime consideration in the 
design of Component Software packages; the concurrent 
structure makes it easier. 
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5.2.6 Customisation 

For the great majority of applications, configuration alone 
will he sufficient to tailor Component Software packages to 
particular needs. A range of different requirements have 
been foreseen in developing each package, and comprehended in 
the division of each package into functional modules, 

However, for cases where configuration is insufficient, 
source code is included in Component Software packages, 
together with sufficient documentation to allow complete 
customisation. For example, the device service routines 
(DSR's) of an 1/0 subsystem package can be rewritten for non- 
standard devices, retaining the higher level routines. 
Csmpsnent Software is written in most cases in concurrent 
Microprocessor Pascal, and supplied with documentation which 
fully describes the structure of the package, so that 
customisation is relatively easy. 

The Component Software environment supports TI'S 
Microprocessor Pascal. Pascal was designed as a high level, 
application oriented language in which the sequence of steps 
required to perform a particular task (an algorithm) can be 
expressed easily and naturally. Writing a Pascal program 
requires little more than a precise specification of what the 
program is to do. This means that programs can be developed 
easily, quickly and reliably. Complex programs can be 
written much more quickly than in assembly language, and with 
fewer errors. It also means that the program developed is 
independent of any particular set of hardware. 

TI's Microprocessor Pascal extends the original Pascal 
definition by incorporating within the language the 
constructs of Component Software. PROGRAMS, PROCESSes, 
PROCEDURES and FUNCTIONS can be declared directly in the 
language. Synchronisation and communication mechanisms (eg 
semaphores) are also directly available. Microprocessor 
Pascal extends the scope of the Pascal language to the area 
of real time systems, retaining the original philosophy of 
the language and developing it for the real time environment. 

Using Microprocessor Pascal, results can be achieved more 
quickly with less resource and less headaches. Management of 
projects becomes simpler and more rewarding, because Pascal 
programming is easier to schedule and control, These points 
have been proved by software projects undertaken within Texas 
Instruments (TI). TI has adopted Pascal as a corporate 
standard language, and trained thousands of programmers to 
use it, (Contact TI for details of courses on Microprocessor 
Pascal programming, and other subjects.) 
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Because Micr~processor Pascal can be "read" like English it 
is partly self documenting. Comments can be inserted to 
explain anything which is not made clear by the code itself. 
With a well written program, paper documentation can be 
reduced to a description of the program and data structures 
and of the routine functions, and, where appropriate, a Users 
Guide. 

5.2.7.1 Code Efficiency 

Use of a high level language inevitably produces code that is 
larger than a custom, hand crafted assembly language 
solution. However, the code produced by the Microprocessor 
Pascal code generator is efficient (a great deal of 
optimisation is performed automatically). Studies have shown 
that the code is, typically, slightly less than 1.5 times the 
size that would be expected from an experienced assembly 
language programmer. The compiler may well produce better 
(and certainly more reliable) code than an inexperienced 
assembly language programmer. Design tradeoffs are such that 
in most cases the extra memory cost, for all the systems that 
will be produced, works out less than the extra man months of 
software development time that would be needed in assembly 
language. When the further considerations of reliability, 
maintainability and development time are added, it is not 
difficult to justify the use of high level language. 

The Microprocessor Pascal system includes a reverse assembler 
which turns the output of the code generator into assembly 
language source code. This code can be hand optimised in 
critical areas to squeeze the last ounce of performance from 
the system. Where code size is critical, Microprocessor 
Pascal programs can be executed interpretively instead of in 
native machine code. Interpretive execution is slower, but 
optimises use of memory. 

5.2.7.2 Programming Support Environment 

Microprocessor Pascal provides not only a language, but a 
complete design system for the development of microprocessor 
software. It provides a range of interlinked software tools, 
including a syntax checking text editor and extensive testing 
facilities within both host and target microcomputer systems. 
These tools make up a Programming Support Environment which 
guides software development from initial design through to 
final implementation and testing. 
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THE MICROPROCESSOR PASCAL SYSTEM I 

Figure 5-11 The Microprocessor Pascal System 
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The Microprocessor Pascal system is available on a wide range 
of single and multi-user, floppy and hard disc-based 
development computers, according to the needs of each user. 

i 

5.2.7.3 Microprocessor Pascal and Component Software 

Pre-written Component Software functions (sequential or 
concurrent) #can be accessed from within a user's 
Microprocessor Pascal program simply by declaring them 
EXTERNAL within the user's application program. 

The Component Software packages themselves have been written 
in Microprocessor Pascal, for reliability, ease of 
understanding, and ease of customisation. A few have been 
recoded in assembly language to optimise performance in 
critical areas. 

5.2.8 Other Languages 

Although Component Software packages will generally be 
written in Microprocessor Pascal, the Software Function Bus 
(and hence the Component Software environment) is language 
independent. The low level "housekeeping" functions provided 
by Rx do not depend on any particular language. Application 
programs, and Component Software packages, written in 
assembly language interface directly with Rx. Microprocessor 
Pascal programs interface with Rx through an intermediate set 
of run time support functions. With the addition of suitable 
run time support, the Software Function Bus is capable of 
supporting any application language. Run time support 
functions and development tools for other languages will be 
added as the need becomes apparent. 

Candidates for such addition may be not only the standard 
programming languages, but also special purpose languages and 
operator interfaces designed for specific application needs, 
such as process control. A range of programming languages is 
possible, permitting software development both "off line" in 
a separate development system and "on line" in the 
application microcomputer system itself. 

5.2.9 Hardware 

The Software Function Bus permits flexible selection of 
hardware implementations. Rx will adapt a standard software 
interface to a variety of hardware configurations, built from 
board modules or LSI components. TI'S adoption of a standard 
instruction set for its 16-bit microprocessors (and 
minicomputers) has made this much easier. 
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For several years now, a range of compatible 16-bit 
microprocessors has been available from TI (the 9900 family). 
These processors have been designed to meet a wide range of 
price/performance goals. The recently announced 99000 family 
shares the same instruction set, with a number of advanced 
architectural features (such as storage of frequently used 
software functions in on-chip macrostore). The Software 
Function Bus provides a "cushion" against hardware changes, 
and protects software investment against potentially 
disastrous architectural changes. 

The architecture of the 9900/99000 family is perfectly suited 
to the Component Software environment. The fast "context 
switch'' efficiently implements both concurrency, and the 
program modularity required' by all modern high level 
l ~ n n r * a o n c -  
A L.b-...bbL- Memory-to-memory architecture provides great 
flexibility in implementing independent, cooperating software 
functions. 

At the board level, many special purpose Component Software 
packages correspond exactly to prepackaged microcomputer 
board modules. For example, the F i l e  hnager package 
corresponds with the TM990/303 Floppy Disc controller board. 
Matching software and hardware modules are designed to form 
complete Electronic Function Packages (EFPs) that can be 
incorporated directly in a system. 

Figure 5-12 Software/Hardware Correspondence 
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5.2.10 Component Software Products 

The first Component Software packages supplied by TI provide 
I1 sys tem management" functions such as file storage and data 
communication between different systems. Later products will 
be designed for more specific application areas - process 
control and video graphics output, for example. 

The Realtime Executive is available separately for assembly 
language users (it is supplied as a standard part of the 
Microprocessor Pascal package). The Microprocessor Pascal 
run time support functions will also be available as separate 
Component Software packages (Data Pack, Maths Pack, and 
Device Independent File 1/0 Pack), These functions can be 
called from assembly language programs to provide features 
such as floating point arithmetic, device independent files 
and structured data types* 

Component Software packages will be available from other 
vendors as well as TI. The framework of Component Software 
is available to any manufacturer or software house that 
wishes to write and sell Component Software packages. 

Contact Texas Instruments for a list of the Component 
Software packages currently available. 

5.2.11 Silicon Functions 

Taking a wider perspective, Component Software can be 
regarded as a development ground for functions which will 
eventually find their way into VLSI silicon, as dedicated 
hardware Microfunctions, VLSI integration will reduce the 
cost and increase the performance of Electronic Function 
Packages, so that future systems will be built from 
distributed networks of silicon Microfunctions, 
interconnected via a standard Function Bus* 

This functional architecture is far more flexible than 
conventional microcomputer architectures, based on the 
mainframe model. Within a functional system, individual 
function packages can be incorporated that have a specialised 
architecture designed for particular needs, 
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Figure  5-13 The Funct iona l  Approach 
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Function-to-Function Architecture defines a standard set of 
interconnection mechanisms for functions, hardware or 
software, This will permit replacement of software functions 
by their hardware equivalents, and vice versa. Software 
provides flexibility and fast development, hardware gives 
performance and cheapness (when it can be produced in 
quantity). In future, it will be possible to choose whether 
software or hardware (and what type of software or hardware) 
is appropriate at each point in a system, and to use the 
technology most exactly suited to the needs, 

Component Software permits the development and tailoring of 
new functions in a flexible medium, quickly and cheaply, 
Such a development ground is needed if the potential of VLSI 
is to be exploited effectively. 

New functions will be initially provided as Component 
Software libraries, permitting many different configurations 
from a standard "kit of parts". TI will eventually "can" 
particular configurations of these functions in silicon. 
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MICROPROCESSOR PASCAL 

6.1 INTRODUCTION 

Pascal was originated in the early 1970's by Professor 
Niklaus Wirth and Kathleen Jensen of ETH University, Zurich, 
Q,-- ,,w;tzerlazd (see r n f n r n n ~ o  IwLILILIII [I!  i~l the Bibliography). Like 

the majority of modern programming languages, it is derived 
from ALGOL (ALGOrithmic Language). 

Previous 'high-level' languages, such as FORTRAN, were 
designed to take advantage of a particular computer's 
instruction set (FORTRAN was designed around the IBX 3360) 
and can more properly be regarded as high-level assemblers. 
For example, standard FORTRAN makes certain restrictions on 
the form of array subscripts, DO loop expressions, and so 
on, because this makes the code particuiariy easy to 
implement on the 360. However, these res.trictions also made 
the language difficult to remember (it has a lot of 
'quirks'), and the restrictions quickly lost their 
significance when .the language was implemented on later 
generations of computers with different instruction sets. 

ALGOL was the first serious attempt to design a language 
that was independent of any particular machine's instruction 
set. The aim of the ALGOL designers was to construct a 
language that would make it easy to write clear, correct and 
maintainable programs. In this they largely succeeded, 
However, while ALGOL became popular with academic users, it 
was never very widely used in industry. This was partly 
because the ALGOL designers were uncompromising in refusing 
to consider implementation efficiency, and partly because 
ALGOL did not gain strong backing from computer 
manufacturers. 

But ALGOL was the inspiration for a completely new 
generation of languages, of which Pascal is probably the 
most successful. 

Pascal corrects most of the failings of ALGOL, while still 
retaining its ease of use. It leaves out some of the 
little-used but expensive (in code and time) features of 
ALGOL, and is designed with efficiency of implementation in 
mind, Therefore it is possible to implement Pascal 
efficiently on a small computer or a microcomputer, It is a 
very practical language. Pascal was developed principally 
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by one man so it has a coherence that some 
commit tee-designed languages lack. Pascal is very regular 
(orthogonal): it has few 'quirks', and so is easy to learn. 
The features of Pascal make it equally suited for systems 
and applications work, so that there is no need to use two 
different languages, 

Not only does Pascal have powerful program structures, 
directly implementing the constructs described in Section 
4,5, but it also has extremely flexible data structures 
which are very necessary for manipulating complex 
applications, In fact, the Pascal language is very close to 
the design language described in Section 4,4 because they 
both come from the same root. Turning a software design 
into Pascal should involve little more than "tightening-up" 
the syntax and turning English-language descriptions into 
precise Pascal statements. 

With rapidly decreasing hardware costs and increasing labor 
costs, software has become the major investment in 
developing a computer-based product. This cost trend has 
led to the move from low-level to high-level languages, 
necessitating standardization within high-level languages, 
At least as important as the investment made in existing 
software is the cost of retraining programmers to use a new 
language, and to use it efficiently, 

One of the greatest advances in Pascal is the data 
structuring facilities that are an integral part of the 
language. The concept of the data type has been greatly 
expanded to allow not only the usual types (eg INTEGER, 
REAL, CHAR, ARRAY, etc) but also more complex structures 
based on these types (eg SET and RECORD). Further, the user 
is able to define his own data types that totally satisfy 
his own requirements, 

To ensure that these data structuring facilities are 
properly managed and controlled, the language encompasses a 
feature that is known as strong type-checking. This means 
that when a variable is defined it is declared to be of a 
particular type, As variables are used, the compiler checks 
that they are used correctly and consistently. This strong 
type-checking increases program reliability, 

Pascal provides a high-level standard that protects software 
(and the programming skills to implement that software) from 
future obsolescence due to the introduction of new 
hardware. This form of standardization has now become more 
important than standardization on a particular low-level 
machine architecture, 
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Several years ago, Texas Instruments recognised that a 
single programming language was required as as a corporate 
standard for all software, whether for mainframes or 
minicomputers. The selected language would be used to cover 
the following areas: 

o Sys tems programming 

o Applications programming 

o Industrial real-time control 

This led to in an in depth study of the 20 most prominent 
languages (including ALGOL68, BCPL, BLISS, C, CLU, Pascal, 
PL/I, etc) to determine which, if any, could satisfy these 
requirements. 

After exhaustive tests, it was decided that a programming 
language based on Pascal (which was designed primarily as a 
teaching language) but having adequate extensions to operate 
in a teal-time environment most suited the requirements. 
This resulted in Texas Instruments Pascal (TIP) which was 
designed to compile and execute on large machines (the Texas 
Instruments DS 990/10 and the IBM 370). TIP provides 'large 
machine' features such as dynamic arrays and extended 
precision reals. It also includes some extra compiler 
options allowing, for example, optimization probes to be 
inserted in the program to identify the most frequently 
executed paths. 

After the release of the TIP compiler, it soon became 
apparent that the language would be extremely useful for 
programming microprocessors for industrial and control 
applications. For this reason, a variant called 
Microprocessor Pascal was developed. This has fewer 
extensions than TIP and is therefore more easily implemented 
on small computers. In fact the compiler runs on a floppy 
disc based system that uses the TMS9900 microprocessor as 
its central processing unit. 

The two languages are fundamentally the same, but provide 
slightly different features to support their different areas 
of application. 

Because microcomputer systems usually have to operate in 
real-time, concurrency is an integral part of the 
Microprocessor Pascal language. A concurrent system 
consists of a number of independent processes executing in a 
single environment. Each process is a separate sequential 
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program, and the processes are written as if they were 
executing simultaneously. In fact, the processor can only 
do one thing at a time; the executive divides processing 
time between the processes so that the effect is of 
simultaneous execution. Using this approach, a programmer 
can identify the various tasks that a real-time system has 
to perform, with their inputs and outputs, and write a 
separate process for each: the executive will do the rest. 
This can greatly simplify a complex problem. 
Synchronization of processes is accomplished by signalling 
devices called semaphores. Higher level communication 
between processes can be handled by interprocess files. 
Further information on concurrency is presented in section 
6.8 and also Section 5.2.1. 

During the design of Microprocessor Pascal, it was 
recognised that a language on its own (no matter how good) 
is not enough. What is also required is what has become 
known as a 'programming support environment' - that is a 
collection of 'tools' that aid and simplify the design of 
complex application systems. The Microprocessor Pascal 
System (see section 6.4) was designed for this purpose. 

6.3 MICROPROCESSOR PASCAL LANGUAGE OVERVIEW 

6.3.1 Features 

Microprocessor Pascal has structured statements which allow 
the user to produce a readable, maintainable, and easily 
checked program algorithm with mimimum effort. These 
structures, if used as intended, automatically generate 
hierarchical, nested code resulting in more easily 
understood, and better, more reliable software. 
Microprocessor Pascal's structured statements include IF, 
CASE, FOR, WHILE and REPEAT: they are described in section 
6.7. 

Microprocessor Pascal provides extensive data structuring: 
RECORD and ARRAY data structures can be combined and nested 
to any level. The POINTER data type permits powerful 
structures such as linked lists and trees. It also permits 
dynamic storage allocation. These data structures are 
described in section 6.6. 

In addition to the standard data types, Microprocessor 
Pascal allows the user to define his own data types, which 
can have values represented by meaningful names. The type 
concept was introduced in Section 4.6. Its implementation 
in Microprocessor Pascal is described in section 6.6. 

Data typing allows data to he grouped according to use. It 
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can clarify the design of a program so that, for example, it 
is easier to change at a fate stage in devefopment. 
Compiler checks on type compatibility can reduce the risk of 
undetected errors in program code. 

Microprocessor Pascal allows the user to define meaningful 
names for h-is identifiers (there are no arbitrary length 
restrictions), By using these identifiers and standard 
keywords (IF...THEN..~ELSE) the programmer can create a 
program that is largely self-documenting. 

Microprocessor Pascal is a block structured language, which 
means that procedures (and processes) can be nested to any 
depth. It is therefore a natural language for writing 
modular software. Block structure and scope rules are 
described in section 6 - 3 - 6 .  

The concurrent structure of Microprocessor Pascal allow a 
new approach to software design, particularly for 
microcomputers. A real-time problem can now be divided into 
separate parallel processes, each of which can be simply 
specified and coded (a powerful extension of the concept of 
modular software). Concurrency was designed into 
Microprocessor Pascal from the start; all the development 
tools that make up the Microprocessor Pascal System were 
designed to support it. (However, if the user wishes to 
develop a conventional sequential program in hicroprocessor 
Pascal, he can do so without incurring any extra overhead.) 
The mechanisms involved in concurrency are described later 
in more detail (see section 6.8) and also in Section 5.2.1. 
Additional information can be obtained from the 
Microprocessor Pascal System User's Manual. 

6.3.2 Stack and Heap 

Like the majority of modern high-level languages, 
Microprocessor Pascal has a stack architecture. The stack 
is an area of read/write memory from which sections (called 
stack frames) are allocated to a routine (procedure or 
function) at the time it is invoked. When the routine has 
finished executing, its data storage area is returned to the 
stack for use by other routines, The workspace register 
concept of the 9900 (see Section 8.4,4) forms a natural 
basis for implementing stack frames, 

Data is completely separated from program code, so that 
Microprocessor Pascal adapts naturally to the ROM/RAM 
environment of a microcomputer. This means that 
Microprocessor Pascal code is automatically re-entrant. If 
a routine is simultaneously invoked from different parts of 
a system (as can well happen in a concurrent system) both 
invocations can use the same program code; it is only 
necessary to create different stack frames. 
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When the target system is initially started, all available 
RAM is in a common pool called the heap, As programs and 
processes are activated they are allocated their stack space 
from the heap, This is returned to the heap (for re-use) 
when the program or process terminate. 

In addition to the storage provided in the stack, 
Microprocessor Pascal is able to dynamically allocate areas 
of memory (known as heap packets), under program control, 
from the heap. This is accomplished using the standard 
procedures NEW and DISPOSE, and the pointer variable 
described in section 6.6.13, (NEW and DISPOSE are described 
in the Microprocessor Pascal System User's Manual,) 

6,3.3 Systems and Programs 

The largest unit in the Microprocessor Pascal language is a 
SYSTEM. A system may contain a number of processes, 
apparently executing in parallel, A Level 1 (highest level) 
process is declared, in Microrprocessor Pascal, by the 
keyword PROGRAM, A conventional sequential program can be 
regarded as a special case of a system with only one 
PROGRAM, 

6.3.4 Processes and Procedures 

Each PROGRAM can contain within it subordinate processes 
that are declared by the keyword PROCESS, The keyword 
PROGRAM is used at the highest level because processes at 
this level have special properties. This also maintains 
compatibility with standard Pascal, 

A system, program or process can contain within it 
procedures (and functions). Processes and procedures look 
similar but, in practice, are quite different. A procedure 
is, logically, a part of the sequential program that calls 
it, whereas a process is a separate sequential task that 
executes concurrently with all the other processes in the 
system, including the one that calls, or STARTS it, 

6.3,5 Declarations and Statements 

For the programmer there are two principal parts to any 
Microprocessor Pascal system, program, process, procedure, 
or function: the declarations, and the statement body. 

Declarations define identifiers that can later be referred 
to by name (instead of by repeating the declaration). These 
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identifiers specify the data that the program is to work 
with; the statements specify exactly what is to be done with 
this data* 

The statement body is a collection of Microprocessor Pascal 
statements that is enclosed by a BEGIN,,,END compound 
statement, 

PROGRAM factorial; (* PROGRAM DECLARATION * > 
VAR i,j,n : INTEGER; (* VARIABLE DECLARATIONS *) 

(*  Declare variables named *) 
( *  I, J, N of type integer *) 

BEGIN ( *  factorial *) (* PROGRAM BODY *) 
Reset(1NBUT); 
Read(n) ; (* Read in a value for N 
i 0 -  

*) .- 1; j := 1; (* Set I and J to 1 *) 
WHILE i <> n DO 
BEGIN 
i := i + 1; (* Use I and J to compute 
j := f * *) 

j (* factorial W *) 

END; 
Writeln(j) (* Output value of factorial N *) 

END, (* factorial *) 

The declarations also specify any subordinate processes, 
procedures, etc, and assign identifiers to them so that they 
can be referred to in the statement body. 

Figure 6-1 Program Structure Diagram 

C 
0 
M 
P 
U 
T 
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M i c r o p r o c e s s o r  P a s c a l  programs a r e  f r e e  f o r m a t ;  t h e  program 
c a n  be l a i d  o u t  i n  any manner on t h e  page. S t a t e m e n t s ,  f o r  
example ,  need n o t  s t a r t  i n  a  p a r t i c u l a r  column; n o r  a r e  t h e y  
r e s t r i c t e d  t o  one p e r  l i n e ,  though t h i s  i s  u s u a l l y  good 
p r a c t i c e ,  

M i c r o p r o c e s s o r  P a s c a l  g i v e s  t h e  programmer a  f r e e  hand i n  
f o r m a t t i n g  h i s  program. However, f o r  r e a d a b i l i t y ,  i t  i s  a  
good i d e a  t o  l a y  o u t  t h e  program t o  r e f l e c t  i t s  s t r u c t u r e ,  
T h i s  can  be done by u s i n g  i n d e n t a t i o n ,  I n  t h e  example 
above ,  t h e  s t a t e m e n t s  w i t h i n  t h e  BEGINaaoEND compound 
s t a t e m e n t  f o l l o w i n g  t h e  WHILE c l a u s e  a r e  i n d e n t e d  t o  show 
t h a t  t h e y  are one l e v e l  down i n  t h e  program h i e r a r c h y .  I n  
f a c t ,  t h e  i n d e n t a t i o n  r e f l e c t s  t h e  a p p e a r a n c e  of t h e  
s t r u c t u r e  d i ag ram f o r  t h e  program ( F i g u r e  6-1). (See  
S e c t i o n  4.5 f o r  a d e s c r i p t i o n  of s t r u c t u r e  d i a g r a m s , )  
F o r m a t t e d  i n  t h i s  way, t h e  program i s  much more r e a d a b l e  and 
t h e  s t r u c t u r e  c a n  be s e e n  a t  a  g l a n c e .  

6.3.6 Block S t r u c t u r e  

One of t h e  key  f e a t u r e s  of M i c r o p r o c e s s o r  P a s c a l  i s  i t s  
b l o c k  s t r u c t u r e ,  The b a s i c  i d e a s  of b l o c k  s t r u c t u r i n g  a r e  
d i s c u s s e d  i n  S e c t i o n  4 . 9 .  

A b l o c k  i s  a  s e l f  c o n t a i n e d  a r e a  of program t h a t  c o n t a i n s  
b o t h  a  s t a t e m e n t  body and t h e  d e c l a r a t i o n s  ( t y p e ,  v a r i a b l e ,  
p r o c e d u r e ,  e t c )  r e l a t i n g  t o  i t .  A M i c r o p r o c e s s o r  P a s c a l  
program c o n s i s t s  of a  h i e r a r c h y  of b l o c k s ,  n e s t e d  one w i t h i n  
a n o t h e r .  A sys t em b l o c k ,  which i s  a complete M i c r o p r o c e s s o r  
P a s c a l  sy s t em,  c o n t a i n s  a  number of program b l o c k s ,  which i n  
t u r n  can  c o n t a i n  p r o c e s s  b l o c k s ,  p r o c e d u r e  and f u n c t i o n  
b l o c k s ,  e t c .  T h i s  h i e r a r c h y  i s  d i s p l a y e d  i n  F i g u r e  6-2. 
(The l e x i c a l  h i e r a r c h y  i s  shown i n  F i g u r e  6-3, and t h e  
c o r r e s p o n d i n g  c o n c u r r e n t  s t r u c t u r e  i n  F i g u r e  6-4.) 

The d e c l a r a t i o n s  made a t  t h e  s t a r t  of a  b l o c k  a p p l y  t o  t h a t  
b l o c k  and t o  any b l o c k s  n e s t e d  w i t h i n  i t ,  T h i s  i s  c a l l e d  
t h e  s cope  of t h e  d e c l a r a t i o n ,  Scope can  be f o r m a l l y  d e f i n e d  
a s  t h e  r a n g e  of sys t em t e x t  o v e r  which t h e  d e c l a r a t i o n  i s  
v a l i d .  I d e n t i f i e r s  c a n n o t  be r e f e r e n c e d  o u t s i d e  t h e i r  
s c o p e ,  i e  o u t s i d e  t h e  b l o c k  i n  which t h e y  a r e  d e c l a r e d .  For  
example ,  i n  t h e  sys t em of F i g u r e  6-2, t h e  d e c l a r a t i o n s  i n  
PROGRAM A c a n n o t  be r e f e r e n c e d  i n  PROGRAM B o r  PROCESS R ,  
b u t  c a n  be  r e f e r e n c e d  i n  b o t h  PROCEDURE P  and PROCEDURE Q o  

The d e c l a r a t i o n s  i n  PROCEDURE P  canno t  be r e f e r e n c e d  i n  
PROCEDURE Q o r  i n  PROGRAM A. 

I f  a  r e f e r e n c e  i s  made t o  a  d e c l a r a t i o n  ( v a r i a b l e ,  t y p e ,  
p r o c e d u r e ,  e t c )  t h a t  i s  n o t  i n  s c o p e ,  t h e  c o m p i l e r  w i 1 1  
g e n e r a t e  a n  e r r o r  message,  
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SYSTEM X; 
<declarations> (* System X's declarations * 
PROGRAM A; 
<declarations> 

- - - -- -- 

(* Program A's declarations *) 
- -- 

PROCEDURE P; 
<declarations> (* Procedure P's declarations *) 
BEGIN 

(* Procedure body * 
END ; 

PROCEDURE 0; 
<declarations> (* Procedure Q's declarations *) 
BEGIN 

(* Procedure body * > 
END; 

BEGIN 
(* Program body 

PROCESS R; 
<declarations> (* Process R's declarations *) 
BEGIN 

(* Process body * 
END; 

PROGRAM B; 
<declarations> (* Program B's declarations *) 

BEGIN 
(* Program body * 

END; 

BEGIN 

END, 

(* System body * 

Figure 6-2 System Structure 

Block structure and scope rules are powerful tools for 
managing program structure, Procedure P, for example, can 
be written without worrying whether it will interfere with 
procedure Q. A variable can even be declared in P with the 
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same name a s  a  v a r i a b l e  d e c l a r e d  i n  Q: t h e y  w i l l  be 
c o m p l e t e l y  d i f f e r e n t  v a r i a b l e s  because  t h e y  a r e  i n  d i f f e r e n t  
a r e a s  of scope .  I f  a  v a r i a b l e  i s  d e c l a r e d  i n  P  w i t h  t h e  
same name as a v a r i a b l e  d e c l a r e d  i n  A, t h e  c o m p i l e r  w i l l  
c r e a t e  a  new v a r i a b l e  w i t h  t h i s  name, and r e f e r e n c e s  t o  i t  
i n  P w i l l  a lways  a c c e s s  t h i s  l o c a l  d e f i n i t i o n .  Where t h e r e  
i s  a  p o s s i b l e  a m b i g u i t y ,  t h e  c o m p i l e r  a lways  chooses  t h e  
most  l o c a l  d e c l a r a t i o n .  

F i g u r e  6-3 L e x i c a l  H i e r a r c h y  

SYSTEM X 

PROGRAM A 

I PROGRAM A 1) I PROGRAM B 1) 

PROGRAM B 

I / 

F i g u r e  6-4 Concur ren t  S t r u c t u r e  

SYSTEM X 

Note t h a t  i n  t h e  example,  b o t h  P  and Q can  a c c e s s  t h e  
d e c l a r a t i o n s  made a t  t h e  s t a r t  of program A; t h e  i n t e r a c t i o n  
w i t h  d a t a  d e c l a r e d  i n  h i g h e r  l e v e l  modules needs  t o  be 
c l e a r l y  d e f i n e d  when w r i t i n g  a  sys tem.  T h i s  shou ld  be p a r t  
o f  t h e  module s p e c i f i c a t i o n .  

- 
PROCEDURE P PROCEDURE O 

b - 

/ 
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As well as assisting program structure, biock structuring 
(combined with Microprocessor pascal's stack architecture) 
can save memory space, Data area is not allocated to a 
procedure from the stack frame until it is actually called. 
This means that if, say, procedure P is called foiiowed by 
procedure Q, the space taken up by the variables of 
procedure P is returned to the stack when it has finished 
executing, and the same memory area can be used for the 
variables of procedure Q. The system only allocates data 
space to the routines currently executing. 

A variable has an extent as well as a scope. Extent is the 
time during system execution for which storage space is 
allocated to the variable. Apart from dynamically allocated 
variables, this extent is the duration of execution of the 
biock in which t h e  variabie is deciared. In a concurrent 
system, a variable's extent continues as long as any of the 
processes declared in the same block are executing. The 
reason for this is that the variable is in scope in such a 
process and might be referenced. 

6.4 MICROPROCESSOR PASCAL SYSTEM - PROGRAMMING SUPPORT 
ENVIRONMENT 

The Microprocessor Pascal System is a powerful integrated, 
software development tool set that provides a development 
environment for the design, coding, and debugging of 
Microprocessor Pascal applications for microcomputers, 

This system was designed from the start to execute 
efficiently on the 'small' single-user floppy disc based 
FS 990/4 and TMAM 9000 minicomputers. The system is also 
supported on the much larger, hard disc multi-user DS 990/10 
and /12 computers. 

Currently there are four major components in the 
Microprocessor Pascal System to assist in software 
development : 

o An 'intelligent', interactive, screen-based editor for 
source preparation, with syntax-checking capability, 

o A compiler that produces interpretive code. 

o An interactive host debug interpreter. 

o A code generator that transforms interpretive code 
into TMS9900 native object code. 

Two executives support the execution of the user's system on 
a target microcomputer. One supports the interpretive code 
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produced  by t h e  c o m p i l e r  (MPIX - M i c r o p r o c e s s o r  P a s c a l  
I n t e r p r e t i v e  E x e c u t i v e ) ;  t h e  o t h e r  s u p p o r t s  t h e  o b j e c t  code 
produced by t h e  code g e n e r a t o r  (MPX - M i c r o p r o c e s s o r  P a s c a l  
E x e c u t i v e ) .  These e x e c u t i v e s  a r e  f u n c t i o n a l l y  i d e n t i c a l ,  s o  
t h a t  t h e  u s e r  h a s  a  c h o i c e  of r u n n i n g  e i t h e r  i n t e r p r e t e d  o r  
compi led  code on h i s  t a r g e t  system. 

6.4.1 M i c r o p r o c e s s o r  P a s c a l  E d i t o r  

The M i c r o p r o c e s s o r  P a s c a l  System f e a t u r e s  a n  i n t e r a c t i v e ,  
s c r een- based  e d i t o r  t h a t  a l l o w s  t h e  u s e r  t o  c r e a t e  and 
modi fy  Mic rop rocesgd r  P a s c a l  s o u r c e  f i l e s .  Some 
' i n t e l l i g e n c e '  h a s  , ' been  b u i l t  i n t o  t h i s  e d i t o r  t o  a l l o w  i t  
t o  r e c o g n i s e  ce r t a$h  M i c r o p r o c e s s o r  P a s c a l  l anguage  keywords 
and  t o  au tomat ic i f l l ly  i n d e n t  t h e  s o u r c e  t e x t  b e i n g  e n t e r e d  
i n t o  e a s i l y  c l $ k t i n g u i s h a b l e  b l o c k s  of code t h a t  show t h e  
program s t r u c t h r e .  

When e d i t i n g ,  a  page of t e x t  i s  d i s p l a y e d  on a  v i s u a l  
d i s p l a y  u n i t  (VDU s c r e e n ) .  The t e x t  may be  m o d i f i e d  s imp ly  
by positioning t h e  c u r s o r  and t y p i n g  new i n f o r m a t i o n .  
C h a r a c t q k s  can  be  i n s e r t e d  and d e l e t e d  anywhere on t h e  
screen.,! The d i s p l a y e d  page can  he p o s i t i o n e d  anywhere 
w i t h i q ' t h e  t e x t  f i l e  (page  b o u n d a r i e s  a r e  n o t  f i x e d ) .  

A l t e r n a t i v e l y ,  t h e  u s e r  c a n  p r e s s  t h e  command (CMD) key and 
e n t e r  a r a n g e  of e x p l i c i t  e d i t  commands, i n c l u d i n g  f i n d  
s t r i n g ,  r e p l a c e  s t r i n g ,  etc.  

b - n  creat ing a--sar-a---ELIe, t h e - e d i t o r  assists line--by-tine 
program l a y o u t  by a u t o m a t i c a l l y  p o s i t i o n i n g  t h e  c u r s o r  f o r  a  
new l i n e .  The c u r s o r  c a n  be moved fo rward  o r  b a c k w a r d , u s i n g  
t h e  TAB keys .  T h i s  h e l p s  i n  i n d e n t i n g  t e x t  t o  r e f l e c t  t h e  
program s t r u c t u r e .  The t a b  i n c r e m e n t  (number of columns f o r  
e a c h  i n d e n t a t i o n )  can  be se t  by t h e  u s e r .  

Most e d i t o r s  ( even  sc reen- based  o n e s )  u s e  a  l i n e  numbering 
mechanism t o  a c c e s s  a  p a r t i c u l a r  s o u r c e  l i n e  w i t h i n  t h e  
s o u r c e  f i l e .  The f i r s t  l i n e  i n  t h e  f i l e  i s  " l i n e  1" ( o r  10 
o r  l o o ) ,  t h e  second  l i n e  i s  " l i n e  2" ( o r  20 o r  200)  and s o  
on. Such mechanisms c a n  be cumbersome t o  u s e ,  e s p e c i a l l y  
when i n s e r t i n g  s o u r c e  l i n e s  and a l s o  when g o i n g  back t o  
p e r f o r m  m o d i f i c a t i o n s  on a n  a l r e a d y  p a r t i a l l y  m o d i f i e d  
s o u r c e  f i l e .  To overcome t h e s e  problems,  t h e  M i c r o p r o c e s s o r  
P a s c a l  sy s t em e d i t o r  i s  c o m p l e t e l y  c u r s o r  d r i v e n  and does  
n o t  u s e  a  l i n e  numbering mechanism. 

A number of e d i t  commands (MOVE, COPY, DELETE and PUT) 
o p e r a t e  on b l o c k s  of code. The r e q u i r e d  b l o c k  i s  i n d i c a t e d  
by: 

o  P o s i t i o n i n g  t h e  c u r s o r  t o  t h e  f i r s t  l i n e  i n  t h e  b l o c k  
and  p r e s s  t h e  f u n c t i o n  key F5. 
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o  P o s i t i o n i n g  t h e  c u r s o r  t o  t h e  l a s t  l i n e  of t h e  b lock  
and p r e s s  t h e  f u n c t i o n  key F6. 

o  I f  a  d e s t i n a t i o n  p o s i t i o n  i s  r e q u i r e d  (MOVE and COPY) 
t h e n  r e p o s i t i o n  t h e  c u r s o r  t o  t h e  r e q u i r e d  s o u r c e  
l i n e ,  (The b lock  of code w i l l  be i n s e r t e d  i n t o  t h e  
program immedia te ly  a f t e r  t h i s  l i n e . )  

(The f u n c t i o n  keys  a r e  t h e  g rey  keys ,  numbered F1 t o  F8,  
t h a t  a r e  l o c a t e d  above t h e  normal  'QWERTY' keyboard  on t h e  
911 VDU,) 

The HELP command ( p r e s s  t h e  CMD key and t y p e  t h e  word HELP 
fo l lowed  by t h e  r e t u r n  key)  d i s p l a y s  a  f u l l  l i s t  of t h e  
available e d i t  commands, a long  w i t h  t h e  meaning of each 
f u n c t i o n  key,  

A f t e r  t h e  program h a s  been e n t e r e d ,  t h e  u s e r  can per form a  
Mic roprocesso r  P a s c a l  s y n t a x  check w i t h o u t  l e a v i n g  t h e  
e d i t o r ,  by e n t e r i n g  t h e  CHECK command, The e d i t o r  i s  no t  
equipped t o  d e t e c t  s eman t i c  e r r o r s  ( such  a s  u n d e c l a r e d  
i d e n t i f i e r s ) ,  b u t  w i l l  per form a  comple te  s y n t a x  check t h a t  
w i l l  f i n d  such  e r r o r s  a s  m i s s p e l l e d  o r  m i s s i n g  keywords, 
i n c o r r e c t  p u n c t u a t i o n ,  i n v a l i d  c o n s t r u c t s ,  e t c .  

When t h e  e d i t o r  f i n d s  an  e r r o r ,  i t  o u t p u t s  an  a p p r o p r i a t e  
E n g l i s h  language  e r r o r  message t o  t h e  s c r e e n ,  d i s p l a y s  t h e  
r e l e v a n t  a r e a  of t e x t  and p o s i t i o n s  t h e  c u r s o r  ove r  t h e  
e r r o r  s o  t h a t  t h e  n s e r  can  e d i t  i t  immedia te ly ,  When t h i s  
h a s  been done, t h e  CHECK command can  be r e e n t e r e d  and 
check ing  w i l l  resume from t h e  e a r l i e s t  p o i n t  a t  which t h e  
t e x t  was changed. (The s y n t a x  checke r  on ly  'backs up' a s  
much a s  i s  n e c e s s a r y ;  i t  does  n o t  need t o  r e s t a r t  from t h e  
b e g i n n i n g  of t h e  f i l e . )  

The s y n t a x  checke r  speeds  up and s i m p l i f i e s  t h e  p r o c e s s  of 
c o r r e c t i n g  s y n t a x  e r r o r s ,  It e l i m i n a t e s  t h e  need t o  e x i t  
t h e  e d i t o r ,  e x e c u t e  t h e  compi l e r ,  p r i n t  t h e  l i s t i n g ,  and 
r e - e d i t  t h e  s o u r c e  f i l e  f o r  each  m i s t a k e ,  The e n t i r e  
p r o c e s s  becomes a  s i n g l e  i n t e r a c t i v e  s t e p .  

The CHECK f a c i l i t y  i s  e n t i r e l y  o p t i o n a l .  The Mic roprocesso r  
P a s c a l  System E d i t o r  can  be used f o r  t e x t  f i l e s  o t h e r  t h a n  
Mic roprocesso r  P a s c a l  s o u r c e ,  

The a v a i l a b l e  e d i t  commands a r e :  

ABORT E x i t  t h e  e d i t o r  
INPUT Change t h e  e d i t  f i l e  
QUIT Save t h e  e d i t e d  f i l e  and ABORT 
SAVE Save t h e  e d i t e d  f i l e  and INPUT 

Texas I n s t r u m e n t s  October  1981 



SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL 

BOTTOM Position the cursor to the end-of -f ile 
TOP Position the cursor to the top-of-file 
+/- int Position the cursor up/down "int" lines 

CHECK Check syntax of edit file 
HELP Display edit commands available 
INSERT Insert the specified file 
SHOW Show the specified file 

COPY Copy the specified block to current cursor posn 
DELETE Delete the specified block 
MOVE Move the specified block to current cursor posn 
PUT Write the specified block to the specified file 

FIND(tok,n ) Find the "nf'th occurrence of "tok" 
REPLACE(tok1 ,tok2 ,n) Replace "tokl" by "tok2" "n" times 
TAR(inc) Set the tab increment to "inc" 

The function key operations are: 

F1 Roll down the file 
F2 Roll up the file 
F4 Duplicate this line 
F5 Start block delimiter (<------- in cols 7 2  to 80) 
F6 End block delimiter (------- > in cols 7 2  to 80) 
F7 Compose/Edit 
F8 Split line from the current cursor position 
CMD Go into command mode (+------ + in cols 7 2  to 80) 

6.4.2 Microprocessor Pascal Compiler and Code Generator 

The Microprocessor Pascal Compiler generates interpretive 
code from a Microprocessor Pascal source file, This code 
can be executed directly using the interpretive debugger or 
the Microprocessor Pascal Interpretive Executive (MPIx). 
Passing this interpretive code through the Microprocessor 
Pascal Code Generator produces native 9900 object code that 
will run under the Microprocessor Pascal Executive (MPX). 

Thus, Microprocessor Pascal gives the user a choice of 
executing either interpretive or native code. Interpretive 
code and native code for the same Microprocessor Pascal 
source file will be functionally identical, apart from 
considerations of speed and code size. 

Interpretive code executes several (approximately five) 
times slower than native code; but (beyond a certain size, 
which accounts for the overhead of the interpreter) an 
interpreted system is smaller, Interpretive code only takes 
up about three quarters of the memory required by the 
equivalent native code. Therefore, for a large application, 
interpretive code can represent a great saving in memory. 
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Figure 6-5 Interpretive vs Compiled Characteristics 

In selecting whether to use native or interpretive code, the 
user can trade off speed against memory size. One example 
of such a trade-off is the Microprocessor Pascal Compiler 
itself. On the FS 99014 floppy disc based system, the 
compiler executes interpretively so that it will fit into 
the available memory space (it still runs at an acceptable 
speed, processing approximately 100 lines of source code per 
minute). On the DS 990/10, where there are no memory 
restrictions, it executes as native code to maximize the 
speed. 

Various compiler options are available. These options 
include: 

LIST 
MAP 
STATMAP 
DEBUG 
ASSERTS 
CKINDEX 
CKPTR 
CKSET 
CKSUB 

Produce source listing 
Produce variable map 
Produce statement displacement map 
Include debug information in code 
Generate code for ASSERTS statement checks 
Generate code for array index checks 
Generate code for NIL pointer checks 
Generate code for set expression checks 
Generate code for subrange assignment bounds 
checks 

The host debugger can be used to check the functionality of 
the application program. When satisfied that the program 
works correctly it can be transferred to the actual target 
hardware where any hardware dependent parts of the program 
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can be verified using the AMPL in-circuit emulator, The 
Microprocessor Pascal System is supplied with two sets of 
AMPL procedures (one for MPIX, the other for MPX) that 
present the same user interface as the host debugger, Any 
necessary 'fine tuning' or customisation can also be 
performed at this stage, 

6 . 4 . 3  Microprocessor Pascal Host Debugger 

The Microprocessor Pascal Host Debugger is an interactive 
interpreter that allows the user to control and monitor 
execution of a Microprocessor Pascal target application 
system, This greatly simplifies the task of finding errors 
in a system (debugging), 

The debugger is designed for use with a concurrent (multiple 
process) system, The user can monitor the execution of a 
single process, or examine and control process scheduling 
and communication, Debugging usually proceeds with one 
aspect of a system at a time. 

The user can set breakpoints at any Microprocessor Pascal 
statement by specifying the routine and the statement number 
(printed on the source listing), The system can be executed 
in single-step mode (one Microprocessor Pascal statement at 
a time), or continuously until a breakpoint is reached, 
Three modes of tracing - trace process scheduling, trace 
routine entrylexit and trace statement flow - are possible. 
The contents of a routine's stack frame (pata area), heap, 
and common areas, can be displayed and modified, The 
scheduling algorithm can be overridden by holding 
(suspending) a particular process until an explicit release 
command is given, 

The user can also connect interprocess files (discussed in 
section 6,8,5.4) using the Connect Input Pile and Connect 
Output File commands. The new file that results can be sent 
to an external file or to the terminal, The process 
concerned will then input or output to the device 
specified, If it is a terminal, the system will prompt for 
input, and send a message identifying the source in the case 
of output 

Interrupts can he simulated using the SIMulate Interrupts 
command , 

The system has three ways of dealing with CRU 1/0 (for a 
description of the CRU see section 8,9), CRU statements can 
be directly executed, ignored, or simulated by the user, 
The "CRU" command is used to specify which option applies to 
a particular process. When simulated 110 is specified, the 
CRU address and value are displayed for output, and the user 
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is prompted for input. This feature can be useful when 
debugging software for a target system, which is iikeiy to 
have a different CRU configuration from the development 
system. 

The Microprocessor Pascal debugger is a very powerful 
high-level tool for verifying the detailed execution of a 
piece of software. It is designed to integrate closely with 
the other components of Microprocessor Pascal and to form a 
complete system in which designs can be smoothly carried 
through to implementation. 

6.5 MICROPROCESSOR PASCAL LANGUAGE 

Before describing the maJor features of the Microprocessor 
Pascal language (data types, control structures, 
concurrency, etc) it is first necessary to explain some of 
the basics of the language. 

6.5.1 Basic Language Elements 

A Microprocessor Pascal application program is made up of 
symbols from a finite vocabulary. The vocabulary consists 
of identifiers, numbers, strings, operators and keywords. 
These in turn are composed of sequences of characters from 
the underlying character set. 

6.5.2 Character Set 

The Microprocessor Pascal character set is: 

the letters A-Z, a-z 
the digits 0-9 
and the special characters : 

+ - * / " . , ; : = $ ' < > ( ) [ I { ) #  e -  

6.5.3 Keywords 

Keywords are reserved words with a fixed meaning; they may 
not be used as identifiers. Although they are written as a 
sequence of letters, they are interpreted as a single 
symbol. A full list of these keywords is given below. 
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ACCESS 
ASSERT 
CHAR 
DO 
ESCAPE 
FOR 
IF 
LABEL 
NOT 
OUTPUT 
PROCESS 
RECORD 
START 
TO 
VAR 

AND 
BEGIN 
COMMON 
DOWNTO 
EXTERNAL 
FORWARD 
IN 
LONGINT 
OF 
PACKED 
PROGRAM 
REPEAT 
SYSTEM 
TRUE 
WHILE 

MICROPROCESSOR PASCAL 

ANYFILE 
BOOLEAN 
CONST 
ELSE 
FALSE 
FUNCTION 
INPUT 
MOD 
OR 
PASCAL 
RAND OM 
SEMAPHORE 
TEXT 
TYPE 
WITH 

ARRAY 
CASE 
DIV 
END 
FILE 
GOT0 
INTEGER 
NIL 
OTHERWISE 
PROCEDURE 
REAL 
SET 
THEN 
UNTIL 

In program text, it is convient to write keywords in upper 
case to distinguish then from user-defined identifiers in 
lower case, Microprocessor Pascal does not require this 
distinction, but it is helpful in making programs more 
readable. 

6.5.4 Identifiers 

Identifiers are names denoting user defined or predefined 
entities, An identifier consists of a letter or $ followed 
by any combination of letters, digits, $ or " - 
(underscore), A lower case letter is treated as if it were 
the corresponding upper case letter. For example, the 
identifier Data Size is the same as the identifier 
DATA SIZE.  he-convention followed in this chapter is that 
all identifiers are written in lower case when they appear 
in examples, but they will be in upper case whenever they 
appear in the text, 

A maximum length is imposed by the restriction that 
iclentif iers must not cross line boundaries, so that they may 
not be more than 72 characters long, All characters in an 
identifier are significant, Process, routine and common 
names should be unique within the first 6 characters, 

Legal Identifiers: 
X 
$VAR 
LONG IDENTIFIER 
NUMBER - 3 
RE AD 
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Illegal Identifiers: 
ARRAY (Reserved word) 
ROOT3 - (Cannot start with ) 
3RT)VAL (Cannot start with number) 
M-AX VALUE (Cannot contain blank) 
TOTAL-SUM (Cannot contain -) 

Some identifiers are standard, that is they are predefined 
with a given meaning. They can be redefined by the user, in 
which case the standard meaning no longer applies. For 
example, if the standard routine name READ is redefined, the 
standard routine READ cannot be called. 

6.5.5 Language Element Separators 

At least one separator must occur between two constants, 
identifiers, keywords or special symbols. No separators can 
occur within these elements (except spaces within strings). 
Separators include spaces, end of lines, comments or 
remarks. For example, in the statement: 

WHILE X<10 

a space separates WHILE and X. This is not equivalent to: 

as WHILEX could be a legal identifier. However, a space is 
not necessary between X and '<' because '<' is not permitted 
within an identifier and thus serves to delimit it. 

6.5.6 Comments 

A comment is any sequence of characters beginning with ( or 
( *  and ending with ) or *) (except within a string). A 
remark is any sequence of characters beginning with I' and 
extending to the end of the line (except within a string). 
Comments and remarks are ignored by the compiler, and can be 
used to annotate program text. 

6.5.7 Constants 

Part of the declaration section for a program, process, etc, 
consists of the (constant declaration part>. This allows an 
identifier to be used as a synonym for a constant and can 
make a program more readable. These constants are defined 
by: 

CONST <constant declaration list> 
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where (constant declaration list> is one or more of the 
following: 

where <constant> may be a signed real constant, string 
constant, character constant, integer constant expression or 
a previouly defined constant identifier, An integer 
constant expression may consist of: integer constants and/or 
constant identifiers along with any of the integer 
arithmetic operators, For example: 

CONST max = 500; 
asterisk = '*'; 
one half = 0,s; 
halF max = max DIV 2; - 

"Application parameters1' that are liable to change between 
systems (eg the number of capstan lathes in an engineering 
shop) are best handled by defining them as constants. Doing 
this would mean changing only a few statements right at the 
begining of the application program instead of having to 
search the whole program for instances where the parameter 
values are used (and possibly even missing some of them), 

6.5,8 Variables 

Variables are used to reference areas of storage within a 
module, A variable declaration associates an identifier to 
a location which can hold a value of a specified type, The 
form of a variable declaration is: 

VAR <variable declaration list) 

where (variable declaration list> is one or more of the 
following: 

<identifier list> : (type definition) ; 

<identifier list> is a list of identifiers separated by 
commas. <type definition) (described in section 6.6) can be 
a standard type (INTEGER, REAL, etc), the name of a type 
defined in a type declaration statement, or a new type 
definition which can take any of the forms allowed in a type 
declaration, In the last case, the new type will not have 
any name associated with it (the declaration of PROFIT below 
is an instance of this), For example: 

VAR nyears : INTEGER; 
amount,value,rate : REAL; 
tenyears : vector; 
prof it : ARRAY [l, . l o ]  OF BOOLEAN; 
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(Type VECTOR is defined tn section 6.6.1.) 

A variable can either be a simple identifier which 
references the e n t i r e  variable, or may be a qualified 
variable which is used to reference part of a structured 
variable - for example a record or an array. 

6.5.9 Expressions 

Expressions combine the values of variables and constants 
using operators to generate new values. Expressions consist 
of operands, operators and function calls. 

6.5.9.1 Operands 

Operands reference the values of constants or variables. An 
operand may be one of the following: 

<integer constant) 
<real constant) 
<string constant) 
<character constant) 
<constant identifier) 
NIL 
<set> 
<variable> 
<function call) 

6.5.9.2 Operators 

An operator specifies an operation that is to be performed 
on one or two operands. An operator can only be applied to 
two operands if their types are compatible. Some operators 
accept mixed mode operands: if an INTEGER value is added to 
a REAL, the INTEGER is first converted to REAL and then 
added to give a REAL result. 

Operators have a precedence, which specifies the order of 
their evaluation in a complex expression. 

The operators are: 

Group 1: Multiplying operators: * Multiplication; set intersection 

/ Real division 
DIV Integer division (divide and truncate) 
MOD Modulus 
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Group 2 :  Adding o p e r a t o r s :  
4- A d d i t i o n ;  una ry  p l u s ;  s e t  un ion  
- S u b t r a c t i o n ;  u n a r y  minus ;  s e t  d i f f e r e n c e  

Group 3 :  R e l a t i o n a l  o p e r a t o r s :  - - Equa l  
<> Not e q u a l  
< L e s s  t h a n ;  p r o p e r  se t  i n c l u s i o n  
> G r e a t e r  t h a n ;  p r o p e r  s e t  i n c l u s i o n  
<= Less  t h a n  o r  e q u a l ;  s e t  i n c l u s i o n  
>= G r e a t e r  t h a n  o r  e q u a l ;  s e t  i n c l u s i o n  
I N  S e t  membership 

L o g i c a l  o p e r a t o r s :  
Group 4 :  NOT Nega t ion  
Group 5: AND C o n j u n c t i o n  
Group 6:  OR D i s j u n c t i o n  

The l i s t  of o p e r a t o r s  i s  i n  o r d e r  of p r e c e d e n c e ,  w i t h  g roups  
o f  h i g h e r  p r e c e d e n c e  l i s t e d  f i r s t ,  I n  an  e x p r e s s s i o n ,  
o p e r a t o r s  of h i g h e s t  p r e c e d e n c e  a r e  e v a l u a t e d  f i r s t ;  
o p e r a t o r s  of e q u a l  p r ecedence  a r e  e v a l u a t e d  from l e f t  t o  
r i g h t  w i t h i n  t h e  e x p r e s s i o n ,  P a r e n t h e s e s  may be used  t o  
a l t e r  t h e  o r d e r  of e v a l u a t i o n ,  

Examples : 

E x p r e s s i o n  Value 
2 + 3 * 5  17 
15  D I V  4 * 4 12 
NOT (5 + 5  >= 20) TRUE 
6  + 6  D I V  3  8 
3 < 5 OR 2  >= 6  AND 1  > 2  TRUE 

I n  a  BOOLEAN e x p r e s s i o n  of t h e  form: 
x  AND y  

i f  X i s  f a l s e ,  Y i s  n o t  e v a l u a t e d  and t h e  v a l u e  of t h e  
e x p r e s s i o n  i s  FALSE, S i m i l a r l y ,  i n  a  BOOLEAN e x p r e s s i o n  of 
t h e  form: 

i f  X i s  TRUE, Y i s  n o t  e v a l u a t e d  and t h e  v a l u e  of t h e  
e x p r e s s i o n  i s  TRUE, T h i s  i s  c a l l e d  s h o r t  c i r c u i t  
e v a l u a t i o n ,  

6,5,9,3 F u n c t i o n  C a l l s  

A f u n c t i o n  i s  a  s u b r o u t i n e  t h a t  r e t u r n s  a  s i n g l e  v a l u e  of a 
s p e c i f i c  t ype .  It i s  invoked  by a  f u n c t i o n  c a l l :  
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(function identifier) ( (parameter list> ) 

eg sqrt (max) 

where <functfon identifer) is the  name of t h e  function to be 
called. <parameter list> is one or more <parameter>s, 
separated by commas, as specified by the function 
definition. <parameter> may be any variable, constant or 
expression so long as it matches the declared type. 

6.5.10 Assignment Statement 

The assignment statement specifies an expression that is to 
be evaluated and assigned to a variable. Its general form 
is r 

The symbol ':=' can be read 'becomes equal to'. The type of 
<expression> must be compatible with the type of <variable>, 
except that an INTEGER expression is automatically converted 
to LONGINT or REAL, and a LONGINT expression is 
automatically converted to INTEGER or REAL. Direct 
assignments can be made to variables of any type (including 
records, arrays, etc) except files and semaphores. 

6.5.11 Routine Declaration 

A PROCEDURE declaration packages a self contained sequence 
of operations that performs some action, and also associates 
this action with a particular identifier. This action can 
then be performed from anywhere within the program (so long 
as it is in scope - see section 6.3.6) by simply invoking 
the appropriate procedure. 

The general form for a PROCEDURE declaration is: 

PROCEDURE <identifier> ( <parameter list> ) ; 
<declarations> 

BEGIN . 

END ; 

where <parameter list> is one or more of the following: 

VAR (identifier list> : <type definition) ; 

(identifier list> is one or more identifiers separated by 
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commas, <type definition) is described in section 6e6e If 
no parameters are required then the "(" and ")" can be 
omitted, VAR is optional (see below), 

<declarations> can be one or more: 

LABEL declaration refer to manual 
CONST declaration section 6,5,7 
TYPE declaration section 6,6 
VARS declaration section 6,5.8 
COMMON declaration refer to manual 
ACCESS declaration refer to manual 
PROCEDURE declaration 
FUNCTION declaration below 

There are two methods of parameter passing. Call by value 
will cause a copy of the actual parameter's value to passed 
over to a new storage location in the procedure. This 
parameter can then be modified by the called procedure 
without affecting the value of the actual parameter variable 
in the caller's stack, Call by reference will cause the 
address of the caller's actual parameter variable to be 
passed over to the procedure, Modifying a call by reference 
parameter modifies the contents of the caller's actual 
parameter variable, (More detail on the parameter passing 
mechanisms is given in Section 4,10,1,) 

If a parameter is to be passed by reference then the keyword 
VAR should be included before the appropriate 
<identifier list>: 

PROCEDURE add - five - plus - inc ( VAR update : INTEGER; 
inc : INTEGER); 

CONST five = 5; 

BEGIN 
( Modify the caller's actual parameter by INC+5 ) 
update := update + five + inc; 
( Modify local variable INC - does not affect 
the caller's actual parameter 1 

inc := inc +3 

END ; 

<declarations> and the BEGIN ... END; can be replaced by the 
keyword EXTERNAL, which informs the compiler that that 
particular procedure is defined outside this program 
module. 

A FUNCTION declaration is similiar to a PROCEDURE 
declaration, The only difference is that the first line is 
of the form: 

FUNCTION <identifier> ( <parameter list> ) : 
<type definition) ; 
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The function's result is returned by assigning the required 
value to the function identifier, ie: 

PUNCTION retnrn 5x ( value : INTEGER ) : INTEGER; - 
BEGIN 

return 6x := value * 6 - 
END; 

Microprocessor Pascal implements additional structures that 
can be used to package concurrent statement blocks (PROGRAMS 
and PROCESSes). These are defined in a similiar way to 
procedures and can have parameters in a simfliar way (but 
parameters must all he passed by value). However, programs 
and processes are STARTed r a t h e r  than called and once 
started exist as separate concurrent "sites of execution" 
within the system. 

A PROGRAM or PROCESS declaration is identical to a PROCEDURE 
declaration, except that the first line is: 

PROGRAM <identifier> ( <parameter list> ) ; 

PROCESS <identifier> ( <parameter list> ) ; 

The <declarations> can include other PROCESS declarations. 
The (parameter list> cannot contain variable parameters (ie 
the keyword VAR is not allowed in (parameter l'ist>). 

See sections 6.3.3 to 6.3.6, 6.9 and Section 5.2.2 for the 
concurrent structures of Microprocessor Pascal. 

6.6 DATA TYPES 

A data type defines the set of values a variable of the type 
specified may assume, and the set of operations that may be 
performed on these values. Each variable is associated with 
one and only one type. 

In Microprocessor Pascal, data types can he split into three 
distinct classes. These are: 

Simple types INTEGER, LONGINT, REAL, CHAR, 
BOOLEAN, SEMAPHORE, Subrange and 
Enumeration 

Structured types ARRAY, RECORD, SET, POINTER and 
FILE 
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User defined types Specified by the TYPE statement 

The symbol PACKED may precede a record or array type 
definition. If a structure is declared to be PACKED, 
several unstructured components of the structure, if 
possible, are stored in one word. Packing may economize the 
storage requirements of a data structure, at the expense of 
efficiency of access of the components. 

One example of a packed array is a string, which can be 
defined as: 

PACKED ARRAY [ <index type> ] OF CHAR 

In this structure, characters are stored one per byte 
instead of the usual one per word. <index type> is 
described in section 6.6.9. 

Details of the packing algorithm are given in the 
Microprocessor Pascal System User's Manual. 

6.6.1 User Defined Types 

A type declaration introduces an identifier as the name of a 
new data type. The identifier can later be used to refer to 
that type; for example, to define variables, or to define 
structured types in which that type is included. The form 
of a type declaration is: 

TYPE <type declaration list> 

where <type declaration list> is one or more of the 
following: 

<identifier> = <type definition) ; 

For example: 

TYPE vector = ARRAY [1..10] OF REAL; 
days = (m~n,tue,wed,thu,fri,sat,sun); 
digits = '0'..'9'; 
complex = RECORD 

re,im : REAL 
END ; 

The various forms of <type definition) are described in 
subsequent sections. 

The TYPE declaration does not declare any actual variables 
(storage locations); this is performed by the variable (VAR) 
declaration, as described above (section 6.5.8). 
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6.6.2 I n t e g e r  and Long in t  Type 

A v a l u e  of t y p e  INTEGER i s  a  whole number i n  t h e  range  
-32768 t o  32767 ( s i g n e d  16 b i t  q u a n t i t y ) .  A v a l u e  of t y p e  
LONGINT r a n g e s  from -2147483648 t o  2147483647 ( s i g n e d  32 b i t  
q u a n t i t y ) .  

The o p e r a t o r s  d e f i n e d  f o r  INTEGER and LONGINT operands  a r e :  

+ Unary p l u s  o r  add 
- Negate o r  s u b t r a c t  
* M u l t i p l y  
DIV Divide  and t r u n c a t e  r e s u l t  
MOD Modulus [ a  MOD x = a  - ( ( a  D I V  x )  * x)  ] 

The o p e r a t o r  / ( d i v i d e )  can  be a p p l i e d  t o  i n t e g e r s ,  bu t  
a lways  p roduces  a  REAL r e s u l t .  The r e l a t i o n a l  o p e r a t o r s  =, 
<>, <, >, <=, >= c a n  be a p p l i e d  t o  i n t e g e r s  and produce a  
BOOLEAN r e s u l t .  S t anda rd  f u n c t i o n s  a p p l y i n g  t o  INTEGER and 
LONGINT a r e  d e s c r i b e d  i n  s e c t i o n  6.13.6. 

6.6.3 Boolean Type 

A v a l u e  of t y p e  BOOLEAN i s  one of t h e  l o g i c a l  v a l u e s  TRUE o r  
FALSE. The f o l l o w i n g  o p e r a t o r s  a r e  d e f i n e d  f o r  BOOLEAN 
operands  and y i e l d  BOOLEAN r e s u l t s :  

NOT L o g i c a l  n e g a t i o n  
AND L o g i c a l  c o n j u n c t i o n  
OR L o g i c a l  d i s j u n c t i o n  

TRUE and FALSE a r e  p r e d e c l a r e d  keywords such  t h a t  FALSE i s  
l e s s  t h a n  TRUE. Thus t h e  r e l a t i o n a l  o p e r a t o r s  can  be used 
w i t h  BOOLEAN operands  t o  p r o v i d e  a d d i t i o n a l  o p e r a t i o n s .  For  
example : 

= Equiva lence  
<> E x c l u s i v e  OR 

6.6.4 Char Type 

Values  of t y p e  CHAR a r e  o r d e r e d  a c c o r d i n g  t o  t h e i r  ASCII 
v a l u e .  A c h a r a c t e r  c o n s t a n t  can  be w r i t t e n  e i t h e r  a s  a  
s i n g l e  c h a r a c t e r  between s i n g l e  q u o t e s ,  o r  by s p e c i f y i n g  i t s  
hex  v a l u e ,  preceded by { I :  

'A'  ASCII c h a r a c t e r  A 
'#OD' ASCII c h a r a c t e r  ' c a r r i a g e  r e t u r n '  
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6 e 6 e 5  Enumeration Type 

INTEGER, LONGINT, BOOLEAN and CHAR are special cases of the 
enumeration type. An enumeration type is any simple type 
except REAL, The characteristics of an enumeration type 
are: 

o There is a distinct set of values which a 
variable of that type can take, 

o The values have a unique linear order, in which 
each value (except the first and last) has a 
single predecessor and a single successor, 

The integers 

clearly follow these rules; so do the characters, which have 
a unique order (A, B, C, etc) defined by their ASCII 
representation. However, the user can also define his own 
enumeration types in a TYPE declaration, simply by 
specifying a type name and an ordered set of values: 

TYPE days = (mon,tue,wed,thu,fri,sat,sun); 

The values are represented by identifiers (which must be 
unique), These can he regarded as primitive values, just 
like '7' or '125': it is not necessary to translate them 
into hit patterns, or know how they are represented within 
the computer, any more than it is necessary for most 
purposes to work out the internal bit pattern used to 
represent '125', MON, TUE, etc are values in their own 
right, 

These user defined types are called scalar types, The 
relational operators ( >  <, etc) are defined for all 
enumeration types, The BOOLEAN expression MON < WED is TRUE 
because the values form an ordered set in which MON precedes 
WED. However, the arithmetic operators (+, -, etc) are only 
defined for the standard types INTEGER and LONGINT (and 
REAL) ; it is meaningless to write MON + WED, The following 
standard functions apply to enumeration types: 

SUcC(x) Successor of X 
PRED(X) Predecessor of X 
ORD(X) Integer ordinal value of X within the set of 

values (not defined for INTEGER or LONGINT) 

eg ~ucC(wed) = thu, PRED(wed) = tue, ORD(wed) = 3 

Scalar types are useful for counting purposes. For example, 
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t o  i n d e x  i n t o  a n  a r r a y  o r  c o n t r o l  t h e  number of i t e r a t i o n s  
of  a FOR l o o p  ( s e e  s e c t i o n  6.7*5): 

FOR t o d a y  := mon TO f r i  DO 
t o t a l  - t a k i n g s  := t o t a l- t a k i n g s  + t a k i n g s [ t n d a y ] ;  

The v a r i a b l e  TODAY i s  d e c l a r e d  t o  be of t y p e  DAYS; t h e  a r r a y  
TAKINGS i s  d e c l a r e d  t o  be  i ndexed  by t y p e  DAYS* 

6.6.6 Subrange  Type 

A t y p e  c a n  be  d e f i n e d  as a  s u b r a n g e  of any p r e v i o u s l y  
d e f i n e d  enumera t ion  t y p e  by s p e c i f y i n g  t h e  s m a l l e s t  and 
l a r g e s t  v a l u e s  i n  t h e  sub range :  

TYPE weekdays = mon. . f r i ;  
a r r a y  - i n d e x  = l e e 2 5 ;  

T h i s  i s  a u s e f u l  f e a t u r e ,  b e c a u s e  a c o m p i l e r  o p t i o n  can  
i n s e r t  r u n t i m e  checks  t o  e n s u r e  v a r i a b l e s  do not exceed 
t h e i r  s p e c i f i e d  sub range .  T h i s  can  be  a g r e a t  h e l p  i n  
debugging .  Subrange t y p e s  c a n  a l s o  be  u s e d  i n  d e c l a r i n g  
a r r a y  bounds ,  f o r  example: 

VAR t a b l e  : ARRAY [ a r r a y  i n d e x ]  OF INTEGER; 
s i c k d a y s  : ARRAY [days  ]-OF BOOLEAN; .\ 

% \  

f '. 
't , 

T h i s  p e r f o r m s  t h e  doub le  f u n c t i o n  of s p e c i f y i n g  {he s i z e  oz 'x,_. , 
, t h e  a r r a y ,  and t h e  t y p e  of t h e  i n d e x  v a r i a b l e .  j C o n s t r u c t s  

such  a s  t h i s  makes i t  e a s y  t o  change t h e  s i z e  bf a n  a r r a y  a t  
' a  l a t e  s t a g e  i n  'development,  s iniply by a l t e r i n g  one o r  two 

TYPE s t a t e m e n t s .  (Ar rays  are  d i s c u s s e d  i n  s e c t i o n  6.6,9. )  

6.6.7 Rea l  Type 

The t y p e  REAL can  be used  t o  r e p r e s e n t  r e a l  v a l u e s  w i t h  6-7 
d e c i m a l  d i g i t s  of p r e c i s i o n .  The range  of a b s o l u t e  v a l u e s  
t h a t  can  be r e p r e s e n t e d  i s  a p p r o x i m a t e l y  1.OE-78 t h r o u g h  
laOE75. 

The f o l l o w i n g  o p e r a t o r s  a c c e p t  ope rands  of t y p e  REAL and 
y i e l d  a  REAL r e s u l t :  

+ Unary p l u s  o r  add - Negate  o r  s u b t r a c t  
* M u l t i p l y  

/ D i v i d e  

The r e l a t i o n a l  o p e r a t o r s  a r e  d e f i n e d  f o r  REAL ope rands  and 
y i e l d  a  BOOLEAN r e s u l t *  The s t a n d a r d  f u n c t i o n s  TRuNC, 
ROUND, LTRIJNC, LROUND w i l l  t r u n c a t e  o r  round a  REAL v a l u e  t o  
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give an INTEGER or LONGINT result. 

6.6.8 Semaphore Type 

The type "semaphorelI is used for process synchronisation and 
communication (more about this later, see section 6.8). 
Operations on variables of type semaphore are performed by 
functions and'procedures which must be declared EXTERNAL to 
the program. Arithmetic operations are not valid for 
semaphore variables. 

6 . 6 . 9  Array Type 

An array type consists of an ordered group of components 
which are all of the same type. The form of an array type 
definition is: 

ARRAY [ <index type list) 1 OF <component type) 

<component type> can be any type except FILE. This means 
that it is possible to have arrays of arrays, of records or 
of any other structured type. <index type list) is a list 
of <index type>s separated by commas. These can be either 
explkcit subrange definitions (such as 1..5) or the name of 

enumeration type (such as DAYS). The number of 
>S in the declaration determines the number of 

dimensions \of the array. There is no limit to the number of 
dimensions an array may have. Each <index type) definition 
determines both the size of that dimenqion of the array, and 
the type of khe vaaable that will be usgd to index it. An 
<index type) can be any enumeration kype; the types of 
different dimensions need ndt be the same. For example: 

VAR holidays : ARYY [1..52*, days] OF BOOLEAN 

An exactly equivalent detinition is: 

VAR holidays : ARRAY ![lo .52] OF 
ARRAY [days] OF BOOLEAN 

The assignment operator can be used between arrays of 
compatible type. For example: 

VAR a,b : ARRAY [1..20, 25..50, 1 . . 2 1 ;  . . 
a :== b; 

This causes every element in the array A to be assigned the 
value of the   or responding element in the array B. 
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An indexed v a r i a b l e  i s  used t o  r e f e r e n c e  an  e lement  of an  
a r r a y .  I ts  form is:  

e g  VECTOR r 5 ]  

The e x p r e s s i o n s  a r e  used t o  s u b s c r i p t  i n t o ,  each  of t h e  n  
d e c l a r e d  dimensions.  I f  an  a r r a y  v a r i a b l e  i s  d e c l a r e d  t o  
have  n  d imens ions ,  t h e n  t h e  indexed v a r i a b l e  may have from 1 
t o  n  s u b s c r i p t  e x p r e s s i o n s .  For  example, i f  an  a r r a y  i s  
d e c l a r e d  

a  : ARRAY [1..10, 1..20] OF INTEGER 

t h e n  A [ 5 ]  i s  a  l e g a l  indexed v a r i a b l e ;  i t  i s  an  

ARRAY [1..20] OF INTEGER 

T h i s  a r r a y  can  i t s e l f  be indexed,  eg  A [ 5 ]  161 

which i s  e x a c t l y  e q u i v a l e n t  t o  A [ 5 ,  - 6 1  

The t y p e  of t h e  s u b s c r i p t  e x p r e s s i o n  must co r re spond  e x a c t l y  
w i t h  t h e  d e c l a r e d  < index  type>.  There i s  a  compi l e r  o p t i o n  
t o  check  t h e  v a l u e  of a  s u b s c r i p t  t o  make s u r e  i t  i s  w i t h i n  
t h e  d e c l a r e d  bounds. 

6.6.10 Record -Type  

A r e c o r d  type  c o n s i s t s  of a  group of components of p o s s i b l y  
d i f f e r e n t  t y p e s  c a l l e d  f i e l d s .  Each f i e l d  i n  a  r e c o r d  t y p e  
i s  g i v e n  a  d i s t i n c t  name. A f i e l d  of a  r e c o r d  can be of ahy 
t y p e  ( i n c l u d i n g  a r r a y ,  r e c o r d ,  e t c )  e x c e p t  FILE. The form 
o f  a  r e c o r d  t y p e  d e f i n i t i o n  i s :  

RECORD < f i e l d  l i s t >  END 

A < f i e l d  l i s t )  i s  an  a r b i t r a r y  number of ( r eco rd  s e c t i o n > s  
s e p a r a t e d  by semicolons .  Each ( r e c o r d  s e c t i o n )  i s  of t h e  
form: 

< f i e l d  i d e n t i f i e r  l i s t >  : <type>  

< f i e l d  i d e n t i f i e r  l i s t>  is  a  l i s t  of f i e l d  i d e n t i f i e r s  
s e p a r a t e d  by commas. For  example: 

TYPE complex = RECORD 
r e ,  i m  : REAL 

END; 
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date = RECORD 
month : (jan,feb,mar,apr,may,jun,jul, 

aug,sep,oct,nov,dec); 
day : 1..31; 
year : INTEGER 

END; 

The assignment operator (:=) can be applied to records of 
exactly the same type. 

A field of a record is referenced by specifying the name of 
the record variable and the field name, separated by a 
period. For example: 

VAR start, finish : date; 
cl, c2, c3 : complex; 

start.day := 20; 
f inisheyear := 1978; 
cl.re := 3.4; 
c3.im := 5.8; 

and 
start := finish; 

which is equivalent to 

start-month := finishemonth; 
start.day := finisheday; 
start.year := finisheyear; 

A record variable is used to reference a field within a 
record. Its form is: 

<variable> . <field identifier) 
where <field identifier) is one of the fields declared in 
the record type definition. 

pump onesgrade - 
cl.re 
start.day 

Any record can be qualified; any array can be subscripted. 
Since it is possible to construct arrays of records and 
records containing arrays, variables such as 

arr [5] . field [4] 
are possible. Here, 

arr is an array 
arr [5] is a record 
arr [5] . field is an array 
arr [5] . field [4] is an element 
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Very powerful and esrnpPex data structures can be built in 
this way. 

Pascal also allows record variants, which means that part of 
a record can be interpreted in more than one way. This 
would allow, for example, a personnel record for a college 
to contain different information (different fields) 
according to whether it described a student or a member of 
staff (see Section 4.7.4). Record variants are described in 
detail in the Microprocessor Pascal System User's Manual. 

6.6.11 Set Type 

Pascal allows a set type, in which the possible values are 
subsets of the base type, which can be any enumeration 
type. For example, with the base type 1..5, possible values 
of a set variable include: 

11,2931 
t2,3,51 
[1,2,3,4,51 
[ 1 (the empty set) 

A full range of operators is defined for sets - union, 
intersection, inclusion, etc. 

6.6.12 File Type 

A file type is a structure which consists of a sequence of 
components (of unspecified length) which are all of the same 
type. A file is usually associated with a mass storage 
medium, such as tape or disc. However, this is not 
necessarily the case as file variables can be used as a 
means of communicating between concurrent processes. One 
process can write information to a logical file and another 
can read it. The MPX or MPIX executive performs the 
transfer in internal memory without involving any external 
storage devices. 

The form of a file type definition is: 

RANDOM FILE OF <component type) 

FILE OF <component type> 

TEXT 
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The component type of a file can be any type except pointer 
or file. The number of components (ie the length of the 
file) is not specified and can grow to any size, depending 
on the storage medium with which the file is associated. 

The prefix RANDOM denotes a random file in which components 
are accessible by their component number. This numbering is 
defined to be the natural ordering of the sequence of 
components, with the first component being number zero. 

A TEXT file is a sequential file of type CHAR which is 
divided into lines by end-of-line markers. INPUT and OUTPUT 
are standard predeclared TEXT files. 

TYPE rec = RECORD 
name : PACKED ARRAY [ 1. .15] OF CHAR; 
id num : INTEGER - 

END; 

VAR f : FILE OF INTEGER; 
employee : RANDOM FILE OF rec; 
temp : TEXT; 

The following standard procedures and functions are 
available for file manipulation: 

CLOSE Close the file 
EOF Check for EOF (end-of-file) 
EOLN Check for EOL (end-of-line) 
READ Read components of the file 
READLN Read components from a text file until EOL 
RESET Open file for input 
REWRITE Open file for output 
WRITE Write components to the file 
WRITELN Write components and EOL to a text file 

See the Microprocessor Pascal System User's Manual for 
further details. 

6.6.13 Pointer Type 

Variables may be referenced indirectly by means of a 
pointer, which can be thought of as the address of a 
variable. The form of a pointer type definition is: 

@ <type identifier) 

read as ''pointer to a (type identifier)". 

A pointer variable can only point to the type for which it 
is declared. This goes a long way to 'taming' the 
potentially dangerous pointer type, which in languages such 
as PL/I is allowed to roam freelv throughout memory, and can 
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cause chaos if the prsgramner makes a srna11 error in 
manipulating it. (In Microprocessor Pascal it is always 
possible to do such things using the type transfer function, 
for instance, but the programmer is obliged to tell the 
compiler that he is doing something risky.) 

The <type identifier) need not be defined before the pointer 
type is defined, provided it is declared later in the 
declaration section. This is a forward type declaration, 
which is only permitted with pointer types. 

TYPE ptr = @list; 
list = RECORD 

value : REAL; 
~ O C  : O..FF 

END; 

PTR is declared to ''point to the type LIST" and variables of 
type LIST can only be used to point to records of type 
LIST. 

A pointer variable is used to reference the varfable pointed 
to by a pointer type. Its form is: 

where <variable> is a pointer type. The value of a pointer 
variable is undefined until either a value is assigned to it 
or a NEW is performed on it to allocate an area of dynamic 
storage (see section 6.3.2). The constant NIL can be 
assigned to any pointer variable, which. means it points to 
nothing at all. A compiler option (CKPTR) is available to 
check if -a reference is made to a NIL pointer. 

( Declare NEXT and TEMP as pointers to records of 
type LIST ) 

VAR next,temp : ptr; 

( Set TEMP to point to the NIL record of type LIST ) 
temp@ := NIL; 
( Allocate new record of type LIST from the heap, and 
set NEXT to point to it ) 

new(next); 
( Set VALUE field of record pointed to by NEXT to 2.5 ) 
next@.value := 2.5; 

The operators that can be applied to pointer variables with 
compatible types are: 

: = Assignment 
- - Equal (TRUE if the, operands point to the 

same address) 
<> Not equal 

Pointers allow storage to be dynamically allocated from a 
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s t o r a g e  a r e a  c a l l e d  t h e  heap ,  u s i n g  t h e  s t a n d a r d  p rocedure  
NEW, P o i n t e r s  can  a l s o  be used  t o  c o n s t r u c t  "advanced" d a t a  
s t r u c t u r e s  ( s e e  r e f e r e n c e  [2] i n  t h e  B i b l i o g r a p h y )  such a s  
l i n k e d  l i s t s  and b i n a r y  t r e e s .  A l i n k e d  l i s t  i s  e a s i l y  
c r e a t e d  by d e f i n i n g  a  r e c o r d  t y p e  which c o n t a i n s  one f i e l d  
t h a t  i s  a  p o i n t e r  t o  t h e  n e x t  r e c o r d  i n  t h e  l i s t .  
S i m i l a r l y ,  a  b i n a r y  t r e e  of r e c o r d s  can  be c o n s t r u c t e d  by 
d e f i n i n g  a  ' r i g h t  l i n k '  and ' l e f t  l i n k '  p o i n t e r  w i t h i n  t h e  
r e c o r d ,  

6 . 6 . 1 4  Type C o m p a t i b i l i t y  and T r a n s f e r  

Mic roprocesso r  P a s c a l  h a s  s t r i c t  r u l e s  f o r  c o m p a t i b i l i t y  
between types .  I n  g e n e r a l ,  i n c o m p a t i b l e  t y p e s  cannot  appea r  
on o p p o s i t e  s i d e s  of an  a s s ignmen t  s t a t e m e n t ,  o r  a s  operands  
of  t h e  same o p e r a t o r .  

Two t y p e s  a r e  d i s t i n c t  i f  t h e y  a r e  e x p l i c i t l y  o r  i m p l i c i t l y  
d e c l a r e d  i n  d i f f e r e n t  p a r t s  of t h e  program, A t y p e  i s  
e x p l i c i t l y  d e c l a r e d  u s i n g  a  TYPE d e c l a r a t i o n ,  A t y p e  may be 
i m p l i c i t l y  d e c l a r e d  i n  a VAR d e c l a r a t i o n  o r  i n  o t h e r  p l a c e s  
where a  name i s  n o t  a s s o c i a t e d  w i t h  t h e  t y p e  ( eg  i n  
s p e c i f y i n g  a n  a r r a y  i n d e x  t y p e ) ,  

Two t y p e s  a r e  compa t ib l e  i f  one of t h e  f o l l o w i n g  i s  t r u e :  

o  They a r e  i d e n t i c a l  t y p e s ,  

o  Roth a r e  subranges  of t h e  same enumera t ion  t y p e ,  

o  Roth a r e  s t r i n g  t y p e s  w i t h  t h e  same l e n g t h ,  

o  Both a r e  p o i n t e r  t y p e s  which p o i n t  t o  i d e n t i c a l  
t y p e s ,  

o  Both a r e  s e t  t y p e s  w i t h  compa t ib l e  base  t y p e s ,  

o  Both a r e  f i l e  t y p e s  w i t h  compa t ib l e  e lement  
t y p e s ,  

Arrays  o r  r e c o r d s  a r e  compa t ib l e  o n l y  i f  t h e y  a r e  d e c l a r e d  
t o  be of t h e  e x a c t  same type ,  

The re  i s  no i m p l i c i t  c o n v e r s i o n  of t y p e s  e x c e p t  from INTEGER 
and LONGINT t o  REAL and between INTEGER and LONGINT, 

The s t r i c t  c o m p a t i b i l i t y  r u l e s  g i v e  t h e  programmer a  means 
o f  check ing  t h a t  he  i s  n o t  u s i n g  a  v a r i a b l e  i n  t h e  wrong 
p l a c e  ( f o r  example,  u s i n g  t h e  wrong v a r i a b l e  t o  i n d e x  an  
a r r a y ,  o r  s p e c i f y i n g  t h e  i n d i c e s  of a  mul t i- d imens iona l  
a r r a y  i n  t h e  wrong o r d e r ) ,  It i s  p o s s i b l e  t o  comple te ly  
i g n o r e  t h i s  f a c i l i t y  by, f o r  i n s t a n c e ,  n o t  d e c l a r i n g  any new 
t y p e s  and s p e c i f y i n g  a l l  a r r a y  i n d i c e s  a s  unnamed subr2nges 
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of integer, However, intelligent use ~f the TYPE concept 
can greatly reduce the possibility of errors, and make a 
program more readable and easier to change. 

TI L L  is p o s s f b l e  to override t he  compatfhilfty check by usizg 

the type transfer facility, which temporarily changes the 
type of a variable, The form of a type transfer is: 

<variable> :: <type identifier) 

The variable is temporarily treated as if it were the type 
specified after the double colon, No conversion is 
performed; only the apparent type of the variable is 
altered, Use of this facility transfers responsibility from 
the compiler to the programmer; therefore he needs to be 
sure he knows what he is doing, 

It is also possible to override the type structure by using 
variants in record structures without checking the tag 
fields (see the Microprocessor Pascal System User's 
Manual), 

6 7 CONTROL STRUCTURES 

This section is primarily concerned with the Microprocessor 
Pascal statements that implement the control structures 
which were introduced in Chapter 4 of this book (Section 
4e5)e 

6.7.1 Procedure Statement 

The procedure declaration (see section 6.5,11) defines a 
subprogram which can be called up simply by writing its name 
in a procedure statement, A procedute statement corresponds 
to one of the terminal boxes on the right hand side of a 
structure 'diagram (see Figure 4-14), which is expanded as a 
separate algorithm in the procedure declaration (Figure 
4-15). 

The general form of a procedure statement is: 

(procedure name> ( (parameter list> ) 

eg calculate - mean (a, 5, 4*x) 

Parameters must match in number and type with those declared 
with the procedure, If the procedure has no parameters then 
only (procedure name> is required, 
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6.7.2 Compound Statement 

A compound statement is a sequence of statements enclosed by 
the keywords BEGIN and END, A compound statement is treated 
as a single statement in all higher level constructs, 

BEGIN <statement list> END 

(statement list> is a list of Microprocessor Pascal 
statements, simple or structured, separated by semicolons. 
The statements making up the list are executed one by one in 
the order that they appear, but the entire list is treated 
as a single statement, 

BEGIN 
exchange : = x 1 ; 
xl := x2; 
x2 := exchange 

END 

The semicolon is used to separate Microprocessor Pascal 
statements and is not part of any individual statement. 
Therefore a semicolon is not needed following the last 
statement in the list. If one does occur, the compiler 
simply assumes that there is an empty statement between the 
semicolon and END, 

The empty statement is quite legal and can occur in many 
places without causing any harm, However, the presence of 
an extra semicolon can sometimes change the meaning of a 
statement: 

IF A = B THEN x := 1; 
ESLE y :=1 

The IF statement is terminated prematurely by the semicolon; 
ELSE is treated as a new statement and will be flagged as an 
error (because there is no statement beginning with the 
keyword ELSE), 

This particular error is easy to find because it will be 
picked up by the compiler, Other cases of extra or missing 
semicolons may be more subtle: code may be generated that is 
logically wrong but syntactically correct, so that the 
compiler will not find it, Therefore it is as well to know 
exactly where semicolons are needed, and why. 

The compound statement implements the sequence construct 
described in Section 4,5.1. 
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6.7.3 IF Statement 

The IF statement specifies execution of one of two 
alternative statements, depending on a condition. The 
second alternative may be the empty statement. The form of 
the IF statement is: 

IF <expression> THEN <statement> 

IF <expression> THEN <statement> ELSE <statement> 

where <expression> must be of type BOOLEAN. 

If the expression evaluates to TRUE the first <statement> 
alternative, the THEN clause, is executed; otherwise the 
second <statement> alternative, the ELSE clause, is executed 
if it is presenti The <statement>s can be any 
Microprocessor Pascal statement, including compound 
statements and further IF statements. 

Examples : 

IF count >= 0 AND count <= length THEN read(x[i]); 

IF x < y THEN max := y 
ELSE max := x; 

In nested IF statements, there is a possible ambiguity with 
regard to ELSE clauses. This is resolved by always 
associated an ELSE with the most recent unmatched THEN. 

IF a > b THEN IF b > c THEN min := c 
ELSE min := b; 

is equivalent to: 

IF a > b THEN 
BEGIN 
IF b > c THEN min := c 
ELSE min := b 

END; 

In cases such as this, it is wise always to use explicit 
REGIN..,ENDs to make the logical structure perfectly clear. 

6.7.4 CASE Statement 

The CASE statement is an extension of the IF statement to 
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allow more than two choices. A CASE statement allows a 
statement to be selected for execution depending on the 
evaluation of an expression at run time. The form of a CASE 
statement is: 

CASE <expression> OF 
<case label list> : <statement> ; 

0 . .  

<case label list> : <statement> 
OTHERWISE <statement list> 
END 

<expression> must be of an enumeration typeo 
<case label list> is a list of one or more <case label>s 
separated by commas. The <case label list> : <statement> 
combination may be repeated any number of times within the 
CASE statement; each occurence must be separated from the 
previous one by a semicolon. The OTHERWISE clause is 
optional. 

A (case label) is either a constant value or a subrange 
value of the same enumeration type as the <expression>, 
Each <case label list) specifies the list of values of 
<expression> for which the corresponding <statement> 
alternative will be executed. 

The value of <expression> at run time is used as thc 
selector into the CASE statement. If the <case label: 
indicated by the selector is present in the CASE statement 
the corresponding <statement> is executed; otherwise thc 

(statement list> following the OTHERWISE clause is 
executed, If the selected <case label> is not present and 
there is no OTHERWISE clause, a run time error will occur. 

Examples : 

CASE num OF 
0..3,8 : total := total + num; 
4,6,7 : total := total - num; 
5 9 9 : total := total DIV 2 

END ; 

CASE alfa OF 
'A'..'M' : ch := SUCC(a1fa); 
'N'..'Z' : ch := PRED(a1fa) 

OTHERWISE 
writeln('not in alphabet'); 
int := ORD(a1f a) 

END; 

The IF and CASE statements implement the selection construct 
described in Section 4.5.2. 
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6.7 .5  FOR Statement 

The FOR statement provides for the repeated execution of a 
given statement for a progression of values which are 
assigned to the control variable of the FOR statement, This 
statement should be used if the number of repetitions 
required is known before the statement is executed, The 
form of the FOR statement is one of the following: 

FOR <identifier> := <initial value> TO <final value> 
DO <statement> 

FOR <identifier> := <initial value> DOWNTO <final value> 
DO <statement> 

where <identifier> is the control variable, and 
<initial value> and <final value> are of the same 
enumeration type, which may not Be a set type, 

The control variable is implicitly declared by its 
appearance in the FOR statement, and therefore may only be 
referenced within the FOR statement. If a variable of the 
same name has previously been declared, that variable will 
be temporarily inaccessible within the FOR statement, The 
value of the control variable may not be changed within the 
FOR statement. 

The control variable is assigned the <initial value> prior 
to the first execution of the <statement>, If the 
<initial value> is greater (less) than the final value in 
the TO (DOWNTO) clause, the <statement> is never executed, 
Otherwise after each execution of the <statement> the 
control variable is incremented (decremented) by one until 
the value of the control variable is greater (less) than the 
<final value>. Both <initial value> and <final value> are 
only evaluated once, on entering the FOR statement, so that 
the total number of repetitions is determined at this time. 

Examples : 

FOR i := n DOWNTO 1 DO 
sum := sum + a[i]; 

FOR day := mon TO fri DO 
BEGIN 

read(hrs, rate); 
pay[day] := rate * hrs 

END; 
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6.7.6 WHILE Statement 

The WHILE statement allows for the repeated execution of a 
given statement as long as a specified condition remains 
true. The form of the WHILE statement is: 

WHILE <expression> DO <statement> 

where <expression> is of type BOOLEAN. 

<expression> is evaluated before each execution of 
<statement>. If <expression> is false initially, 
<statement> is not exe'cuted at all; otherwise it is executed 
repeatedly as long as <expression> evaluates to true. 

The WHILE statement is used where the number of repetitions 
cannot easily be predicted in advance. For example, 
<expression> might represent the state of an external 
input. 

Example : 

i := 1; 
WHILE i <= max DO 
BEGIN 
value := amt[i] + tax[i+2]; 
i : = i + l  

END; 

There is an alternative form of WHILE statement called the 
REPEAToooUNTIL: 

REPEAT 
<statement list> 
UNTIL <expression> 

where <expression> is ROOLEAN. 

The difference is that <expression> is evaluated after each 
execution of <statement list>, so that even if it is false 
<statement list> is always executed at least once. 

It is a good idea to standardize either on WHILE or REPEAT 
to avoid confusion on what happens when <expression> is 
false initially. In general, the WHILE construct is more 
flexible because it includes the important special case of 
zero iterations. REPEAToo..UNTIL can then be used as an 
optimization technique for the rare cases when an action 
must always be performed at least once. 

The structure diagram iteration symbol (see Section 4 . 5 . 5 )  
is intended to be a WHILE (or a FOR), and is best kept as 
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szchs A REPEAT- . . .UNTIL constITuct can then be written 
explicitly as: 

Figure 6-6 Repeat Until Construct 

This is often a truer reflection of the situatfon, because 
in a case like this there is usually something special 
associated vith the first iteratian, 

With the sequence, selection and iteration constructs 
described, Microprocessor Pascal programs can be written 
directly from the software design: 

BEG l N 
A ;  

Figure 6-7 A Sample Program 

4 
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WHILE COND 1 DO 
BEGIN 

I F  COND 2 
THEN B 
ELSE C ; 

IF COND 3 
THEN E 
ELSE 

BEGIN 
F ;  
G 

END 
END 

END 

October 1981 



SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL 

If the Microprocessor Pascal code is indented to reflect the 
structure, there is a strong visual resemblance between the 
program and the structure diagram, which can he used as a 
check, 

When the control structures are used in conjunction with the 
data typing features it is possible to produce a program 
that is clear, uncomplicated (but never the less complex) 
and largely self-documenting. Although the following 
program lines are a little whimiscal, they do illustrate the 
point. 

CONST number of people = 50; 
expectgd - ;umber - of-legs = number - of - people DIV 2; 

VAR animal : (lion, tiger, cat, dog, rhino); 

BEGIN 
CASE animal OF 
doe:  at it on the head: u .  

cat: strzke-its - - baFk; ' 

OTHERWISE 
IF life is not worth - living THEN hang - around 
ELSE ruK - for - it 

END 
END ; 

6.7.7 ESCAPE Statement 

The ESCAPE statement is a 'structured jump'. It is used for 
premature termination of a structured statement, procedure, 
program or process, It allows an orderly exit to be made 
through the normal exit point of the structure. Its form 
is: 

ESCAPE <identifier> 

where <identifier> may be an escape label, procedure name, 
program or process name. 

An escape label, followed by a colon, may prefix any 
structured statement, (The structured statements are: 
compound statement, IF, CASE, FOR, WHILE and REPEAT 
statements.) Each escape label is implicitly declared by 
its appearance in the program, and can only be referenced 
within the structured statement it precedes, Unlike GOT0 
labels (see below), ESCAPE labels need not be declared at 
the start of the program. 
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loop: WHILE i <= n DO 
BEGIN 
IF eof THEN ESCAPE loop; 
read (val); 
sum : = sum + val; 
i : = i + 1  

END ; 

6.7.8 GOT0 Statement 

The GOT0 statement is an unstructured jump: 

It transfers system execution directly to the statement 
having the specified label. 

A statement label is an unsigned fnteger which must be 
declared in a LABEL declaration at the start of the block in 
whf ch it is used, 

PROGRAM sample ; 
LABEL 2; 

. 
BEGIN . 

2 : i : = i + 1 ;  
IF vector [i] < 100 THEN GOT0 2; 

. 
END. 

GOT0 statements should be used as little as possible, if at 
all, because they tend to lead to 'spaghetti code' which is 
difficult to follow and prone to error. In some languages 
(eg FORTRAN), GOTOs are necessary because the constructs 
necessary to implement control structures directly are not 
available. This is not the case in Microprocessor Pascal, 
which has a complete set of sequence, selection and 
iteration constructs that are sufficient to implement any 
program algorithm. In almost every case where a GOT0 might 
be used, an ESCAPE statement can be used instead, or the 
program can be restructured to eliminate the need for any 
jump at all. This will result in clearer code. 

Although the GOT0 statement has been included in 
Microprocessor Pascal it has deliberately not been made easy 
to use. All labels used must be declared in advance. 
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6 , 8  CONCURRENCY 

Concurrency is an integral part of the Microprocessor Pascal 
language and an understanding of this concept is built into 
the Microprocessor Pascal System tools (in particular, the 
compiler and the host and target debuggers), In a target 
environment, concurrent execution of a multiple process 
system is supported by the MPX and MPIX executives. 

Concurrency is the simultaneous execution of a number of 
different software programs, or processes. Further 
information on concurrency is given in Section 5.2.1, 

This section describes some of the functions performed by 
the executive, and also the mechanisms provided for 
synchronization and communication between processes, 

6.8.1 Processes 

The term "process" as used in this section applies to all 
concurrent units in Microprocessor Pascal (implemented using 
the keywords SYSTEM, PROGRAM or PROCESS - see section 6.3,3 
and section 6,9), 

When a SYSTEM is first executed, the <system body) is 
automatically started, However, all other processes, must 
be explicitly activated using the START statement, The 
<system body> should only contain the code to initialise the 
system, which will typically consist of a series of START 
statements, 

On process activation, stack space is allocated to the 
process from the heap, The amount of stack space to be 
allocated to a process is set using the concurrent 
characteristic: 

( #  STACKSIZE = required stack size ) - - 
which is part of the process declaration, 

A process can be in one of three states: 

o Ready - the process is able to run (but there is 
a higher priority processes currently 
executing), 

o Active - the process is being executed, Under 
Microprocessor Pascal, the active process (there 
can only be one) is always the ready process with 
the highest priority, 
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o Blocked - the process is suspended (waiting for 
an event from another process to occur) and 
unable to run until the event has occurred. 

6.8.2 Process Record 

Each process has a unique process record. This is used by 
the executive to access information particular to a given 
process (where its stack is located, its identity, its 
priority, etc). The process record is also used for storing 
a process's volatile environment: display, program counter 
(PC), workspace pointer (WP), and status register (ST). 
(For an explanation of PC, WP and ST see section 8.4.3.) 

The display is a 16-word area containing addresses of the 
stack frames which can be accessed by the currently 
executing routine (ie data areas of other blocks which are 
in scope). The display is a 'short cut' means of access to 
remote stack frames that is quicker than tracing back 
through the stack frame linkage. 

6.8.3 Process Scheduling 

The executive Run-Time Support (RTS) determines which of 
several concurrent processes is to be executed next based on 
process readiness and process priority. The scheduling 
policy used is known as pre-emptive priority scheduling. 

Every process in a SYSTEM has a priority in the range 0 
(highest or most urgent) to 32766 (lowest or least urgent). 
This is specified by the concurrent characteristic: 

{ #  PRIORITY = required - priority - level ) 

which is part of the process declaration. Priorities 0 to 
15 are reserved for interrupt device handling processes. 

Through the process records, the executive maintains two 
queues: one is a circular list of all the processes known in 
the system; the other, the ready queue, is a priority 
ordered queue of processes that are in the ready state. The 
scheduling algorithm takes the first process in the ready 
queue and makes that the active process. This process is 
allowed to continue its execution until either it 
terminates, it becomes blocked, or a higher priority process 
that was blocked becomes ready. 

When a process becomes blocked, it is removed from the ready 
queue and the active process becomes the next process in the 
ready queue. If a process's state is changed form blocked 
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to ready, it is inserted into the ready queue according to 
its priority, (The process will be inserted into the ready 
queue after processes with the same priority, Interrupt 
device handling processes are inserted into the queue before 
processes with the same priority,) If the process which has 
just become ready is inserted into the ready queue in front 
of the active process, then the processor is pre-empted and 
the new process becomes the active process. 

To ensure that there is always at least one process in the 
ready state, the executive RTS automatically creates the 
'idle process' (with the lowest priority possible - 32767) 
on system initialisation, 

6 , 8 , 4  Process Synchronization 

Processes are independent but it is often necessary for them 
to synchronize their actions. The simplest way of doing 
this is via the semaphore and its primitive operations wait 
and signal. Although these operations are implemented as 
routines (ie a collection of instructions) they must be 
executed as though they are single machine instructions. 
IJntil the routines have completed, nothing must access the 
semaphore, the queues operated on, or the wait and signal 
operations themselves, This indivisibility is assured by 
setting the interrupt mask to zero on entry to the routines, 
and then resetting it back to its previous value on exiting 
them, The basic idea of a semaphore is described in Section 
4 e l l e l e  

6,8.4.1 Semaphores 

The semaphore is considered to be so fundamental to process 
synchronization that it is a predefined Microprocessor 
Pascal type (like an INTEGER or REAL), Although the 
compiler recognises the type semaphore (and allocates one 
word for each semaphore variable), a semaphore variable is, 
in fact, a pointer to a structure that is allocated from the 
heap at run-time by the INITSEMAPHORE procedure, 

The required Microprocessor Pascal statements to create a 
semaphore are: 

PROCEDURE initsemaphore(VAR sema : SEMAPHORE; 
value : INTEGER) ; EXTERNAL; 

VAR semaphore name : SEMAPHORE; - 
ini tsernaphore(semaphore - name,initial-value); 

After executing the INITSEMAPHORE routine, the variable 
SEMAPHORE - NAME will reference the newly created semaphore, 
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which will have its counter component set to INITIAL VALUE, 
For most applications INITIAL - VALUE will be set to zero. 

A semaphore consists of three elements: 

o A non-negative counter of unserviced events. 

o A queue (possibly empty) of suspended 
processes, This queue uses First In First Out 
(FIFO) ordering. 

o A check word that allows the executive to ensure 
that semaphore operations are actually being 
performed on semaphores, 

The Microprocessor Pascal RTS gives greater flexibility in 
handling semaphores by providing routines in addition to the 
basic WAIT and SIGNAL operations (a full list of these can 
be found in section 6,13,9,3), 

6 , 8 , 4 , 2  Wait Operation 

A WAIT operation decrements the semaphore's non-negative 
counter if it is non-zero, otherwise the issuing process 
(the active process) is put into the blocked state, (The 
process is removed from the scheduling ready queue and 
inserted into the semaphore queue,) 

6 . 8 . 4 . 3  Signal Operation 

A SIGNAL operation increments the semaphore's non-negative 
counter if the semaphore queue is empty, otherwise the first 
process in the queue is put into the ready state. (The 
process is removed from the semaphore queue and reinserted 
into the scheduling ready queue,) 

The classic producer/consumer situation is an obvious 
example of process synchronisation, In this, one process 
produces an item (eg a buffer full of text) while another 
one consumes it, A simplified version of this is shown 
below, 

PROCESS producer PROCESS consumer 

, (make item) 

Texas Instruments 

. ( use item ) 
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CONSUMER must WAIT for ITEM to be made before it attempts to 
use it. If PRODUCER has already made ITEM, the semaphore 
DONE (initialised to zero) is SIGNALed and CONSUMER will be 
able to continue. Otherwise CONSUMER will be suspended 
which will allow PRODUCER to make ITEM. When ITEM has been 
made, the SIGNAL will cause CONSUMER to be removed from the 
semaphore queue and inserted back into the scheduling ready 
queue. 

If the CONSUMER and PRODUCER processes are cyclic, then the 
above example cannot be relied upon as there is no guarantee 
that CONSUMER has finished with ITEM before PRODUCER 
replaces it with a new one. A more complete example is: 

PROCESS producer PROCESS consumer 
BEGIN BEGIN 
WHILE TRIJE DO WHILE TRUE DO 
REGIN BEGIN 
wait(availab1e); wait(done); 

. ( make item ) 

signal(done) 
END 

END; 

. ( use item ) 

signal(availab1e) 
END 

END ; 

The semaphore AVAILABLE is initialised to one so that on the 
first time around the loop, PRODUCER does not get 
suspended, 

When semaphores are used to ensure exclusive access to two 
or more resources, extreme caution must be exercised to 
prevent a condition known as deadlock. This takes place 
when two or more processes are suspended, awaiting a 
condition that can not happen because there is no active 
process to cause the needed event to occur. 

For example, if two simultaneously executing processes (A 
and B) both require exclusive access to resources (X and Y), 
the following sequence may result: 

A g e t s X  .. ArequestsY 
B gets Y .. R requests X 

In the above example, neither A nor B will ever resume 
execution, as A will be waiting for Y (which B has) and B 
will he waiting for  X (which A has). One possible way to 
ensure that this does not happen is to force both processes 
to request the resources in the same order. However, in 
some situations this might not be practical or efficient. 
Here either (or both) processes must check the availability 
of succeeding resources and, if unavailable, release those 
already acquired. 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL 

6.8.5 Interprocess Communication 

To implement a practical function it is usually necessary 
for a process to be able to communicate with other processes 
in the system. Microprocessor pascal supports four 
mechanisms for interprocess communication. These are 
described below. 

6.8.5.1 Shared Variables 

The simplest form of interprocess communication is 
accomplished through the sharing of variables. A nested 
process can access all its parent's variables. (Heap 
variables can also be accessed since it is possible to pass 
pointers as parameters to a process.) 

However, it is essential that only a single process is 
allowed to operate on any shared variable at a time, This 
can be achieved by representing the shared variable as a 
record structure containing a mutual exclusion semaphore 
(the semaphore is initialised to one), and enclosing any 
code sections referencing the variable with wait and signal 
operations on the semaphore. For example: 

VAR b: RECORD 
mu t ex : SEMAPHORE ; 
shared - variable: any-type; 

END ; 

WITH b DO 
BEGIN 

wait(mutex); 
( access/modify shared - variable ) 

signal(mutex); 
END; 

The WITH statement above is used to simplify references to 
components of a record structure. This allows BOMUTEX and 
B.SHARED VARIABLE to be referred to by the identifiers MUTEX 
and SHAR~D - VARIABLE respectively . 
6.8.5.2 Message Buffers 

A message buffer is a shared data structure through which 
interprocess communication is possible. It allows a process 
to send messages to another process without the sender 
having to wait until the receiver is ready for the message 
(ie the messages are buffered). In this context a "message" 
is any structure which can be copied from one process to 
another . 
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A message buffer is of the form: 

CONST max messages = .... (* some number *) 
TYPE message - index = 1. .max messages ; 

message = some user defined structure; - - - 
VAR message - buffer: 

RECORD 
mutex,not empty,not full: SEMAPHORE; 
next in,next out: message index; 
buf fFr : ARRAY [message - inzex] OF message ; 

END ; 

mutex - Ensures mutual exclusion (initialized to 1) 

not empty - Indicates how many messages are in the buffer - 
(initialized to 0) 

not - full - Indicates how many vacant elements in the buffer 
(initialized to max messages) 

next in - Where the next message is to be stored 
nextout - Where the next message is to be taken from - 
Initially, .NEXT - IN and NEXT - OUT are set to zero. 

To deposit a message into the buffer 

WITH message buffer DO - 
BEGIN 

wait(not full); 
wait (mu tex) ; 

next in:=next in MOD max messages +l; - 
s ignal (mu t ex)i 
signal(not - empty) 

END; 

To remove a message from the buffer 

WITH message - buffer DO 
REGIN 

wait(not empty); 
wait (nutex) ; 
message - out:=buffer[next out]; - 
next out:=next out MOD max messages +l; - - 
sign;hl(mutex); 
signal(not - full) 

END; 

Note: Deadlock could result if the order of the wait 
operations is reversed in either routine. 

Updating the buffer element pointers, NEXT IN and NEXT OUT, 
by MODing them with MAX MESSAGES and thenadding one ailows 
the message buffer to be- used in a circular fashion (a 
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buffer managed in thfs way is known as a circular or 
ring buffer). 

Note: MESSAGE - IN and MESSAGE - OUT must be variables of type 
XESSkGE. 

6.8.5.3 Channels 

The channel mechanism permits communication between any two 
(or more) concurrent routines (PROGRAMS or PROCESSes) in a 
system, Channel data structures are not pre-defined in the 
program code, but are allocated dynamically from the system 
heap as required, Channels provide a standard, pre-written 
set of routines for exchanging messages, . 
Channels also provide more flexibility, The two previous 
mechanisms do not allow communication between PROGRAMS, or 
between PROCESSes defined within different PROGRAMs (as 
variables cannot be defined at the SYSTEM level), 

Figure 6-8 Channel Mechanism 

SENDER CHANNEL X 

PROCESS * 
s - 

Channels are referenced by channel names (in fact, channel 
names are 16 bit numbers). There is a system-wide directory 
of channel names, maintained by the executive, which is 
referenced whenever a PROCESS or PROGRAM wishes to "connect" 
to a channel, It is also possible to allocate channels 
which are specific to an individual software package (for 
example, the Interprocess File Subsystem makes use of a 
locally defined set of channels for internal operations), 

RECEIVER 
PROCESS 

In order to use the channel mechanism: 

o All participating concurrent routines must agree 
on the channel name to be used, This is 
hard-coded into the routines, 

o Each participating routine requests the 
executive to allocate and initialise the data 
structures for a particular channel name using 
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t h e  CSPNIT p rocedure ,  

o A r o u t i n e  t h a t  wants  t o  send d a t a  a l o n g  t h e  
c h a n n e l  a l l o c a t e s  a  message b u f f e r  u s i n g  
CSALLOCATE. The r e q u i r e d  message i s  w r i t t e n  
i n t o  t h e  a p p r o p r i a t e  f i e l d s  of t h e  message 
b u f f e r  which i s  then  " t r a n s m i t t e d"  u s i n g  
CSSEND, A c a l l  t o  CSWAIT e n s u r e s  t h a t  t h e  
t r a n s m i t t i n g  r o u t i n e  does  n o t  a c c e s s  t h e  message 
b u f f e r  u n t i l  t h e  r e c e i v i n g  r o u t i n e  h a s  f i n i s h e d  
p r o c e s s i n g  i t ,  When p r o c e s s i n g  h a s  comple ted ,  
t h e  message b u f f e r  can  e i t h e r  be re- used o r  
r e t u r n e d  t o  t h e  sys tem heap u s i n g  CSDISPO'SE, 

o A r o u t i n e  t h a t  w i shes  t o  r e c e i v e  d a t a  c a l l s  t h e  
p r o c e d u r e  C$RECEIVE, Th i s  r o u t i n e  w i l l  w a i t  
u n t i l  a  message h a s  been s e n t ,  i f  one i s  n o t  
a l r e a d y  a v a i l a b l e ,  m e n  the message h a s  been 
p r o c e s s e d ,  CSACKNOWLEDGE i s  used t o  inform t h e  
s e n d i n g  r o u t i n e  t h a t  t h e  message b u f f e r  i s  no 
l o n g e r  be ing  used ,  

A t y p i c a l  d a t a  d e c l a r a t i o n  sequence  i s :  

CONST channe l  no = any u s e r  r e q u i r e d  - number; 
TYPE msg bufTer  p t r  = CdmsgbufTer; 

msg-buf - f e r -  = RECOKD 
( Any r e q u i r e d  s t r u c t u r e  ) 

END; 
c h a n n e l  - i d  - p t r  = @INTEGER; 

VAR b u f f e r  : msg b u f f e r- p t r ;  
c h a n n e l  - i d  : c h a n n e l  - i d  - p t r ;  

The send ing  r o u t i n e  is :  

( A l l o c a t e  channe l  CHANNEL NO from 
t h e  heap and r e f e r e n c e  iF th rough  
t h e  v a r i a b l e  CHANNEL I D  - 1 

CSINIT(channe1 - no ,channe l  i d ) ;  
( ~ l l o c a t e  a  message b u f f e r  and r e f e r -  

e n c e  i t  through t h e  v a r i a b l e  BUFFER ) 
~ $ ~ ~ ~ ~ ~ A ~ ~ ( s i z e ( b u f f e r ) , b u f f e r ) ;  

, ( F i l l  t h e  message b u f f e r  ) 

( Send t h e  f i l l e d  message b u f f e r  
r e f e r e n c e d  by BUFFER 1 

C$SEND(channel - i d , b u f f e r ) ;  
( Wait f o r  t h e  r e c e i v e r  t o  f i n i s h  

p r o c e s s i n g  t h e  message b u f f e r  1 
C$WAIT(buffer); 

( Return  t h e  "used" message b u f f e r  
back t o  t h e  sys tem heap 1 

C$DISPOSE(huffer); 
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The receiving routine is: 

{ Allocate channel CHANNEL NO from 
the system heap and reference it 
through the variable CHANNEL-ID 1 - 

CSINIT(channe1 - no,channel id); 
( Wait for the next message buffer 
sent via the channel CHANNEL NO 
and reference it through the- ) 
variable BUFFER 

CSRECEIVE(channe1 - id,buffer); 
, ( Process the message ) 

{ Inform the sender that the message 
buffer is no longer in use 1 

C$ACKNOWLEDGE(buffer); 

A concurrent routine can "disconnect" itself from a channel 
by cal ldng CSTERM, When all toutines have been disconnected 
from a channel then the channel data structures will be 
returned to the system heap, 

Other channel procedures available include CSNOTIFY (signal 
the calling process whenever a message arrives on the 
specified channel), CSCRECEIVE (check to see if a message 
has arrived hut do not wait if none has), and C$,CWAIT (check 
if' the message has been processed but do not wait if it has 
not) , 

6.'6.5.4 Interprocess Files 

The fourth communication mechanism is implemented using file 
variables (see section 6,6.12) that communicate through - 

interprocess files. Interprocess files allow concurrent 
routines to write to other concurrent routines exactly as if 
they were writing to external devices, However, the 
communication mechanism is handled entirely in internal 
memory (by the Interprocess File Subsystem), The standard 
file I/o procedures (READ, WRITE, etc) are used in exactly 
the same way as for external files. 

Each interprocess file has a character string name which is 
identical to the names of all file variables connected to 
it, 

A fife variable has a ch-aracter s t r i ~ g  name. T n l t i a l l y  this 
is the same as the variable's identifier, but it can be 
changed using the procedure SETNA?!E, 
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Figure 6-9 Interprocess File Mechanism 

READ+ 

Files must be opened by calling the procedure REWRITE for 
write operatipns and RESET for read operations, before any 
110 can be performed. (If the file is already open then it 
is automatically closed before it is reopened in the 
appropriate mode.) This also causes the file variable to be 
connected to a file channel with the same name as the file 
variable. If no file channel exists by that name, one is 
created and given the appropriate characteristics. 

FILE 
VARIABLE 

& 

PROCESS 

C,losing an open file (using the procedure CLOSE, or by 
exiting a routine in which a file variable is declared) also 
diqfconnects the file variable from the file channel. A file 
clyannel is normally destroyed when all file variables have 
been dis'connected from it, 

The following allows processes A and B to communicate with 
each other via the interprocess file TRANSFER, Process A 
opens the interprocess file TRANSFER for writing, while 
process I3 opens it for reading. 

PROCESS a(.....); PROCESS b( . . . . . ) ; 
VAR transfer: TEXT; VAR transfer: TEXT; . . 
rewrite(transfer); reset(transfer); 
writeln(transfer,...); readln(transfer,...); 

A similar effect would be produced by: 

PROCESS a(OUTPUT:TEXT;...); PROCESS b(INPUT:TEXT;,..); . b 

reset(input); 
~riteln(,...~); readln(,....); . . 

where these two processes are activated by 

START a(filenamed('transfer'),...); 
START b(filenamed('tran~fer')~.~~~: 
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The function FILENAMED results in a file with the initial 
name equal to the specified string, 

- 
lt is not necessary to p e r f o r m  a REWRITE operation in the 
second example for process A as this is automatically 
performed on the default output text file OUTPUT, 

6.9 MODULARITY 

One of the most important features not addressed by Wirth's 
original definition of Pascal is that of modularity, 
Modularity allows a problem to be defined in terms of a 
number of separate, self-contained, sub-problems (each of 
which has a clearly defined interface). A sub-problem can, 
in turn, be broken down into further sub-problems, 
Typically, this decomposition continues until each 
sub-problem is of a manageable size, 

In Microprocessor Pascal, the language constructs SYSTEM, 
PROGRAM and PROCESS enforce a modular approach to program 
development, This hierarchical concurrent structure permits 
the construction of complex concurrent functions which can 
be encapsulated in a single package, 

The fundamental unit of modularity is the PROGRAM; this 
represents an independent function which has its own unique 
"site of execution1', Although functions execute 
concurrently with each other (with no possibility that one 
will interfere with another), the code that the function 
consists of typically executes sequentially, 

However, in a complex function, it may be necessary to 
create the function from a number of independent concurrent 
sub-functions, This situation is catered for by the PROCESS 
construct. Like PROGRAMS, PROCESSes are separate "sites of 
execution" which are activated by being STARTed; they are 
not simply "called1' like PROCEDURES and FUNCTIONS, 

The complete structure of a PROGRAM with all subordinate 
PROCESSes (and PROCEDURES and FUNCTIONS) is referred to as a 
PROGRAM family, The PROGRAM family is a convient package 
for a complete, independent function within a system. The 
concurrent structure is described in Section 5,2,2, 

If, for example, a function was to be designed to control a 
lathe, sub-functions required might be 'monitor the chuck 
speed', 'control the cutting depth' and 'control the cutter 
position', 
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PROGRAM Control lathe; - 
declarations; 

PROCESS Monitor chuck speed; - - 
declarations; 
BEGIN ( Monitor chuck speed ) - - 
END; ( Monitor chuck speed ) - - 
PROCESS Control cutter depth; - - 
declarations; 
BEGIN ( Control - cutter depth ) - 
END; ( Control - cutter - depth ) 

PROCESS Control - cutter - position; 
declarations; 
BEGIN ( Control - cutter - position ) 

END; ( Control cutter position ) - - 
BEGIN ( Control lathe ) 
START  oni it or-chuck speed; 
START Controlcutte'F: de~th: 
START control-cutterpo$ition 

END; ( control-lathe - T 
As each function, and sub-function, are separate "sites of 
execution" and, once STARTed, execute totally independently 
of the system, the user is able to specify the c9ncurrent 
characteristics (heapsize, stacksize and priority) to be 
used for each, These are defined by: 

BEGIN ( program or process body ) 
{ b  STACKSIZE = amount-of stack; 

HEAPSIZE = amount-ofIheap; 
PRIORITY = program or process priority ) - - - 

END; ( program or process body ) 

Under Microprocessor Pascal, an application is put together 
from functions to form a system. A SYSTEM consists of a 
number of declarations (constants, types, commons, PROGRAMS, 
procedures and functions) and a <system body), The 

(system body) contains the instructions that are first 
executed when the system is initialized; it also specifies 
the concurrent characteristics to be used while this 
initialization is being performed, 
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SYSTEM Look after shop - floor; 
CONST declzrat ioFs ; 
TYPE declarations; 
COMMON declarations; 

PROGRAM Control lathe; - 
declarations; 
BEGIN ( Control lathe ) - 
END; ( Control lathe ) - 
PROGRAM Control - miller; 
declarations; 
BEGIN ( Control miller ) - 
END; ( Control - miller ) 

BEGIN ( Look after shop floor ) 
( / I  system concurrent yharacteristics ) 

START Control lathe; 
START control-miller - ; 

( system body ) 

END. ( Look - after - shop - floor ) 

Modularity is further enhanced by allowing the user to 
develop and compile modules in complete isolation from each 
other and to link them together into a consistent system at 
II configuration time". These modules may contain PROCEDURE, 
FUNCTION and/or PROGRAM definitions (along with any 
necessary data declarations). In this case, only one module 
must have a real system body. The others must have a "null 
system body", declared by: 

SYSTEM System - dummy - name; 
declarations; 

PROCEDURE definitions; 
FUNCTION definitions; 
PROGRAM definitions; 

BEGIN ( System dummy-name ) 
( $  nullbody T 

END. ( System dummy name ) - - 
When the modules are linked together to form the system, 
there will be only one <system body). PROCEDURES, 
FUNCTIONS, PROGRAMS or PROCESSes that are not defined in a 
module but are used within it are accessed by declaring them 
as EXTERNAL. 

Further development of this modular approach, to encompass 
hardware as well as software, leads to a functional approach 
(see Section 5.1.1). 
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Note: "FUNCTION" capitalised has a precise technical 
meaning, as distinct from the more general use of 
"function", 

6 1 O INTERRUPTS 

The 990 range of processors recognize 16 distinct interrupt 
levels, numbered 0 (highest priority interrupt) to 15 
(lowest priority interrupt), A full description of the 990 
interrupt structure is given in section 8,10, 

A device process is a process that has been written to 
service a particular interrupt level, These processes are 
identified by their priorities, All processes in a 
Microprocessor Pascal system are assigned a priority, in the 
range 0 to 32,766, The first 16 priorities, 0 to 15, are 
reserved for use by device processes, 

A process with a priority of (eg) 5 may service level 5 
through level 15 interrupts, A process's priority is set 
using the concurrent characteristic: 

{ #  PRIORITY = interrupt - level ) 

If a number of devices all use the same interrupt level, 
then that level's device process must first determine which 
device actually caused the interrupt before it can start 
servicing it , 

All interrupts except the level 0 interrupt (RESET) are 
disabled by calling the procedure MASK, The procedure 
UNMASK enables interrupts which are more urgent than the 
priority of the calling process, 

The procedure EXTERNALEVENT is used to associate a semaphore 
with a particular interrupt level, A device process 
executes a WAIT on the semaphore associated with its 
interrupt level. When an interrupt occurs, the executive 
performs a SIGNAL on the semaphore associated with the 
interrupt level, thus activating the suspended device 
process, 

The procedure ALTEXTERNALEVENT allows the user to specify an 
alternative process that will be executed if the primary 
process is not suspended on the interrupt's semaphore (eg if 
it has not finished processing the last interrupt). This 
procedure is intended to be used to service unexpected or 
spurious interrupts, 

The correspondence between a semaphore and an interrupt 
level can be broken using the NOEXTERNALEVENT procedure, 
while the alternative process correspondence can be broken 
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by the NOALTEXTERNALEBENT procedure, 

PROGRAM level - 7 - handler(..,,); 
VAR level - -  7 sem,spurious - level - 7: SEMAPHORE; 

PROCESS interrupt - 7(level: SEMAPHORE); 

BEGIN ( interrupt - 7 ) 
( d  pri0rity=7;....~. ); 
WHILE TRUE DO - 
BEGIN ( do forever ) 
wait(leve1); 
( process interrupt level 7 ) 

END ( forever loop ) 
END; ( interrupt - 7 ) 

PROCESS spurious - 7(level: SEMAPHORE); 

BEGIN ( spurious - 7 ) 
( #  priority=7;...... ); 
wait(leve1); 
( process spurious interrupt ) 

END; ( spurious - 7 ) 

BEGIN { level 7 handler ) - - 
initsemaphore(leve1 - 7 - sem,O); 
initsemaphore(spurious level 7,O); 
externalevent (level - -  7 ;em, 7)i 
altexternalevent(spurious level - 7,7); 
START interrupt 7 (level - -  7sem) ; 
START spurious - T(spurious - level - 7) 

END; { level - 7 - kandler ) 

If a fast device is incorporated into the system, the 
Microprocessor Pascal interrupt handling mechanism may be 
too slow and it may be necessary to write an assembly 
language interrupt handler, To cover this eventuality, the 
user can "hook" the assembly language routine into the 
sys tern in two ways , 

o Using the ASSEMBLYEVENT procedure, 

o Setting the appropriate interrupt vector (in the 
"RXINIT" module) to reference the assembly 
language routine and its workspace, In this 
case the interrupt is handled totally outside 
the Microprocessor Pascal run-time environment, 

The ASSEMBLYEVENT procedure is used as follows: 
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CONST level = required - interrupt level value; - - 
TYPE workspace = ARRAY [ 1 a a 161 OF INTEGER; 

VAR asm - wp : workspace; 
PROCEDURE assemblyevent(VAR wp : workspace; 

entry point : INTEGER; 
level : INTEGER); EXTERNAL; 

PROCEDURE asm idt ; EXTERNAL; - 

assemblyevent(asm wp, location(asm idt), level 1; - - 
where ASM IDT is the entry point label of the assembly 
language ixterrupt handler. LOCATION returns the address of 
ASM IDT. - 
Note: The host debugger does not support assembly language 
routines. 

611.1 CRU Operations 

Microprocessor Pascal supports direct 9900 CRU operations 
(for those unfamiliar with the CRU concept see Section 8.9) 
via the following standard procedures: 

CRUBASE (base) 
LDCR (width, value) 
SRO (disp) 
SBZ (d'isp) 
STCR (width, value) 

and the BOOLEAN function: 

TB (disp) 

Although these are writ ten as procedure calls, the 
Microprocessor Pascal compiler actually transforms the calls 
into in-line code. 

6.11.2 Memory-Mapped 1/0 

Communication to a memory-mapped device is performed by: 

o Describing the structure of the device's 
dedicated memory space in a type declaration (if 
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t h e  device has a c o n t r o l  register it will be 
necessary to describe the individual control 
flags in a packed record structure), In the 
example below, this is the type identifier 
CNTL REG, - 

o Declaring a pointer variable that points to this 
type (CNTL - REG - PTR below), 

o Initialising this pointer variable to point to 
the actual address of the memory-mapped device 
via a "type transf er" (see section 6.6.14). 

Having done this, assigning a value to the pointer variable 
(or the appropriate field of it, if it is a packed record) 
causes the value to be "written" to the device. 

Referencing the variable on the right hand side of an 
assignment statement, or anywhere an expression is required, 
will cause the device to be "read", 

For example: If an 8 bit digital to analogue rcnverter is 
located at hex address >FC06, then the following 
Microprocessor Pascal statements will cause the value 127 to 
be written to the device, 

CONST address of the device = #FC06; 
value to be our~ut = 127: 

TYPE cntl - reg ptr = @cntl reg; 
cntlmreg - = INTEGER; 

VAR dac : cntl - reg - ptr; 
dac::INTEGER := address of the device; - -  - 
dac@ := value to be output; - - -  

As the D/A only has an 8 bit resolution, CNTL - REG could be 
defined as: 

TYPE cntl reg = 
P~CKED RECORD 
fill : 0,.255; "8 unused bits 
output : 0,,255 "8 bit output value 

END; 

The output operation now becomes; 

dac@.output := value-to - be output; 
If a sequence of operations is to be perforaed on the 
memory-mapped device then the Microprocessor Pascal keyword 
WITH can be used to "shorten" the variable name (see section 
6e8,5,1), 
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For a 12 bit analogue to digital converter, located at hex 
address COlA, the following Microprocessor Pascal statements 
will cause the device to be read, 

TYPE bits12 = O,,#FFF; 
a to d cntl reg ptr = @a to d cntl reg; - - 0  - - -  - 
a to d cntlreg-= 
- PXCFED RTCORD 

start conversion flag : BOOLEAN; 
end - OF - conversion - flag : BOOLEAN; 
input - bits : bitsl2; 

END; 

VAR a to d - - : a to d cntl reg ptr; - - 
input - reading : bTtsi2: 

a to d::INTEGER := #COlA; { Set a to d address ) - 0 - - 
WITH a to d DO - - 
BEGIN 

( If another reading is available then get it, 
then initialise the A/D for the next reading ) 

IF end - of - conversion flag THEN - 
REGIN 
input reading := input bits; 
start-conversion := T R ~ E ;  { Set start conversion } 
start-conversion - := FALSE ( pulse 1 

END; 

END; 

6.11,3 Files 

The standard procedures READ and WRITE are provided for 
input from and output to files. In addition, the procedures 
READLN and WRITELN (read and write line) apply to text 
files, File types are described in section 6.6,12 above,and 
in the Microprocessor Pascal System User's Manual, 
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6.12 DIGITAL VOLTMETER (DVM) EXAMPLE 

MICROPROCESSOR PASCAL 

This example consists of four independent "do forever" 
processes thst  synchrozise their actions vba semaphores. 

The system structure for this example is shown below: 

,SYSTEM dvm; 

PROGRAM initialise and go; - - 
PROCESS display; 

PROCESS analog; 1 
PROCESS keyboard; 

PROCESS clock; 1 
- 

Figure 6- 10' DVM Example - Lexical Hierarchy 

SYSTEM FO 
PROGRAM 
INITIALISE- 
AND-GO 

CLOCK 
INTERRUPT 
/ 

Figure 6-11 DVM Example - Concurrent Structure 
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* Microprocessor Pascal Concurrency Demonstration Program * * * 
? * Dave Wollen, EMTC, Bedford * 

* * 
* 15 Oct 1979 ~k 

* * 
* DESCRIPTION * 
* The program implements a simple digital voltmeter * 
* using a special demonstration box, The main ~t 

* purpose is to illustrate Microprocessor Pascal, * 
* especially concurrent processing, and for this * 
* reason the system has been implemented as a number * 
~t of separate processes synchronized by semaphores, * 
* * 
* The A/W used includes a strobed keyboard, strobed JI: 

* LED display (with decoders) and a Texas Instruments * 
* TL505 A/D converter. The system will run on a * 
* Texas Instruments TM990 microprocessor module with * 
* at least >2AFO bytes of program memory, The on- JI: 

* board TMS9901 is used to provide clock interrupts, * 
* * 
* The H/W is set up in such a way that the keyboard * 
* may not be used when the analogue input switch is * 
* in the ON position. * 
* * 
* OPERATION .A: * When the analogue input switch is "OFF" a threshold * 
* voltage can be keyed in (hundredths of a volt), with * 
* the system accepting only the last four digits * 
* keyed. To start converting, key "GO" and turn on * 
* the analogue input switch, The input voltage will * 
* be constantly monitored and displayed; if it rises * 
* above the entered threshold the display will show * 
* 9999 until it falls below threshold once more, To * 
* alter the threshold, turn off analogue input, key t 

* "STOP" and enter new value, * 
* * 
............................................................ 
SYSTEM demo; {$debug) 
TYPE non-neg = 0..32767; 

interrupt = 0,.15; 

PROCEDURE initsemaphore(VAR sema: SEMAPHORE; 
count: non-neg); EXTERNAL; 

PROCEDURE externalevent(sema: SEMAPHORE; 
level: interrupt); EXTERNAL; 

PROCEDURE wait(sema: SEMAPHORE); EXTERNAL; 

PROCEDURE signal(sema: SEMAPHORE); EXTERNAL; 

PROGRAM initialise and go; - - 
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CBNST interrupt level = 3; 
V AR threshold; analog value: ARRAY [O.. 31 of 0.. 9; 

converting : BOOLE~N; 
t ime : SEMAPHORE ; 
time to strobe display: SEMAPHORE; 
t ime-f or a d czun t : SEMAPHORE ; - - - -  
time - to - strobe - keyboard: SEMAPHORE; 

PROCESS clock; 
CONST clock mode = 0; enable clock interrupt = 3; 

timeron - - 9901 = #loo; peFiod - for - 58hz = fi65D; 

{This process synchronises all others. It initialises 
the 9901 clock register and waits for each level 3 
interrupt, after which it signals to other processes 
that they can resume. If the period between 
interrupts is made too short, other processes will 
not run to completion; for the sake of brevity no 
attempt is made to cope with this.) 

BEGIN (clock) 
{ #  STACKSIZE=50; HEAPSIZE=O; PRIORITY=interrupt - Ievelj 
crubase(timer on 9901); 
ldcr(l5, perizd - For - 58hz); 
WHILE TRUE DO 
BEGIN 

sbz(c1ock mode); 
sbo(enab1; clock - interrupt) ; 
wait (timely 
signal(time to strobe display); 
signal(time-fo';r - - - -  a d count); 
signal(time - to - strobe - keyboard) 

END 
END; {clock) 

PROCESS display; 
CONST num of bits = 9; display base = 288; 

higK - byte = 8100; low - byte = 0; 
V AR dig ptr: 0..3; 

byte selector: 0. .6100; 
dispiay - output: 0. .#199; 

(This process strobes and updates the display when 
it has been signalled to do so. It simply converts 
the appropriate two digits of threshold or analog - 
value (depending on the current mode) to a bit 
pattern (including the strobe bit) and outputs this 
pattern to the CRU.) 

BEGIN (display) 
( #  STACKSIZE=50; HEAPSTZE=O; PWIORITY=16) 
dig ptr := 2; 
cru~ase(display - base) ; 
WHILE TRUE DO 
BEGIN 
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waititime to strobe display); 
I F dig - ptF T 2  THEN- 

BEGI N 
dig - ptr := 0; 
byte-selector := low - byte 

END 
ELSE 
BEGIN 
dig - ptr := 2; 
byte-selector := high o byte 

END; 
I F  converting THEN 

display - odtput := analog value [dig ptr] 
+ analzg value[dTg - ptr + l]*16 
+ byte - selector 

ELSE 
display-output := thresholdrdig ptr] 

+ threshold[dTg ptr + 11*16 
+ byte selector? 

ldcr(num of - bits, display - output) 
END {whil;) 

END; {display) 

PROCESS analog - to - digital - converter; 
CONST a d base = 308; 

0- 

comparator on 505 = 4; - - 
A input to - 505 = 0; B input to 505 = 1; - 
t?i = ZST ti = 25y 
Vref = 250; ratio = Vref DIV tl; 
max count = 32767 DIV ratio; 

TYPE conversion-period = (pre-con, in-to, in - tl, in - t2); 
VAR count: O..max~count; 

when: conversion period; 
limit, millivolts: INTEGER; 

{This process implements all the A/D conversion. The 
TL505 requires a specific sequence of events to occur 
for conversion, and the final representation of the 
analog value is the value held in a S/W counter, which 
may then be scaled etc as required, The symbols used 
in this process correspond to those used in the 505 
data sheet, to which further reference should be made. 
If the current mode is "not converting'' then the 505 
control lines are kept high,) 

BEGIN (analog to digital converter) 
{ # STACK SIZE=^^; HEAPS~E=O; PRIORITY=~~) 
cruhase(a d base); 
WHILE TRTJE DO 
BEGIN 
wait(time for - - -  a d count); 
I F  converiing THEN 
BEGIN 
count := count + 1; 
CASE when OF 
pre-con : BEGIN 
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sbz(A input to 505); 
sbz (~-in~ut-to-505) ; - - - 
when := in to; 
count := 0- 

END; 
in to : IF count = to THEN - 

BEGIN 
sbo(A input to 505); 
sbo(B-inputto-505) : - - - - - 
when := in tl; - 
count := 0 

END; 
in tl : IF count = tl THEN - 

BEGIN 
sbz(A - input to 505); 
when := in - F2;- 
count := 0 

END; 
in - t2 : IF tb(comparator - on - 505) THEh 

REGIN 
sbz(B - input to 505): - - 
whelz := A L L  '- to;  
millivolts-:= ratio * count; 
count := 0; 
limit := threshold[3]*1000 

+ threshold[2]*100 
+ threshold[l]*lO 
+ threshold[O]; 

IF millivolts > limit THEN 
millivolts := 9999; 

FOR i := 0 TO 3 DO 
BEGIN 
analog value[i] := millivolts MOD 10; 
mi lliv~lts := millivolts DIV 10 

END 
END {if tb) 

END (case) 
END (if converting) 

ELSE 
BEGIN 
when := pre con: 
sbo(~ input-to 505) ; 
sbo(B-inputto-505) - - - 

END 
END (while) 

END; (analog - to - digital - converter) 

PROCESS keyboard - input; 
CONST width = 4; strobe = 0; 

key - input- = 31 1; nothing = FF; - 

V AR row: 306, ,312; 
key push, last push: 0.,15; 
updgt ed : BOOLE~N; 

PROCEDURE update - inputs; 
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PROCEDURE change threshold ; - 
{This procedure shift threshold and accept most 
recent key into least significant position) 

BEGIN {change threshold) 
FOR i := 3 EOWNTO 1 DO threshold[i] := threshold[i-1] ; 
threshold [O] : = key 

END; (change - threshold) 

{This procedure decode the keyboard and take appropriate 
action. The keyboard is arranged as follows: 

LSB. • • .MSB 

310 1 2 3 4 
308 5 6 7 8 %  
306 9 0 go stop 

BEGIN {update inputs) 
CASE key puFh OF 

#E - : key := 1; 
#C, fD : key := 2; 
8..#B : key := 3; 
0..7 : key := 4 

END; 
key := key + 4*abs((row - 310) DIV 2); 
CASE key OF 
10 : key := 0; 
11 : IF NOT converting THEN converting := TRUE; 
12 : converting := FALSE; 

OTHERWISE 
END; 
IF NOT converting AND key < 11 THEN change - threshold; 

END; (update - inputs) 

(This process strobes the keyboard and debounces 
and decodes any input when signalled to do so. If 
the mode is "converting", the only key of interest 
is "stop". Keys are active when low.) 

BEGIN (keyboard input) 
{ #  STACKSIZE=~O; HEAPSIZP.=O; PRIORITY=16) 
row := 306; 
key push := nothing; 
last push := nothing; 
updaied : = FALSE; 
WHILE TRUE DO 
BEGIN 
wait(time to-strobe - keyboard); 
crubase(row) ; 
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crubase(key - input); 
stcr(width, keg - push); 
crubase(row) ; 
sbo(strobe); 
IF key push = nothing THEN 
REGIZ 
updated := false; 
row := row + 2; 
IF converting OR row = 312 THEN row := 306; 

END 
ELSE 
IF key - push = last - push AND NOT updated THEN 
BEGIN 
update inputs; 
updatez := TRUE 

END; 
last - push := key - push 

END 
END; (keyboard - input) 

{This pr0gram.i~ used to initialise all the semaphores, 
zero the threshold and analog - value arrays and start 
all the other processes) 

BEGIN (initialise and go) 
( a  STACKSIZE=~O~; HEAPSIZE=~OO; PRIORITY=16) 
initsemaphore(time to strobe display, 0); 
initsemaphore(time-for - - -  a d count, 0) ; 
initsemaphore(timeto strobe - keyboard, 0) ; 
initsemaphore(time~ 07; 
externalevent(time, interrupt - level); 
converting := FALSE; 
FOR i := 0 TO 3 DO 
BEGIN 
threshold [il := 0; 
analog - valueti] := 0 

END; 
START display; 
START analog to digital-converter; 
START keyboaFd - Tnput ; 
START clock 

END; (initialise - and - go) 
REGIN {demo) 

{ #  STACKSIZE=300; HEAPSIZE=O; PRIORITY=16) 
START initialise and go - - 

END. (demo) 
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6.13 REFERENCE SECTION 

6.13.1 System Commands 

Compile a Microprocessor Pascal 
program in background 

Generate native code 
Collect MPIX run-time support 
Compile a Microprocessor Pascal 

program 
Copy text files 
Copy text files 
Debug a compiled Microprocessor 
Pascal program 

Delete temporary files 
Create/edit a file 
Execute a compiled Microprocessor 
Pascal program 

Generate routine map 
Print a stored file 
Delete synonyms used 
Reverse assemble object code 
Save an edited file 
Execute SCI command 
Display a stored file 
Separate object modules 
Terminate a Mircroprocessor Pascal 
session 

File utility program 
Wait for background task to finish 

MICROPROCESSOR PASCAL 

BATCH 

CODEGEN 
COLLECT 
COMPILE 

COPY 
COPYSRC 
DEBUG 

DELETE 
EDIT 
EXECUTE 

GENMAP 
PRINT 
PURGE 
RASS 
SAVE 
SCI 
SHOW 
SPLIT 
QUIT 

UTILITY 
WAIT 

* Only for DX990 users 
#I Only for FS990 and TMAM9000 users 

6.13.2 Utility Commands (990/4 and TMAM9000 only) 

Create a file 
Compress a file 
Change file name 
Change file protection 
Delete file 
Change listing file/device 
Receive file across data link 
Transmit file across data link 
Map disc 
Display time and date 
Terminate program execution 

Texas Instruments 

CF,file name 
CM,file name 
CM,old file name,new file name 
CP,file name,<U or W or D> 
DF,file name 
DO, f ile or device name 
DR,file name 
DT,file name 
MD,disc name 
TI 
TE 
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6 = 1 3 , 3  E d i t  Commands 

Help CMD HELP 
Edi t /compose  mode F7 key 
Syntax  check CMB CHECK 
Termina te  and s a v e  e d i t  CMD QUIT 
Termina te  w i t h o u t  s a v i n g  CMD ABORT 
Change e d i t i n g  f i l e s  CMD INPUT 
Save t h e  e d i t e d  f i l e  CMD SAVE 

S c r o l l  f i l e  down 
S c r o l l  f i l e  up 
New l i n e  
Tab 
Back t a b  
S e t  t a b  inc remen t  
Move c u r s o r  up 
Move c u r s o r  down 
Move c u r s o r  r i g h t  
Move c u r s o r  l e f t  
Move t o  home p o s i t i o n  
F i n d  [ n t h  occurrence o f ]  

s p e c i f i e d  p a t t e r n  
R e l a t i v e  p o s i t i o n i n g  
Move t o  t o p  of f i l e  
Move t o  bot tom of f i l e  

I n s e r t  l i n e  b e f o r e  
D u p l i c a t e  l i n e  
D e l e t e  l i n e  
Sk ip  t o  n e x t  t a b  s e t t i n g  
I n s e r t  c h a r a c t e r  
D e l e t e  c h a r a c t e r  
C l e a r  l i n e  
Replace  s t r i n g s  [ n  t i m e s ]  

S p l i t  l i n e  

NOTES 

F1 key 
F2 key 
RETURN key 
SHIFT TAB SKIP key 
FIELD key 
CMD TAB( c h a r a c t e r  count  ) 
Up-arrow key 
Down-arrow key 
Right- arrow key 
Lef t- arrow key 
HOME key 
CMD FIND( pat tern ,  

[occurence  number] ) 
CMD [ + o r  - ]  l i n e  count  
CMD TOP 
CMD BOTTOM 

U n l a b e l l e d  g r e y  key 
F4 key 
ERASE INPUT key 
TAB SKIP key 
INS CHAR key 
DEL CHAR key 
ERASE FIELD key 
CMD REPLACE( o r i g i n a l  p a t t e r n ,  

new p a t t e r n ,  [ r e p e a t  c o u n t ]  ) 
F8 key 

CMD HELP 
S t r i k e  t h e  CMD key and t h e n  t y p e  i n  t h e  word HELP. 

[ exp l  
I n d i c a t e s  t h a t  i t e m  EXP i s  o p t i o n a l .  O p t i o n a l  i t e m s  may be 
o m i t t e d  ( t h e y  d e f a u l t  t o  1 )  a l o n g  w i t h  any p r e c e d i n g  comma. 

p a t t e r n  
Is e i t h e r  an  i d e n t i f i e r  o r  a  s t r i n g  of c h a r a c t e r s  encTosed 
w i t h i n  double  q u o t e s .  
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Getting Started/Finished 
Resume execution GO 
Terminate DEBUG session QUIT 
Help HELP( command ) 
Load saved program LOAD ( "pathname" ) 
Copy commands from file COPY ( "pathname" ) 
Show unresolved externals SE 

Status Displays 
Display process DP( [process] ) 
Display all processes DAP 

~reakpointslsingle Step 
Assign breakpoint AB( routine, [statement number] ) 
Delete breakpoint DB( routine,[statement number] ) 
Delete all breakpoints DAB( process ) 
List breakpoints LB( [process] ) 
Select single step mode SS( [process],[flag]) 

Showing/Modifying Data 
Show stack frame SF( 
Show heap packet SH( 
Show common area SC( 
Show indirect variable value sI( 
Show absolute memory location SM( 
Modify stack frame value MF ( 
Modify heap value MH ( 
Modify common value MC ( 
Modify indirect variable MI ( 
Modify memory ( 

[routine],[disp],[length] ) 
[routine],[disp],[length] ) 
common name,[disp],[length] ) 
routine,disp,[length] ) 
address, [length] ) 
routine, [disp] , [ver] , value ) 
routine, [disp] , [ver] ,value ) 
routine,[disp],[ver],value ) 
routine,disp,[ver],value ) 
routine,[ver],value ) 

Tracing Execution 
Trace process execution TP( [process],[flag] ) 
Trace routine ent ry/exi t TR( [process],[flag] ) 
Trace statement flow TS( [process],[flag] ) 

Monitor Process Scheduling 
Select default process SDP( process ) 
DEBUG the process DEBUG( process,[flag] ) 
Assign breakpoint to process ABP( process ) 
Delete breakpoint from process DBP( process ) 
Hold process HP( process ) 
Release process RP( process ) 

Interprocess File Simulation 
Connect input file CIF( filel, [f ile21 ) 
Connect output file COF( filel, [file21 ) 

Interrupt Simulation 
Simulate interrupt 

Selection of CRU Mode 
Select CRU mode 

SIMI( level ) 

CRU( [process] ,cru mode ) 
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NOTES 

1x1 
Indicates that the item X is optional, Parenthesis may be 
omitted if all the parameters are optional or defaulted. 

process 
If omitted it defaults to that set by SDP, It may be either 
a name (youngest instance of the PROCESS) or an integer 
constant (older instance of a particular PROCESS), found 
using DAP, 

routine 
May he either a name (most recent activation of the ROUTINE) 
or an integer constant (earlier activation), found using DP. 
Optionally it specifies the process which activated it by 
preceding ROUTINE with PROCESS (this is followed by '.'). 

flag 
Is an identifier that is either TRGE or FALSE: if TRUE the 
command is enabled; if FALSE the command is disabled. 

disp 
Is the byte displacement. 

ver 
Is the old value of the variable being modified, if it does 
not match the actual value an error occurs, 

file1 
An 8 character Microprocessor Pascal file name identifier 
enclosed in double quotes, 

file2 
A file pathname enclosed in double quotes. If omitted it 
defaults to the user's terminal, 

cru mode 
One of the following: 

EXECUTE Execute all CRU instructions 
OFF Ignore all CRU instructions 
DEBUG Default - All CRU 1/0 is user-simulated 
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6 . 1 3 . 5  File Manipulation Routines 

CLOSE(f) 
Place file F in closed state. 

DECODE(s,n,stat,q) 
Convert string S, starting at the Nth component of S, into a 
form compatible with the read variable Q (see NOTE 2) and 
store in Q. Status of the operation is returned in STAT, 

ENCODE(s,n,stat,p) 
Convert the write parameter P (see NOTE 1) into character 
format and store the result in S, starting at the Nth comp- 
onent. The status of the operations is returned in STAT. 

EOF(f) : BOOLEAN FUNCTION 
Returns a value of TRUE if the file F is not open for input 
or is in the end-of-file state. 

EOLN( f ) : BOOLEAN FUNCTION 
Returns a value of TRUE if the last character of the current 
line in the file F has been read. 

FILENAMED( S) : ANYFILE FUNCTION 
Connects the file variable of type ANYFILE to the file with 
the name S (S is a string constant). 

MESSAGE(X) 
Write the string X to the system message file. 

READ(f,vl,..,vn) Sequential 
READ(vl,..,vn) ---> READ(INPUT,vl,..,vn) Text 
READ(f,recnum,vl,..,vn) Random 
Read the components of a sequential, text or random file 
into the specified variables Vi (see NOTE 2 ) .  If the first 
argument is not a file variable F, the file INPUT is used. 
For Random files the second argument specifies the logical 
record number RECNUM, starting from zero, For Sequential 
and Random files, the remaining arguments must be compatible 
with the particular file components. 

READLN(f ,vl , . . ,vn) 
READLN(vl,..,vn) ---> READLN(INPUT,vl,..vn) 
READLN( INPUT) 
Read the components of a text file into the specified 
variables then carry on reading until the next end-of-line 
marker has been read. 

RESET(f) 
Opens a file F for input and positions it to its first comp- 
onent. If a Sequential or Text file is empty then EOF(f) is 
true, otherwise it is false. 
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REWRITE(F) 
Marks a file F as empty and then opens it for output, For a 
Sequential or Text file EOF(f) becomes true. This is auto- 
matically performed for OUTPUT, 

SETNAME(f,name) 
Associate logical channel F to the physical file NAME, NAME 
may not be the file OUTPUT, 

~~~TE(f,vl,~.,vn) Sequential 
WRITE(vl,..,vn) ---> WRITE(INPUT,vl,..,vn) Text 
~~~TE(f,recnum,vl,..,vn) Random 
Write the components to a Sequential, Text or Random file 
from the specified variables V1, ,Vn (see NOTE 2), If the 
first argument is not a file variable F, the file OUTPUT is 
used. For Random files the second argument specifies the 
logical record number RECNUM, starting from zero. For 
Sequential and RANDOM files, the remaining arguments must 
be compatible with the particular file components. 

WRITELN(f,vl,,,,vn) 
WRITELN(V:!,~~~Y~) -----> T~XTELN(OUTPUT,vl,..vn) 
WRITELN(0UTPUT) 
Write the components to a text file F from the specified 
variables Vl.,Vn (see NOTE 1) and then write an end-of-line 
marker, 

NOTE 1: WRITE variables for Text files may be of the form 

E is an expression of type CHAR, INTEGER, LONGINT, REAL, 
BOOLEAN, or a string, 

M (INTEGER expression) is the minimum field width. If 
omitted and E is REAL, floating point format is used, 

N (INTEGER expression) specifies that the real number E 
will be output in fixed point format with N digits 
after the decimal point, 

If E is INTEGER or LONGINT then the value may be written as 
a string of hex digits (not preceded by 8) in the form: 

E hex number or E:M hex number 

If E is BOOLEAN then the identifier FALSE or TRUE is written 
preceded by M-5 blanks, If M<5 then the character T or F is 

. - written. 

If E is a string (PACKED ARRAY of characters) t h e n  the xhole 
string is output, 
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D e f a u l t  f i e l d  widths f c r  WRITE operations are :  

INTEGER 10 LOWGINT 15 REAL 
BOOLEAN 5 CHAR 1  Hex 
S t r i n g  l e n g t h  of s t r i n g  

NOTE 2:  READ v a r i a b l e s  f o r  TEXT f i l e s  

V i s  a  v a r i a b l e  t o  be a s s i g n e d  t h e  v a l u e  r e a d  and must be 
e i t h e r  CHAR, INTEGER, LONGINT, BOOLEAN, REAL o r  a  s t r i n g .  

V i s  a  CHAR - n e x t  c h a r a c t e r  i s  r ead .  

V i s  a  s t r i n g  ( l e n g t h  L) - n e x t  L  c h a r a c t e r s  a r e  r ead .  

V i s  BOOLEAN - e i t h e r  t h e  c h a r a c t e r  T  o r  F  i s  r e a d  o r  t h e  
i d e n t i f i e r  TRUE o r  FALSE. 

V i s  INTEGER, LONGINT o r  REAL - a  s equence  of c h a r a c t e r s  
t h a t  makes up t h e  number i s  r ead .  The sequence  may be 
t e r m i n a t e d  by any c h a r a c t e r  t h a t  i s  n o t  p a r t  of t h e  
number. P r e c e d i n g  b l a n k s  and end- of- l ine  marke r s  a r e  
s k i p p e d .  I f  t h e  f i e l d  i s  b l a n k  t h e  v a l u e  r e a d  i s  ze ro .  

6.13.6 A r i t h m e t i c  R o u t i n e s  

A l l  ' r o u t i n e s '  p r e c e d e d  by '*' must be d e c l a r e d  EXTERNAL. 

ABS( x: INTEGER o r  LONGINT o r  REAL ) : a s  a r g  FUNCTION 
R e t u r n s  t h e  a b s o l u t e  v a l u e  of X. 

* ARCTAN( x: REAL) : REAL 
R e t u r n s  t h e  a r c  t a n g e n t  of t h e  v a l u e  X. 

* COS( x:  REAL ) : REAL 
R e t u r n s  t h e  c o s i n e  of t h e  v a l u e  X. 

FUNCTION 

FIJNCTION 

* EXP( x: REAL ) : REAL FUNCTION 
R e t u r n s  t h e  e x p o n e n t i a l  v a l u e  of t h e  v a l u e  X. 

FLOAT( x:  INTEGER o r  LONGINT ) : REAL 
C o n v e r t s  t h e  v a l u e  X i n t o  a  r e a l  number. 

FUNCTION 

* LN( x: REAL ) : REAL FUNCTION 
R e t u r n s  t h e  n a t u r a l  l o g a r i t h m  of t h e  v a l u e  X. 

LINT( x:  INTEGER o r  LONGINT o r  REAL ) : LONGINT FUNCTION 
C o n v e r t s  t h e  v a l u e  X i n t o  a  l o n g  i n t e g e r  number. 

LROUND( X: REAL ) : LONGINT FUNCTI ON 
C o n v e r t s  and rounds  t h e  v a l u e  X i n t o  a  l ong  i n t e g e r  number. 
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LTRUNC( x: LONGINT or REAL ) : LONGINT FUNCTION 
Truncate the value X into a long integer number, 

ODD( x: INTEGER or LONGINT ) : BOOLEAN FUNCTION 
Returns TRUE if the value of X is odd; FALSE otherwise. 

ROUND( x: REAL ) : INTEGER FUNCTION 
Converts and rounds the value X into an integer number. 

* SIN( x: REAL ) : REAL 
Returns the sin of the value X. 

FUNCTION 

SQR( x: INTEGER or LONGINT or REAL ) : as arg FUNCTION 
Returns the squared value of X. 

5 SQRT( x: REAL j : REAL 
Returns the square root of the value X. 

FUNCTION 

TRUNC( x: LONGINT or REAL ) : INTEGER FUNCTION 
Truncate the value X into an integer number. 

6.13.7 CRU Routines 

The CRU 'routines'are expanded in-line by the comiler. 

TYPE base-range = O..#lFFE; 
TYPE width-range = 1..16; 
TYPE displacement-range = -128..127; 

CRTJBASE( base: base range ) 
Set the CRU base adxress for subsequent CRU operations. 

LDCR( width: width range; out value: INTEGER ) 
Output WIDTH number of bits from the value OUT - VALUE to the 
CRU lines, starting from the CRU base address. 

SBO( disp: displacement range ) 
Set the specified bit (EISP + CRU base address) to a '1'. 
SBZ( disp: displacement range ) 
Set the specified bit (EISP + CRU base address) to a '0'. 
STCR( width: width range; VAR in value: INTEGER ) 
Input WIDTH numberof bits from The CRU, starting from the 
CRU base address, to the variable IN - VALUE. 

TB( disp: displacement range ) : BOOLEAN FUNCTION 
Returns TRUE if the specified bit (DISP + CRU base address) 
is a ' I '  and FALSE if it is 'O'e 
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6.13.8 Miscelaane~us Routines 

CHR( x: BOOLEAN or INTEGER or scalar ) : INTEGER FUNCTION 
Returns the character with the ordinal value X. 

LOCATION( x: module or unpacked type ) : INTEGER FUNCTION 
Returns the address of X. 

ORD( x: BOOLEAN or CHAR or scalar ) : INTEGER FUNCTION 
Returns the ordinal value of X. 

PACK( a: packed array; i: INTEGER; z :  unpacked array ) 
Pack the components of array A into the packed array Z, 
starting at the Ith element of A. 

PRED( x: enumeration ) : enumeration FUNCTION 
Returns the predecessor of X in the enumeration list. 

SIZE( x: type or variable ) : INTEGER 
Returns the size (in bytes) of X. 

FUNCTION 

SUCC( x: enumeration ) : enumeration FUNCTION 
Returns th.e successor of X in the enumeration list. 

UNPACK( z: packed array; a: unpacked array; i: INTEGER ) 
Unpack the components of the packed array Z into the array A 
starting at the Ith element of A. 

6.13.9 Rx Routines 

All Rx procedures/functions called directly must be declared 
EXTERNAL. 

6.13.9.1 Processor Management (Scheduling) Routines 

TYPE non - device - priority = 16..32766; 

SETPRIORITY( VAR oldvalue: non device priority; 
newvalue : non-devicepriority ) 

Changes the priority of the fiTst nonIdevice process in the 
scheduling queue. 

SWAP 
Removes the first non-device process from the scheduling 
queue and inserts it behind the last process with the same 
priority. 

6.13.9.2 Semaphore Routines 

TYPE nonneg = 0..32766; 
TYPE semaphorestate = (awaited, zero, signaled); 
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CKSEMAPHORE( sema: semaphore ) : BOOLEAN FUNCTION 
Returns TRUE if SEMA is a valid semaphore, 

CSIGNAL( sema: semaphore; VAR waiter: BOOLEAN ) 
Performs a conditional signal operation on SEMA. If a 
waiter exists on this semaphore, a SIGNAL operation is 
performed on it and WAITER is set to true, 

CWAIT( sema: semaphore; VAR received: BOOLEAN ) 
Performs a conditional wait operation on SEMA. If it has 
been SIGNALed, a WAIT operation is performed on it and 
RECEIVED is set to true, 

INITSEMAPHORE ( VAR sema: semaphore; count: nonneg ) 
Allocates and initializes the semaphore SEMA to COUNT and 
sets the queue management to FIFO. 

SEMASTATE( sema: semaphore ) : semaphorestate FUNCTION 
Returns the state of the semaphore SEMA. 

SEMAVALUE( sema: semaphore ) : INTEGER FUNCTION 
Returns the count of SEMA's initial value plus the total 
number SIGNALS performed on it minus the total number of 
WAITS performed on it, 

SIGNAL( sema: semaphore ) 
Performs a SIGNAL operation on SEMA, 

TERMSEMAPHORE( VAR sema: semaphore ) 
Returns the space occupied by the semaphore SEMA to Rx. 

WAIT( sema: semaphore ) 
Performs a WAIT operation on SEMA, 

WAITSIGNAL( wait for, signal the: semaphore ) 
Performs a WAIT operation O ~ ~ W A I T  FOR and a SIGNAL operation 
on SIGNAL THE in an indivisible mgnner. - 

6.13.9.3 Semaphore Attribute Routines 

TYPE interrupt - level = 0..15; 

ALTEXTERNALEVENT( sema: semaphore; level: interrupt level ) 
Attaches the semaphore SEMA to the interrupt LEVEL- as the 
alternative receiver of an interrupt. 

EXTERNALEVENT( sema: semaphore; level: interrupt level ) 
Attaches the semaphore SEMA to the interrupt LETEL as the 
primary receiver of an interrupt. 

NOALTEXTERNALEVENT( level: interrupt Pevei ) 
Detaches any semaphore which has bee; designated the altern- 
ative receiver of the interrupt LEVEL, 
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NOEXTERNALEVENT( l e v e l :  i n t e r r u p t  l eve l  ) 
Detaches any semaphore which has Keen designated the primary 
receiver of the interru~t LEVEL. 

6,13.9,4 Interrupt Routines 

TYPE interrupt result = -lee15; - 
TYPE word16 = ARRAY [ 0. .15 ] OF INTEGERS ; 
TYPE wp = @wordl6; 

ASSEMBLYEVENT( VAR interrupt wp: wp; interrupt pc: INTEGER; - 
level: interrupt level ) 

Assign the assembly language roctine whose entry point is 
INTERRUPT PC to the interrupt LEVEL, INTERRUPT WP is the - 
workspace-to be used by this routine. 

INTLEVEL : interrupt result FUNCTION 
Returns the interrupi level of the interrupt currently being 
serviced (0 to 15) or -1 if no interrupt is being serviced, 

MASK 
Disables all interrupts except for interrupt level 0, 

NOASSEMBLYEVENT( level: interrupt level ) 
De-assign the assembly language routine for interrupt LEVEL. 

SETMASK( new mask: interrupt level; 
V A R - O ~ ~  mask: interrupt level ) 

Sets the interrupt mask to NEW EASK (all interrupts less 
urgent than this value are disaKled). The original value of 
the interrupt mask is saved in OLD MASK. - 
UNMASK 
Enables all interrupts which have a higher priority than the 
calling process, 

6.13,9.5 Process Management Routines 

TYPE processid = @processid; 

MYSPROCESS : processid FUNCTION 
Returns the process identification of the calling process, 

P$ABORT( p: processid ) 
Causes process P to be marked for termination, P is aborted 
when it is next active; after it has returned from all Rx 
routines and is out of all user-defined critical regions. 

P$LASTPROCESS( p: processid ) : processid FUNCTION 
Returns the identification of the last process started by P, 
or NIL if the last attempted start was unsuccessfule 
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P$SUCCESSFUL( p: processid ) : BOOLEAN FUNCTION 
Returns the status of the last process management operation 
performed by process P. 

START$TERM( VAR oldvalue: BOOLEAN; newvalue: BOOLEAN ) 
Specifies the exception handling mode when processes can not 
be successfully started. If NEWVALUE is TRUE (default), an 
unsuccessful START causes the calling process to fail; else 
an unsuccessful START is ignored. The. original value of the 
exception handling flag is preserved in OLDVALUE. 

6.13.9.6 Heap Management Routines 

TYPE pointer = @INTEGER; { @any - structure ) 
TYPE byte - length = 0..32767; 

DISPOSE( VAR p: pointer ) Translated to FREE$ by compiler 
Deallocate the heap packet specified by P and set P to NIL. 

FREE$( VAR ptr: pointer ) 
Returns the area referenced by PTR to the heap, PTR is set 
to NIL* 

HEAP$TERM( VAR oldvalue: BOOLEAN; newvalue: BOOLEAN ) 
Allows the user to specify what action heap overflow causes: 
error termination of the process calling NEW, or NEWS; or to 
ignored the condition. If NEWVALUE is TRUE (default) then 
error termination. The original value of the heap overflow 
flag is saved in OLDVALUE. 

NEW( VAR p: pointer ) Translated to NEW$ by compiler 
Allocate a heap packet of, at least, the required size and 
return the address of this packet in P. 

NEW$( VAR ptr: pointer; length: byte length ) 
Allocates, at least, LENGTH bytes of-contiguous memory from 
the heap (if available). PTR is set to the address of this 
memory area. 

6.13.9.7 Channel I/o Routines 

TYPE cid = @INTEGER; 
TYPE msg record = RECORD - 

{ application defined record ) 
END; 

TYPE msg ptr - = @msg - record; 
C$ACKNOWLEDGE( msg: msg-ptr ) 
The reciever acknowledges the receipt of the message refer- 
enced by MSG. 
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C$ALLOCATE( msg size: INTEGER; VAR msg: msg-ptr j 
Allocates a heap packet which will contain the message to be 
sent. The heap packet will he in two parts: a fixed length 
header (used by the channel routines to synchronise inter- 
process communication) and a message of length MSG SIZE. - 
The address of this heap packet is returned in MSG. 

C$CRECEIvE( c: cid; VAR msg: msg-ptr ) 
Checks to see if a message has been sent to channel C. If a 
message is present, its address is returned in MSG. Other- 
wise MSG is set to NIL. (No waiting is performed.) 

C$CWAIT( msg: msg-ptr; VAR received: BOOLEAN ) 
Conditionally waits for a message to be processed. If the 
message referenced by MSG has been processed, RECEIVED is 
set to TRUE. Otherwise it is set to FALSE. 

C$DISPOSE( VAR msg: msg-ptr ) 
Return the heap packet specified by MSG to the heap and set 
MSG to NIL. 

C$INIT( name: integer; VAR c: cid ) 
Allows the calling process to gain access to channel NAME, 
and returns the "address" of this channel in C. All sub- 
sequent calls to channel routines should reference this 
channel by C. 

C$NOTIFY( c: cid; sema: semaphore ) 
Associate the semaphore SEMA to the channel C. Whenever a 
message is sent to this channel, the semaphore is signalled. 

C$RECEIVE( c: cid; VAR msg: msg-ptr ) 
Waits for a message to be sent to channel C. The address of 
this message is returned in MSG. 

C$SEND( c: cid; msg: msg-ptr ) 
Sends the message referenced by MSG to channel C. 

C$TERM( VAR c: cid ) 
Disconnects the calling process from channel C. When all 
processes are disconnected from the channel, the structures 
associated with the channel are returned to the heap. 

C$WAIT( msg: msg-ptr ) 
Waits for the message referenced by MSG to be processed. 

6.13.9.8 Interprocess File Transfer Routines 

F$CHARORT( VAR f: ANYFILE ) 
Aborts all file channels with the same name as F. All 
connected files are disconnected. Any subsequent 1/0 trans- 
fers to the file causes an exception to be raised. Any 
files suspended on the file channel are activated with an 
exception 
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F$CHBUFFERS( VAR f: ANYFILE; n: INTEGER ) 
Ensures that any file channels associated with file F have 
the capability of buffering at least N components before 
any producers are suspended, 

F$CLENGTH( VAR f: ANYFILE ) : INTEGER FUNCTION 
Returns the component length of the file F, 

F$CONDITIONAL( VAR f: ANYFILE; flag: BOOLEAN ) 
Causes the conditional attribute for file F to be reset to 
FLAG, This attribute defaults to FALSE (READS and WRITES 
wait for buffers), 

F$EOC( VAR f: ANYFILE ) : BOOLEAN FUNCTION 
Indicates whether 'end-of-consumption' has been set on the 
file channel associated with the file F. 

F$LASTSUCCESSFUL( VAR f : ANYFILE ) : BOOLEAN FUNCTION 
Indicates whether the last file channel transfer made by 
file F was successful or not. 

F$STEOC( VAR f :  ANYFILE ) 
Sets 'end-of-consumption' on the file channel associated 
with file F. When all reading files disconnect, no files 
are allowed to connect to the file channel until all 
connected writing files close, 

F$STLENGTH( VAR f: ANYFILE; length: INTEGER ) 
Allows the first text file to connect to a file channel to 
set the file channel component length (defaults to 80 
characters), 

6,13,9,9 Exception Handling Routines 

ERR$ CLAS S : INTEGER 
Returns the exception condition's class code, 

ERRSREASON : INTEGER 
Returns the exception condition's reason code, 

FUNCTION 

FUNCTION 

ERRSRSET 
Clears the current process' exception codes. 

EXCEPTION( class code, reason code: INTEGER ) 
Forces a routineto fail with-the specified exception codes. 

ONEXCEPTION( exception hndlr: INTEGER ) 
Specifies the address Ef the routine (EXCEPTION HNDLR) to be 
invoked when an exception condition occurs. ~h: address of 
the routine can be found using the LOCATION function. 

RESSTART 
Causes the entire system to be restarted, 
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6.13.9.10 Critical Transaction Routines 

CTSENTER 
Indicates entry into a critical transaction. 

CT$EXIT 
Indicates exit from a critical transaction. 

6.13.9.11 Rx Error and Exception Codes 

Svstem Crash Codes 
unable to boot system = 1 
No exception handler = 2 
No interrupt handler = 3 
Illegal interrupt or XOP = 4 
Scheduling queue in error = 5 
ROM/RAM partition error = 6 
Process list is in error = 7 
Invalid heap pointer = 8 

Class Codes 
Run-time support error 
User error = 1 
Scheduling error = 2 
Semaphore error = 3 
Interrupt error = 4 
Process management error = 5 
Exception error = 6 
Memory management error = 7 
File error = 8 
Text file error = 9 
Channel error = 10 
I/O decoder error = 11 
Interprocess communication error = 12 

Reason Codes (Run-Time Error) 
Stack overflow = 2 
Division by zero = 4 
Floating point error = 5 
Set element out of bounds = 6 
Assert error = 7 
Missing OTHERWISE in CASE = 8 
Array index error = 9 
Pointer equals NIL = 10 
Subrange assignment error = 11 
LONGINT array index error = 12 
LONGINT subrange error = 13 
Halt called = 20 
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Reason Codes (Schedulina Error) 

MICROPROCESSOR PASCAL 

Scheduling queue invalid = 1 
Scheduling queue priority error = 2 

Reason Codes (Semaphore Zrror) 
Somaphore invalid = 1 
Semaphore count error = 2 
Semaphore operation error = 3 
Semaphore count overflow = 4 
Semaphore in handler priority error = 5 

Reason Codes (Interrupt Error) 
Interrupt invalid = 1 
Interrupt level invalid = 2 
Interrupt semaphore invalid = 3 
Interrupt not handled = 4 
Interrupt incorrect trap vector = 5 
Interrupt handler priority error = 6 

Reason Codes (Exception Error) 
Exception handler not established from process = 1 
Exception handler cannot have parameters = 2 
Exception handler cannot be in assembly language = 3 
Exception handler local variables too large for stack = 4 

Reason Codes 
Not a process 
Aborted 
Not started - 
Not started - 
Not started - 
Not started - 
Not started - 
Not started - 
Not started - 
Not started - 

(Process Management Error) 
= 1 
= 2 

invalid priority = 3 
negative stacksize = 4 
negative heapsize = 5 
process is in assembly language = 6 
no memory for semaphore = 7 
no memory for process heap = 8 
no memory for process stack = 9 
no memory for process frame = 10 

Reason Codes (Memory Management Error) 
Heap invalid = 1 
Heap overflow error = 2 
Heap packet error = 3 
Invalid packet error = 4 

Reason Codes (File Error) 
File is not open for reading = 1 
File is not open for writing = 2 
Sequential read past end-of-file = 3 
Open error = 4 
Read error = 5 
Write error = 6 
No memory for file descriptor = 7 
No memory for pathname = 8 
File not closed = 9 
Invalid parameter passed to FSSTLENGTH = 10 
Not a text file = 11 
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Reason Codes (Text File Error) 
Text conversion - parameter out of range = 1 
Text conversion - field width too large = 2 
Text conversion - incomplete data = 3 
Text conversion - invalid character in text field = 4 
Text conversion - value too large = 5 
Text read past end of file = 6 
Text field exceeds record size = 7 

Reason Codes (Channel Error) 
No memory for buffers = 1 
No memory for semaphores = 2 
No memory for channels = 3 

Reason Codes (I/O Decoder Error) 
Empty file identifier list = 1 
File identifier not found = 2 
File identifier not released = 3 

Reason Codes (Interprocess Communication Error) 
No heap for pathname record = 1 
No heap for name field = 2 
No heap for file variable record = 3 
No heap for port variables = 4 
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6,i3,i0 Baekus-Naur Form (BNF) Syntax Definiticns 

0 . -  . . -  "is defined to bef' 
< > For enclosing non-terminal symbols (ie entities 

defined by a produet ion rule )  
[ 1 For enclosing optional entities 
( For enclosing entities that may be repeated zero 

or more times 
1 For representing alternatives 

Indicates symbol [ is to appear in the text 

6,13,10,1 Compiler Options 

<option control comment>::= "(" $ (option list> ")" 

<option>::= [ NO ] <option identifier) I 
[ RESUME ] <option identifier) 

where <option identifier) is one of the following: 

COL72 Default=TRUE 
Only scans the first 72 columns, when turned off the whole 
source line is scanned, 

ASSERTS Default =TRUE 
Generates object code for ASSERT statements, 

CKINDEX Default=FALSE 
Enables run-time checks for array bounds, 

CKPTR Default=FALSE 
Enables run-time checks for pointers equal to NIL, 

CKSET Def ault=FALSE 
Enables run-time checks for set element expressions. 

CKSTJB Default=FALSE 
Enables run-time checks for subrange assignments in bounds. 

DEBUG Default=FALSE 
Statement numbers are incorporated into the code for use by 

LIST Default=TRUE 
Enables printing of source listing, error lines are always 
listed, 

MAP Default=FALSE 
Prints a map of the routine's variables and common areas 
after listing the routine. 

NULLRODY Default=FALSE 
No code is to be generated for the empty system body, 

Texas Instruments 6-89 October 1981 



SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL 

PAGE Default=FALSE 
Continues printing at the top of a new page. 

STATMAP Default=FALSE 
A map of displacements for each statement in the object 
module is to be generated by the code generator. 

6.13.10.2 Concurrent Characteristics 

These may only appear immediately following the initial 
BEGIN of a system, program or process declaration. 

<concurrent characteristics>::= 
" {" <concurrent characteristic list> ' I ) "  

<concurrent characteristic list>::= 
<concurrent character) { ; <concurrent character) ) 

<concurrent character>::= 
<concurrent character keyword) = (parameter identifier) I 
<concurrent character keyword) = <integer constant) 

<concurrent character keyword>::= HEAPSIZE I PRIORITY I STACKSIZE 

6.13.10.3 System Declaration 

For a single program with no processes the syntax is: 

<system>::= PROGRAM <identifier> ; (program block> . 
The general syntax for a system is: 

<system>::= SYSTEM <identifier> ; (system block> . 
<system block>::= <label declaration part> 

<constant declaration part) 
<type declaration part> 
<common declaration part> 
<access declaration part> 
<system routines) 
<body> 

<label declaration part>::= <empty> I 
LABEL (statement label> { , <statement label> ) ; 

(statement label>::= <digit> { <digit> ) 

<constant declaration part>::= <empty> I 
CONST (constant declaration) { ; (constant declaration) ) ; 
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(canstant declaration>::= <identifier> = <constant> ; 
<identifier> = <integer constant expression) ; 

<type declaration part>::= <empty> I 
TYPE <type declaration) { <type declaration) ) 

<variable declaration part>::= <empty> I 
VAR <variable declaration) ( (variable declaration) ) 

(identifier list>::= <identifier> ( , <identifier> ) 

<common declaration part>::= <empty> I 
COMMON (variable declaration) ( (variable declaration) ) 

<access declaration part>::= ACCESS <identifier list) ; 1 <empty> 

<system routines>::= ( <system routine) ) 

(system routine>::= <program declaration) I 
<procedure declaration2 1 
<function declaration) 

<program declaration>::= <program header> <program block> ; I 
<program header> FORWARD ; I 
<program header) EXTERNAL [ PASCAL ] ; 

<program header>::= 
PROGRAM <identififier> [ <program parameter list> ] ; 

<program parameter list>::= 
( <program parameter) ( ; <program parameter) ) ) 

<program parameter>::= <identifier list) : <type identifier) 

<program block>::= <label declaration part> 
<constant declaration part> 
<type declaration part> 
<variable declaration part> 
<common declaration part> 
<access declaration part> 

(program routines) 
<body> 

<program routines>::= ( (program routine> ) 

<program routine>::= <process declaration) I 
<procedure declaration) I 

(function declaration) 
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<procedure declaration>::= <procedure header> <block> ; I 
<procedure header) FORWARD ; 1 

(procedure header) EXTERNAL [ PASCAL ] ; 

(procedure header>::= PROCEDURE (identifier) [ (parameter list> ] ; 

(parameter list>::= ( <any parameter) ( ; <any parameter) ) ) 

<any parameter>::= [ VAR ] (identifier list> : <type identifier) 

<block>: := <label declaration part) 
<constant declaration part> 
<type declaration part) 
<variable declaration part> 
<common declaration part> 
<access declaration part> 
<routines> 
<body> 

<routine>::= <procedure declaration) I <function declaration) 

<function declaration>::= (function header> <block> ; I 
<function header> FORWARD ; 1 
<function header> EXTERNAL [ PASCAL ] ; 

(function header>::= 
FUNCTION (identifier) [ (parameter list> ] : <result type> ; 

<process declaration>::= <process header><program block> ; I 
(process header) FORWARD ; / 
<process header) EXTERNAL [ Pascal ] ; 

<process header>::= 
PROCESS <identifier> [ <program parameter list> ] ; 

<body>::= <compound statement) 

6 . 1 3 . 1 0 . 4  Type Syntax 

<type>::= <simple type> I (structured type> 

<simple type>::= <scalar type> I <subrange type> I 
<type identifier) 

<type identifier>::= <identifier> I ANYFILE ( SEMAPHORE ( TEXT 1 
REAL ( INTEGER I LONGINT I BOOLEAN 1 CHAR 

<scalar type>::= 
( <scalar identifier) ( , <scalar identifier) ) ) 

(subrange type>::= 
(enumeration constant) .. (enumeration constant) 
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<enumeration constant>::= (character eonstant) I (boolean constant) 
(integer constant) I <scalar identifier) 

<scalar  identifier>::= (Identifier) 

(structured type>::= [ P A C K E D  ] (unpacked structure type) I 
<pointer type> I <file type> 1 <set type> 

<unpacked structure type>::= <array type> 1 <record type> 

<array type>::= 
ARRAY "[I1 <index type> { , <index type> ) "1" O F  <type> 

<index type>::= BOOLEAN I CHAR I <scalar type> I <identifier> I 
<subrange type> 

<record type>::= RECORD <field list> END 

<fixed part>::= <record section) ( ; <record section> ) 

(record section>::= 
<field identifier) ( , <field identifier) ) : <type> I 
<empty> 

<variant part>::= 
C A S E  [ <tagfield> ] (tagfield type> O F  <variant> ( ; <variant> ) 

(tagfield type>::= BOOLEAN I CHAR I I N T E G E R  1 L O N G I N T  1 <identifier> 

<variant>::= <variant label list> : ( <field list> ) I <empty> 

<variant label list>::= <variant label> ( , <variant label> ) 

<variant label>::= <enumeration constant) I 
(enumeration constant) .. <enumeration constant) 

<set type>: := S E T  O F  <simple type> 

<pointer type>::= @ <type identifier) 

<file type>::= [ RANDON ] F I L E  O F  <type> 

<result type): := BOOLEAN I CHAR I I N T E G E R  I L O N G I N T  1 R E A L  I 
SEMAPHORE I <identifier> 
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<statement>::= [ <statement label> : ] <simple statement) I 
[ <statement label> : ] [ <escape label) : ] 
<structured statement) 

<simple statement>::= <empty statement) I (assignment statement) I 
<procedure statement) I <escape statement) 1 
<assert statement) I <goto statement) I 
<start statement) 

<procedure statement>::= 
<procedure identifier) [ <actual parameter list) ] 

<actual parameter list>::= 
( <actual parameter) { , <actual parameter) ) ) 

<actual parameter): := <expression> 1 <variable> 

<start statement>::= 
START <process identifier) [ <actual parameter list) ] 

(escape statement>::= ESCAPE <escape label) 1 
ESCAPE <routine identifier) 

<routine identifier>::= <program identifier) I <process identifier) 1 
<procedure identifier) I <function identifier) 

<goto statement>::= GOT0 (statement label> 

<assert statement>::= ASSERT <expression> 

<structured statement>::= <compound statement) 1 
<conditional statement) 1 

(repetitive statement) 1 
<with statement) 

<compound statement>::= BEGIN <statement> { ; <statement> 1 END 

<conditional statement>::= <if statement) I <case statement) 

<if statement>::= IF <expression> THEN <statement> 
[ ELSE <statement> ] 
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(case statement>::= 
CASE <expression> OF <case element) ( ; <case element) ) 
[ OTHERWISE <statement> ( 3 <statement> ) ] 
END 

<case element>::= <case label list> : <statement> I <empty> 

<case label list>::= <case label> { , <case label> ) 

<case label>::= (enumeration constant) I 
<enumeration constant) .. <enumeration constant) 

<repetitive statement>::= <for statement) I <while statement) J 
<repeat statement) 

<for statement>::= 
FOR (control variable) <generator> DO <statement> 

<generator>::= := <initial value> TO <final value> I 
:= (inftial value) DOWNTO <final value> 

<while statement>::= WHILE <expression> DO <statement> 

(repeat statement>::= REPEAT <statement> { ; <statement> ) 
UNTIL <expression> 

<with statement>::= WITH <with variable list> DO <statement> 

<with variable list>::= <with variable) { , <with variable) ) 

<with variable>::= <record variable) I 
<identifier> = <record variable) 

6.13.10.6 Expression Syntax 

<boolean term>::= <boolean factor) I 
<boolean term> AND <boolean factor) 

<boolean factor>::= [NOT] <boolean primary) 

<boolean primary>::= <simple expression) 1 
(boolean primary) <relational operator) (simple expression) 

(relational operator>::= = I <> I < I <= I > I >= 1 IN 
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expression>::= <term> I <adding operator) <term> I 
<simple expression) <adding operator) <term> 

<term>::= <factor> I <term> <multiplying operator) <factor> 

<multiplying operator>::= * 1 / 1 DIV 1 MOD 

<factor>::= ( <expression> ) I <set> 1 (unsigned constant) I 
<variable> 1 
<function identifier) [ <actual parameter list> ] 

(function identifier>::= <identifier> 

<unsigned constant>::= <constant identifier) I (boolean constant) I 
<scalar identifier) 1 (character constant) I 
<string constant) I <integer constant) I 
NIL I <real constant) 

6.13.10.7 Variable Syntax 

<variable>::= <variable identifier) I <component variable) I 
<type-transferred variable) 

<component variable>::= <indexed variable) I (field designator) 1 
(referenced variable) 

<indexed variable): : = 
<array variable) " [ "  <expression> ( , <expression> ) " I "  

<array variable): := <variable> 

<field designator>::= <record variable) . <field identifier) 

(referenced variable>::= (pointer variable) @ 

<type-transferred variable>::= <variable> :: <type identifier) 
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6.13.10.8 Constant Expression Syntax 

<integer constant expression>::= (integer constant term) I 
<adding operator) <integer constant term> I 

(integer constant expression) <adding operator) 
<integer constant term> 

(integer constant term>::= <integer constant factor> I 
<integer constant term> <intmult operator) 
<integer constant factor) 

<intmult operator>::= * I DIV I MOD 

<integer constant factor>::= ( <integer constant expression) ) f 
<integer constant identifier) I 
<integer constant) 

<integer constant identifier>::= <identifier> 

6.13.10m9 Lanugauge Element Syntax 

<symbol>::= <special symbol) I <keyword symbol) I <identifier> I 
<constant> 

<constant>::= <enumeration constant) I <real constant) I 
<string constant) I <constant identifier) 

<separator>::= <space> I <end of logical source record> I <comment> I 
<remark> 

<comment>::= <open comment> <any sequence of graphic characters 
not containing <close comment> > <close comment) 

<remark> : : = " <any sequence of graphic characters extending 
to the end of the logical source record> 

Note : The following substitutions may be used. 
L*.--> " { "  *) 0-> 11)11 , ( *  --> 11[11 , 

- .  ) --> 1 1 1  11 , @ --> - 
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(keyword symbol>::= A C C E S S  I AND I A N Y F I L E  IARRAY I A S S E R T  I B E G I N  I 
BOOLEAN 1 C A S E  1 CHAR I COMMON 1 C O N S T  I D I V  I 
DO 1 DOWNTO I E L S E  1 E N D  1 E S C A P E  1 E X T E R N A L  I 
F A L S E  I F I L E  I F O R  I FORWARD I F U N C T I O N  I G O T 0  I 
I F  1 I N  I I N P U T  I I N T E G E R  I L A B E L  I L O N G I N T  I 
MOD I N I L  1 NOT I O F  / OR I O T H E R W I S E  I O U T P U T  1 
P A C K E D  1 P A S C A L  I PROCEDURE 1 P R O C E S S  I PROGRAM 1 
RANDOM I R E A L  I RECORD ( R E P E A T  I SEMAPHORE I 
S E T  I S T A R T  I S Y S T E M  I T E X T  I T H E N  1 T O  I TRUE 1 
T Y P E  I U N T I L  I VAR I W H I L E  I W I T H  

< b o o l e a n  c o n s t a n t > : : =  F A L S E  I T R U E  

< c h a r a c t e r > : : =  ( g r a p h i c  c h a r a c t e r )  I # < h e x d i g i t > < h e x d i g i t >  

( g r a p h i c  c h a r a c t e r > : : =  ( s p e c i a l  c h a r a c t e r )  I < l e t t e r >  1 < d i g i t >  1 
< s p a c e >  I (nons t anda rd  c h a r a c t e r )  

< n o n s t a n d a r d  c h a r a c t e r > : : =  <any o t h e r  c h a r a c t e r  a v a i l a b l e  on a  
p a r t i c u l a r  sy s t em o r  d e v i c e >  

<rea l  c o n s t a n t > : : =  < d i g i t s >  . < d i g i t s >  I 
< d i g i t s >  . < d i g i t s >  E < s c a l e  f a c t o r )  I 
< d i g i t s >  E < s c a l e  f a c t o r )  
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CHAPTER 7 

POWER BASIC 

7.1 INTRODUCTION 

BASIC (Beginner's All Purpose Symbolic Instruction Code) is 
a high-level interpreted language, Although it does not 
support the full block structured approach sf the Algol  
based languages (Algol 68, Pascal, etc), the BASIC language 
is easy to learn and supports a variety of useful features, 

In an interpreted language, no machine code is produced, 
Instead, as each source line is entered, it is checked for 
syntax errors (does the source line conform to the language 
specifications?) and, if valid, is stored in a condensed and 
encoded form called interpretive code, This is not directly 
executable, Because interpreted languages are normally used 
in an interactive mode, syntax errors are immediately 
reported to the user, Before the next source lines can be 
entered, the line containing the error(s) must be 
corrected, The stored code can be 'executed' at any time 
(it is not necessary to wait until the whole program has 
been entered) by issuing the RUN command. At this time, the 
interpreter examines each statement in the interpretive code 
and calls in a machine language subroutine (which is part of 
the interpreter) to carry out the desired operation. 

Semantic errors (non-existent variables and arrays, 
incorrectly referenced arrays, etc) and run-time errors 
(incorrect program logic) simply require that the line(s) 
containing the errors be revised before the program can be 
rerun. With a compiled language, the whole program must be 
recompiled after modifications are made, It may also be 
necessary to link edit the compiled program should it 
contain any external references, 

The advantages of using an interpretive language are: 

o Because the interpreter calls in complete 
assembly language subroutines to perform each 
function, each statement in the interpretive ca -Sp cTfffyy-. - - - -- . -  - a complex -oper-aiixnn.- -Tnfs  
results in compact, memory efficient code, 

o There is no need to go through separate 
compilation and link edit steps to produce 
executable code. As part of the edit step, each 
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source statement is translated i n t e  'executable' 
interpretive code as it is entered. 

o Each source line is checked for errors as it is 
entered; it is impossible to enter a 
syntactically incorrect statement. 

o Interpretive programs are usually developed 
interactively. As a result, it is only 
necessary to retype the relevant line(s) and 
rerun the routine in order to change the 
program. The user is able to see the result of 
his change immediately. Also, the interpreter 
provides excellent error diagnostics and good 
recovery techniques. 

o Because the interpreter is in control the whole 
time, it is more difficult for the programmer to 
find himself in irrecoverable error situations, 

o To transport a program to another machine it is 
only necessary to provide a version of the 
interpreter written in the new machine's 
instruction code. Any program written in the 
interpretive code can then be run on the new 
machine, 

Because of the extra work done by the interpreter in reading 
interpretive code, calling subroutines, etc, interpretive 
code executes several times slower than compiled code, This 
is the principal disadvantage to using interpretive code. 
In addition, BASIC was designed as a simple language, and 
does not provide the powerful program and data structuring 
techniques of, say, Pascal. As such, it is probably not a 
suitable language for developing large or complex 
applications, However, for small to medium sized 
applications, and for experimental work demanding speed in 
program development, BASIC is very acceptable, 

7.2 POWER BASIC 

Power BASIC is a family of software products designed for 
the industrial user. It provides all of the facilities of 
RASIC plus specially designed features to support real-time 
industrial control applications. At the time of writing, 
three members of the Power BASIC family are available: 
Evaluation Power RASIC, Development Power BASIC, and 
Configurable Power BASIC. New members may be added to 
satisfy particular requirements. 

Power BASIC is designed to run on the TM990 range of 
microcomputer modules (it can also be adapted to run on 
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other systems), It is possible to set up a Power BASIC 
development system with a minimum of capital outlay, A 
chasis containing two or three microcomputer modules from 
the TM990 board range, a 743 KSR terminal, a single audio 
cassette recorder and a PROM programmer, provide all the 
facilities necessary to develop a Power BASIC application 
program and store it in Programmable Read Only Memory 
(PROM). The floppy disc based FS990/4 system provides more 
sophisticated features, which allow a Power BASIC program to 
be tailored for any application to achieve minimum code 
size. 

7,2.1 Evaluation Power RASIC 

Evaluation Power BASIC is a four-EPROM package that resides 
on either a TM990/10OM or a /101M CPU module, Additional 
RAM in the form of TM990/201 or /206 memory expansion boards 
may be configured into the system as necessary. 

Apart from the standard features of BASIC, Evaluation Power 
BASIC allows the user to access control equipment in 
real-time (timing is provided by the TIC function) by either 
memory-mapped I/O (MEM function) or via TI'S standard 
bitwise Communications Register Unit (RASE statement, CRB 
and CRF functions), It also allows the user to load a 
program from (LOAD command) and save a program to (SAVE 
command) digital cassettes. 

Evaluation Power BASIC is intended for users to try out the 
features of Power BASIC, It was not designed for serious 
development work, apart from experimental applications. 

Used with the /101M CPU board, Evaluation Power BASIC 
supports the following execution environments: 

o Single-user, single-partition 

o Single-user, two-partition 

o Two-user, two-partition 

The appropriate environment is selected via the 5-pole DIP 
on the / 1 0 1 ~  CPU board. Section 2.9 of the TM990 Power 
RASIC Reference Manual describes this feature in greater 
detail, 

Communication between partitions is made possible by the 
system defined common array: COM(03 to CGM(9). This enables 
Evaluation Power BASIC to be used to control two separate 
tasks, the execution of each being  synchronised using the 
COM array. For example, one partition can be used to 
control an industrial process while the other collects 
control data (from a terminal, say), 
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In the following code, partition ftl gathers input from the 
terminal and passes it across to partition #2 via the COM 
array. COM(0) is used to synchronise the data transfer; 
mutual exclusion is guaranteed by allowing bl to access the 
array only when COM(O)=O; when COM(O)=l only 82 can access 
it. After loading the array, 112 is informed that fresh data 
is ready by setting COM(0) to 1. This also prevents #1 from 
modifying the array contents until /I2 has copied them, Once 
the contents have been copied, #1 is given exclusive control 
of the array by setting COM(0) to 0, 

PARTITION /I1 PARTITION 112 

10 REM GATHER DATA 10 REM CONTROL PROCESS 
20 COM(O)=O 20 'initialise' Vl,.,,,V9 
30 INPUT Vl9eoe,V9 30 IF COM(O)=O THEN GOT0 120 
40 IF COM(0)OO THEN GOT0 40 40 Vl=COM(l)::V2=COM(2) 
50 COM(l)=Vl::COM(2)=V2 ... 

* * *  
110 COM(O)=O 
120 'use' Vl,. , . ,V9 
130 GOT0 30 

In a single-user, two-partition environment, CTRL T 
(pressing the T key while holding down the CTRL key) will 
transfer control from one partition to the other, 

7,2,2 Development Power BASIC 

Development Power BASIC is a six-EPROM package that resides 
on either a TM990/100M or a 1 1 0 1 ~  CPU board plus either a 
TM990/302 Software Development Board or a TM990/201 memory 
expansion board, Additional memory expansion boards can be 
included if required, 

In Development Power BASIC, the two-partition feature is 
removed to allow the inclusion of additional features, With 
the CALL statement, Development Power BASIC allows the user 
to access assembly language routines that have been burnt 
into EPROM, Development Power BASIC also allows the user to 
write interrupt service routines in the Power BASIC language 
and to associate each of these routines to a particular 
interrupt level (using the TRAP, IMASR, and IRTN 
statements), Development Power BASIC also provides full 
character handling facilities (character search, match and 
conversion functions), better control structures (including 
the ELSE, ON and ERROR statements) and more varied print 
formatting (hexadecimal formatting and direct output of hex 
ASCII codes), 

In addition, when the TM990/302 Software Development Board 
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is configured into the system, there is a two-EPROM 
Enhancement Software Package that can be used to extend the 
capabilities provided by Development Power BASIC. This 
package allows the user to LOAD and SAVE a Power BASIC 
program on low cost audio cassettes. The PROgram command 
gives the ability to 'burn' a Power BASIC application into 
TMS2716 EPROMso The enhancement package also provides 
decimal print formatting and complete error message 
reporting. 

7.2.3 Configurable Power BASIC 

Configurable Power RASIC is a floppy disc based development 
package that Is designed to run on a 9 9 0 / 4  minicomputer 
under the TX990 operating system (version 2.3 or later). It 
allows the user to generate an application target system of 
minimum size by deleting the Power RASIC editor along with 
any parts of the interpreter that are not used. 

Csnfigurable Power BASIC consists of 3 parts: a host 
interpreter, a configurator and an object library. This 
library is a collection of routines, each of which 
implements a specific Power BASIC statement or function. 

The configurator determines what Power BASIC features are 
required by the user's application program and creates the 
following files: 

o A link editor control file containing an INCLUDE 
statement for each object routine (from the 
object library) that is required by the 
application program. If the application program 
contains any CALL statements, the user supplied 
assembly language routines are also INCLUDEdo 

o A "root" module containing the Power BASIC 
application program in its encoded internal 
form. 

o A "map" file containing a summary of all Power 
RASIC statements and functions used by the 
application. Any errors encountered are 
immediately reported to the user and are also 
recorded in this file. 

The TX990 Link Editor (TXSLNK) takes the link editor control 
file and uses the object library and the "root" module to 
protiuce a cusTomised Power BASIC run-eime mu-du2e. ----This 
run-time module is then programmed into TMS2716 EPROMso 
Inserting these EPROMs into a 2PU board (like the 
TMS990/101~ board), starting at address 0, and toggling the 
reset switch causes the Power RASIC application program to 
be activated. 
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The internal code used in the "root" module is compatible 
with the internal code used by Development Power BASIC. 
This means that the "root" module can be programmed into 
TMS2716 EPROMs on its own and these can then be inserted 
into a board system containing Development Power BASIC, 
When the EPROMs are inserted at address >3000 the 
application program is automatically executed whenever the 
reset switch is toggled, However, if the EPROMs are 
inserted elsewhere then the following command must be issued 
to execute the program 

LOAD <address> 

where <address> is the start address of the first pair of 
the "root" module's EPROMs, 

Note: Due to features that have been added (eg the memory 
word, MWD, function) to the Configurable Power BASIC host 
interpreter and to Development Power BASIC there are 
differences between releases, A "root" module generated 
with Configurable Power BASIC C,1.4 should use Development 
Power BASIC D.1.6; Configurable Power BASIC Cm1,6 should use 
Development Power BASIC D,1.10, 

The host interpreter provides all the features of 
Development Power BASIC. and the Enhancement Software 
Package, plus a number of other features, 

Configurable Power BASIC supports a comprehensive file 
management package that allows the user to create, access 
and delete files (either sequential or random access) on the 
990/4's floppy disc units. In accordance with 990 
philosophy, all file and device 1/0 operations are performed 
via conceptual links called logical unit numbers or lunos, 
The physical connection between a luno and a specific file 
or device is made (opened) by the ROPEN statement and is 
broken (closed) by the BCLOSE statement, The RESET 
statement closes all lunos that are open at the time the 
statement is executed, Files can be created by either the 
RDEFS (define sequential file) or the RDEFR (define random 
file) statements, and deleted by the BDEL statement, The 
COPY statement allows the user to copy a file to another 
file or to a device: this can be used to backup a file, to 
concatenate several files together, or to print a file, 
Reading from and writing to files or devices can be 
performed by the "BINARY" statement: 

BINARY <exp> 

where <exp> specifies the required 1/0 operation. BINARY 1 
lets the user specify how many bytes are to be involved in 
subsequent 1/0 operations to a particular file or device 
(the default is 6 bytes), BINARY 2 is a write operation, 
BINARY 3 is a read operation. BINARY 4 allows the user to 
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access a particular byte within a specified record (this is 
for relative record, random, files only). 

The ' @ '  operator has been added to the PRINT statement to 
give the user complete cursor control. With this the user 
can specify an exact starting position for output on the 
screen (911 or 913 VDU) by either supplying the 'x' and 'y' 
co-ordinates or using the following positioning commands: 

B Move cursor to begining of line 
C Clear screen and move cursor to HOME position 
D Move cursor down 
H Move cursor to HOME position 
L Move cursor to left 
R Move cursor to right 

For example; To clear the screen and print the message 
'INPUT NAME' on the VDU screen, starting on the fifth line 
at the twelfth character position, either of the following 
commands is required. 

PRIET @"C5~12~" ;"INPUT NAME" 
or PRINT @11C11;@(4,11);111NPUT NAME" 

Note: The column values range from 0 to 79 (80 characters). 
The row values range from 0 to 23 (24 lines) for the 911. and 
from 0 to 11 (12 lines) for the 913. 

Other features of Configurable Power BASIC include: 

BYE 
DIGITS 

EQUATE 

NUMBER 

PURGE 
SOURCE 

SPOOL 

STACK 

Terminate a Configurable Power BASIC session. 
Specify the number of digits to be printed in 
free format. 
Specify an alternate name for a variable or an 
array element. 
Set the initial and increment values for the 
automatic line numbering facility. 
Delete the specified lines. 
Show how much memory the program will occupy 
when saved. 
Specify the secondary output device controlled 
by the UNIT statement. 
Interrogate the GOSUB stack. 

The following diagram (Figure 7-1) illustrates how 
Configurable Power BASIC minimises an application program's 
memory requirements. 
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Figure 7-1 Code Minimisation 

CUSiOrjiiSEO 
INTERPRarER 
' 

USER'S 
PROGRAM 

- 
USER'S 

PROGRAM 

7.3 BASIC LANGUAGE OVERVIEW 
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Power BASIC is an uncomplicated, easy to learn language that 
is based upon a few simple concepts. A Power BASIC program 
consists of a series of numbered statement lings that are 
executed in ascending numerical order. A line normally 
contains one Power BASIC statement, although the statement 
separator operator ( :  :) can be used to write more than 
one statement on a line. One of the simplest statements, 
the assignment statement, is used to assign the value of an 
expression to a variable: 

When the above line is executed, the variable A2 will be 
assigned the value of the arithmetic expression '5+7' (the 
integer 12). 

R 
0 
M I  

, 

There is no variable declaration; a variable is implicitly 
declared by its first appearance in one of the following: 

EDITOR R 
0 

INTERPRETER M 

o on the left-hand side of an assignment statement 

o in an INPUT statement 

A 
+ M 

o in a READ statement 

, USER'S 
VARIABLES 

Texas Instruments October 1981 

A 
M 

USER'S 
VARIABLES 



SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC 

Varizble names are restricted to one to three letters or a 
combination of a letter and a number in the range 0 to 127. 
There is no typing of data, Variables can have integer, 
real or character string values, depending on the context. 
The only data structure provided is the array, which can 
have one or more dimensions. 

Each statement in a Power BASIC program has a line number: 

10 A = 5 * B  
20 PRINT A 
etc 

The line numbers specify the order in which the program 
statements are to be executed (ie its sequence). 

The principal device for structuring a program is the GOT0 
statement, which transfers execution directly to a statement 
number. The IF..THEN statement implements selection (see 
section 7.6.1.2); it must be combined with the GOT8 
statement if the alternatives will not fit on one line, The 
FOR,.NEXT statement fmplewzzts iteratien (see section 
7.6.1.4). In general, programming constructs (see Section 
4.5) have to be built by the programmer using IFs, FORs and 
GOTOs, 

Subroutines or procedures (see section 7.6.2) can be called 
using the GOSUB statement, which simply places the address 
of the statement following the GOSUB on a last-in-first-out 
stack, from where it is retrieved when a RETURN is 
executed, Subroutines are not declared separately from the 
main program. The GOSUB simply specifies a statement 
number; the statements between that number and the next 
RETURN are treated as a subroutine. Scope rules are 
simple. Once a variable has been introduced, it can be 
referenced anywhere in the program, Subroutines can be 
nested (up to 10 deep), but the programmer needs to check 
that the GOSUBs and RETlJRNs match (the interpreter does not 
perform this check), Subroutine parameters are not 
allowed. 

The main attraction of Power BASIC is its simplicity. 
Programs can be entered and executed easily even by users 
who are not skilled programmers, Power BASIC is a high 
level language, and as such automatically handles such 
details as storage allocation (to which the assembly 
language programmer devotes a lot of attention). The 
development environment provided by Power BASIC is 
particularly simple and easy to use; even novices can learn 
to develop a Power BASIC program in a matter of hours. 
Power BASIC is ideal for the rapid development of relatively 
simple applications. 

However, it does have limitations. Because of its 
simplicity, BASIC performs very few checks on the integrity 
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of program and data (such as are performed automatically by 

the Pascal compiler, for instance). It is quite legal, for 
example, to assign an integer value to a character string 
variable (this may be valuable in some circumstances). 
However, Power BASIC supplies no warning if it is done by 
mistake. In addition, the structuring and self-documenting 
features of Pascal are missing. For a complex application, 
Pascal is probably a better alternative. 

7.4 POWER BASIC OPERATION 

7.4.1 Operating Modes 

Power BASIC has two operating modes: Keyboard mode and 
Execution mode. 

Keyboard Mode is automatically entered when Power BASIC is 
initialised. In this mode, entering a numbered line causes 
that line to be stored in the appropriate place in the 
program space. Entering an unnumbered line causes the 
statement(s) to be immediately executed and keyboard mode to 
be re-entered as soon as the necessary processing has been 
performed. 

Execution Mode is entered by issuing either a RUN, a CONT or 
a GOT0 statement. This causes the Power BASIC interpreter 
to execute the previously stored program. RUN starts at the 
lowest line number in the program; CONT continues from the 
last line that was previously interpreted; GOT0 proceeds 
from the line specified. This mode is terminated by any one 
of the following conditions: 

o Error condition arising 

o STOP or END statement executed 

o Pressing the ESCape key on the terminal 

Note: There are a number of statements which can only be 
issued in keyboard mode (these are referred to as 
commands). A full list of these commands is given in 
section 7.8.5. 

7.4.2 Editing Source Statements 

The simplest way to modify (or edit) a line is to re-type 
the whole line. However, Power BASIC also supports a simple 
editor that allows the user to easily modify previously 
entered source statements. The available edit commands are: 
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ESC Cancel input line 
RUBOUT Backspace and remove character 
CR or LF Enter the edited line 
ctrl H Backspace the cursor one character 
ctrl F Forward space the cursor one character  

<In> ctrl E Display the line <In> for editing 

An attempt to forward space past the last character entered, 
or to backspace beyond the first character in the line will 
only cause the bell on the terminal to be rung, 

Development Power BASIC supports two additional commands 
that are not available in Evaluation Power BASIC: 

ctrl I <n> Insert <n> blanks 
ctrl D <n> Delete <n> characters 

'Ctrl E' strike the E key while holding down the CTRL key, 
'Ctrl I <n>' hold down the CTRL key while striking the I 
key, then strike the numeric key corresponding to the value 
<n>, 

When the carriage return (CR) or linefeed (LF) key is 
pressed, all characters displayed are entered, regardless of 
the position of the cursor, 

Entering just a line number (and nothing else) causes the 
specified line to be deleted from the stored program, 
'Entering a statement with a line number that already exists 
causes the original statement to be replaced by the new 
one. 

The editor fs automatically invoked when the interpreter 
encounters a syntax error in a line being entered via the 
terminal. However, if the program is being loaded from 
cassette or floppy diskette (using the LOAD command) and a 
syntax error is encountered, the interpreter will display 
the number of the line containing the error. The whole line 
is ignored (it can not be stored correctly) and the load 
operation will continue, 

7.4.3 Automatic Line Numbering 

The automatic line numbering facility is invoked by 
terminating an input line with a linef eed instead of a 
carriage return. This causes the interpreter to output the 
incremented line number and keyboard mode to be re-entered. 
The incremented line number is 10 greater than the last line 
number entered. Entering a line containing just a linefeed 
initialises the line number to 10, Terminating a line with 
a carriage return disables this facility. 
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7.4.4 System Initialisation 

Toggling the reset switch on the /100M or /101M CPU board 
causes Power BASIC to clear and scan the system RAM area to 
determine how much memory is present. This operation begins 
at location >FFDC and continues on down through contiguous 
memory to location >4000 or until a read/write mismatch is 
encountered. If a mismatch occurs between addresses >FBFE 
and >F000 then Power BASIC assumes that a /100M CPU board is 
being used; any memory that was found between these 
addresses is ignored and autosizing continues from address 
>EFFE. (A fully populated /lOOM microcomputer board only 
holds 1K of RAM. This is addressed from >FCOO to >FFFF.) 

The Power BASIC interpreter then performs the auto-baud 
sequence. This initialises the serial 1/0 interface for 
terminal communication. After the user has struck the A (or 
carriage return) key on the terminal, the interpreter 
measures the time of the start bit and determines the baud 
rate of the terminal. The onboard TMS9902 Asynchronous 
Communications Controller is then set to this baud rate (all 
terminal I/o is performed through the 9902). All output is 
then directed to Port A on the microcomputer board. 

When all Power BASIC pointers have been initialised, the 
following message is output: 

TM990 BASIC REV X.n.m 
*READY 

where X = language level 
n = release number 
m = revision number 

At this stage, Power BASIC is in keyboard mode waiting for 
user input. 

Refer to the Power BASIC Reference Manual for instructions 
on setting up the hardware configuration. 

7.5 VARIABLES 

A Power BASIC variable can be used to store either an 
integer number, a real number, or a character string 
depending on the context in which the variable is used. 
Thus, although a variable may contain a number (integer or 
real) it can be used as though it contained a character 
string, and vice versa. All variables, whatever their type, 
occupy the same amount of storage (4 bytes for Evaluation 
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Power BASIC, 6 b y t e s  in Development Power BASIC), 

7.5.1 Variable Names 

A variable name is either an alphabetic character followed 
by a number in the range 0 to 127 (eg 2100) or an alphabetic 
string up to three characters long (eg A, ST, and LST). The 
variable name can not be identical to a Power BASIC keyword, 
nor can it form the beginning of a keyword. The following 
variable names are not valid: 

LIS Begining of LIST (a Power BASIC command) 
MEM A Power BASIC function 
TOT First 2 letters are the Power BASIC keyword TO 
12B First character is not alphabetic 
ABCD More than 3 characters 
I130 Number greater than 127 
A. B ' not allowed in variable names 

Note: There is a maximum of 140 different variable names in 
any one Power BASIC program. 

7.5.2 Variable Declarations 

Variables are not explicitly declared in BASIC. Instead a 
variable is implicitly declared by assigning a value to a 
valid variable name. For example, to declare the variable 
TST and assign it the value 100 the following statement can I 
be used: 

A value can be assigned to a variable by either a READ (read 
a value from a DATA statement), an INPUT (accept input from 
the terminal) or a LET statement. The statement 'TST=1008 
is an implied LET, as are statements of the form: 

where <expression> may contain function calls: 

The above statement assumes that the variables PI and NUM 
have already been declared (assigned a value). An attempt 
to use a variable that has not been declared will result in 
error 40 (UNDEFINED VARIABLE). 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC 

7.5,3 Numeric Representation 

If a number can be represented in a 16-bit twos complement 
form, it is stored in integer format, otherwise it will be 
stored in floating point format, 

7m5m3.1 Integer Variables 

An integer variable can store a value in the range -32768 to 
+32767, 

7,5.3.2 Floating Point Variables 

Floating point format allows a real number in the range 
10E-75 to 10E+74 to be stored, ('E represents the 
multiplier 10, the integer number following is the power to 
which 10 is raised,) This representation provides 
approximately 7 digits of accuracy for Evaluation Power 
BASIC and approximately 11 digits of accuracy for 
Development Power BASIC. 

7.5.4 Character String Variables 

A character string is a string of characters enclosed within 
single or double quotes. Paired double quotes can be used 
to enclose single quotes and vice versa, 

A variable is specified as containing a character string by 
preceeding the variable name with a dollar sign ( $  In 
this form, a variable should be used to store up to 3 
characters for Evalyation Power BASIC, or 5 characters for 
Development Power BASIC. The last byte is used to terminate 
the string and contains the null character (zero). 

In Development Power BASIC, non-printable characters may be 
included in a character string by writing their hexadecimal 
ASCII representation enclosed in angle brackets (<>). The 
angle brackets are stored along with the character string 
and are only interpreted when the string is being input from 
a terminal, read from a DATA statement, or when the string 
is being printed. Note: Attempting to use the character 
sequence ' <  in a string via an INPUT, READ or PRINT 
statement will cause problems. If these characters are 
required then the sequence '<3C><3E>' should be used. 
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7.5.5 Array Variables 

An array is a number of variables (stored consecutively in 
memory) that is referenced by a single variable name, 
Individual variables (or array elements) are accessed by 
following the variable name with a number that identifies 
the position of the variable within the array, The number 
(this is known as an array subscript) is enclosed in 
parentheses or square brackets (internally the parentheses 
are converted into and stored as square brackets), 

To allocate the array STR with 10 elements the following 
statement is required: 

DIM STR(9) 

The elements are referenced by 

The size parameter supplied to the DIMension statement is 
one less than might be expected as Power BASIC automatically 
allocates space starting from element zero, 

Although an array may be used to hold character strings, it 
is declared (in the DIMension statement) without the dollar 
sign. 

Power BASIC allows an array to be declared with any number 
of dimensions, However, for most practical applications, a 
two dimensional array is usually sufficient, 

Note: The variable A and the array variable A(O) refer to 
two completely different variables, 

7.6 POWER BASIC PROGRAM 

A Power BASIC program consists of a number of statements, 
each with a line number, Statements may either perform some 
action, such as adding two variables together and assigning 
the sum to a third variable ('A=B+C'), or may be control 
statements (GOSUB 1000), that change the execution flow of 
the system, A full list of Power BASIC statements is given 
in section 7.8.6, 

Power BASIC allows the user to write a number of statements 
on one line with each statement being executed in turn, The 
general syntax for an input line is: 
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i iine number ) statement [ :: statement ] { ! comment } 

where ( } indicates optional items 
[ ] indicates that the item is repeated as many 

times as required - 0,1,.,.. 

Exceptions: 

o A NEXT statement should be the first statement 
on a line, otherwise it may not be located to 
terminate its corresponding FOR loop, 

o A DATA statement should be the only statement on 
a line, 

o A REM statement takes the remainder of a line as 
comment. 

7.6.1 Control Statements 

Power BASIC statements are normally executed in ascending 
line number order. However, it is not usually possible to 
write an effective applications program in a straightforward 
sequential manner. For this reason, Power BASIC supports a 
number of control statements that allow the user to dictate 
the order in which program statements are executed, 

7.6.1.1 GOT0 Statement 

The first of these control statements is the GOTO, This 
provides a simple, yet very powerful, mechanism for changing 
program flow. The syntax for this statement is: 

This causes control to be transferred to line <In>. 

Restraint must be exercised with this statement; too liberal 
a usage will lead to an unintelligible and unnecessarily 
complex program, Possibly the best use of this statement is 
in building constructs that are not included in Power BASIC 
(the WHILE, DO FOREVER and REPEAT UNTIL loops; more about 
these later). 

7.6.1,2 IF THEN Statement 

Often it is necessary to perform some specific action only 
if a certain condition is met. For example, the only time 
the telephone should be answered is if it is ringing, To 
provide for this situation, Power BASIC provides the IF THEN 
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statement. The above operation can now be expressed as 'IF 
the phone is ringing THEN answer it'. The syntax for this 
is: 

IF <condition> THEN <sequence> 

The Power BASIC statements in <sequence> are only executed 
if <condition> proves to be true. Statements in <sequence> 
must be separated from each other by the statement separator 
( : :) . <condition> may be any valid expression that y.ields a 
value of true or false. 

Note: The statement separator does not delimit the IF THEN 
statement, it only separates the statements in <sequence> 
from each other. 

100 IF (condl) THEN <stmtl>::IF <cond2> THEN <stmt2> 

Is not the same as: 

100 IF <condl> THEN <stmt l> 
181 IF <cond2> THEN <stmt2> 

In the first case, <stmt2> is only executed if both <condl> 
and <cond2> are true. In the second case, <stmt2> is 
executed if <cond2> is true, regardless of <condl>. 

The number of statements in <sequence> is limited by the 
length of the input line. This can be overcome using the 
following: 

IF NOT( <condl> ) THEN GOT0 150 

. Sequence of statements to be performed . when <condl> = true . 
150 REM end the IF THEN clause 

If <condl> is false, NOT(<condl>) is true and program 
control is passed to the REM statement following the 
sequence. The REM statement is a remark (comment), and is 
ignored by the interpreter. 

A WHILE loop can be built up as follows: 

10 IF NOT( <condl> ) THEN GOT0 200 . . Sequence to be performed . WHILE <condl> = true . 
GOT0 10 

200 REM <condl> = false 
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A DO FOREVER i o o p  can  be e x p r e s s e d  a s :  

50 REM s t a r t  f o r e v e r  l o o p  . 
Sequence t o  be per formed c o n t i n u o u s l y  

A .REPEAT UNTIL l o o p  is :  

145  REM s t a r t  r e p e a t  l o o p  

. Sequence t o  be per formed . UNTIL < c o n d l >  = t r u e  . 
I F  NOT( <cond l>  ) THEN GOT0 145 
REM d r o p  th rough  t o  h e r e  when <cond l>  = t r u e  

An I F  THEN ELSE c o n s t r u c t  can  be  implemented a s :  

I F  NOT( <cond l>  ) THEN GOT0 100 

Sequence t o  be per formed . when <cond l>  = t r u e  

GOT0 200 
100 REM s t a r t  ELSE p a r t  . . Sequence t o  be peformed 

when <cond l>  = f a l s e  . 
200 REM end I F  THEN ELSE 

T h i s  can  be e a s i l y  expanded t o  a l l o w  a n  ELSEIF: 

I F  NOT( <cond l>  ) THEN GOT0 192 . 
Sequence t o  be per formed 
when <cond l>  = t r u e  

GOT0 475 
192 I F  NOT( <cond2> ) THEN GOT0 320 . . Sequence t o  be per formed . when <cond2> = t r u e  and <cond l>  = f a l s e  

GOT0 475 
320 REM s t a r t  ELSE p a r t  . . Sequence t o  be performed . when <cond l>  = <cond2> = f a l s e  

475 REM end I F  THEN ELSEIF ELSE 

NOT i s  a  r e c o g n i s e d  Development Power BASIC boolean  
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primitive that returns a value of TRUE if its argument 
evaluates to FALSE; otherwise it returns a value of FALSE, 
Although it is not supported by Evaluation Power BASIC it is 
simple to effect the NOT function, All conditions can be 
written in the form: 

using this, the NOT function is implemented by taking the 
complement of the relational operator (<relop>) : 

where <relop*> is the complement of <relop> and is derived 
from the following table, 

For example: 

r 

Relationship 

Equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 
Not equal to 

NOT( a > b ) becomes ( a <= b ) 
NOT( p = q ) becomes ( p <> q ) 

An expression is considered to have a truth value of TRUE if 
it evaluates to a non-zero value, otherwise it is considered 
FALSE, The statement: 

<relop> 

- - 
> 
< 
>= 
<= 
<> 

IF <expression> THEN <statement(s)> 

<relop*> 

<> 
<= 
>= 
< 
> 
- - 

is shorthand for 

IF <expression> <>0 THEN <statement(s)> 

7.6.1.3 ELSE Statement 

Development Power BASIC supports the ELSE statement, This 
is normally used in conjunction with the IF THEN statement. 
The syntax for this is: 

ELSE <sequence> - -  - 

where the statements in <sequence> are separated from each 
other by the statement separator (::). 

The ELSE statement uses the ELSE flag (set or reset by the 
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lzst IF THEN statement depending on whether the condition is 
true or false) to determine whether the statement(s) 
following the ELSE keyword are to be executed, Several ELSE 
statements may appear between IF THEN statements, Each will 
be executed if the condition proved to be false, otherwise 
they will be skipped, 

Typically, this statement will be used as: 

100 IF <condl> THEN <seql> 
110 ELSE <seq2> 
120 REM end IF THEN ELSE 

In the above, <seql> is only executed if <condl> is true; if 
<condl> is false then <seq2> is executed, After executing 
the appropriate sequence, control is passed to the REM 
statement (line 120), 

<seq2> may itself consist of an IF THEN ELSE: 

100 IF <condl> THEN <seql> 
110 ELSE IF <cond2> THEN <seq2> 
120 ELSE <seq3> 
130 REM end IF THEN ELSEIF 

Here <seq3> is executed only if both <condl> and <cond2> are 
false; <seq2> if <condl> is false and <cond2> is true; and 
<seql> if <condl> is true. 

7.6.1.4 FOR NEXT Statement 

A simple loop construct (perform a sequence of statements a 
known number of times) can be implemented as followsw 

90 num=int 
100 IF num>lst THEN GOT0 350 ! IF NOT(num<=lst) 

, Sequence to be performed 
while num<=lst 

w 

Num=num+l ! increment loop count 
GOT0 100 

350 REM end iterative loop 

where INT is the initial value, LST is the final value and 
NUM is the loop counter, ! is another form of comment; 
anything after the ! is ignored. 

The above loop is performed until the final value is 
exceeded. 

To implement a count-down loop, the test and increment 
statements would have to be changed to: 
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100 IF num<lst THEN GOTO 350 ! IF NOT(num>=lat) 
num=num- 1 ! decrement loop counter 

These simple loop constructs can be made more powerful by 
modifying the increment (decrement for the count-down loop) 
statement to: 

where STP is the required increment/decrement, 

As this type of loop is frequently used, Power BASIC 
provides its own loop construct in the form of the FOR NEXT 
statement, The syntax of this is: 

FOR <var> = <start> TO <final> STEP <increment> 

, Sequence to be performed 

NEXT <var> 

The <start>, <final> and <increment> values can be any valid 
numeric expression, If the value of <increment> is one, it 
and the STEP keyword may be omitted, The variable <var> 
specified by NEXT must coincide with that used by the FOR. 

The FOR statement opens the loop and the NEXT statement 
closes it, If the condition: 

(increment)*(start value) '> (increment)*(f inal value) 

is true when the FOR statement is first encountered, the 
loop will not be executed, But if this condition is false, 
the FOR variable is set to the value of <start> and the 
sequence of statements between the FOR and NEXT statements 
are executed, When the NEXT statement is encountered the 
FOR variable is updated by the value of <increment>, 
Control is passed back to the FOR statement and while the 
condition: 

(increment)*(FOR variable) <= (increment)*(final value) 

remains true the loop will be executed, When execution of 
the loop is finished, control is transferred to the 
statement following the NEXT, 

FOR NEXT loops can be nested (contained within one 
another), There is a maximum nesting depth of 5 for 
Evaluation Power BASIC and 10 for Development Power BASIC, 
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J=9  TO 0 STEP -1 

490 NEXT K 

C o r r e c t  n e s t i n g  

No o v e r l a p p i n g  i s  a l l o w e d ;  i n n e r  l o o p s  must be c l o s e d  b e f o r e  
c l o s i n g  o u t e r  l o o p s ,  Nested FOR NEXT l o o p s  must have  
d i f f e r e n t  FOR v a r i a b l e s ;  t h e y  canno t  s h a r e  c o n t r o l  
v a r i a b l e s ,  O t h e r w i s e ,  l o o p  b o u n d a r i e s  w i l l  n o t  be c l e a r l y  
d e f i n e d ,  

I 100 FOR K = l  TO 100 1 

1 8 0  NEXT K 1 
100 FOR K = l  TO 100 STEP 3 r 

I n c o r r e c t  n e s t i n g  

C o n t r o l  v a r i a b l e  
I s h a r e d  ; u n c l e a r  
I l o o p  b o u n d a r i e s  

200 FOR J=9  TO 0 [ 
300 NEXT K 1 

I n c o r r e c t  n e s t i n g  

Ove r l app ing  l o o p  
b o u n d a r i e s  

400 NEXT J --I 

W i t h i n  t h e  l o o p ,  t h e  c o n t r o l  v a r i a b l e  can  n o t  be m o d i f i e d ,  
It can ,  however ,  be used  t o  a c c e s s  t h e  e l e m e n t s  of an  a r r a y  
( f o r  example) .  

While  c o n t r o l  c a n  be  t r a n s f e r r e d  from w i t h i n  a  l o o p  t o  a  
s t a t e m e n t  o u t s i d e ,  i t  i s  n o t  p o s s i b l e  t o  t r a n s f e r  c o n t r o l  
f rom o u t s i d e  t o  t h e  i n s i d e .  

A FOR NEXT l o o p  can  be w r i t t e n  on a  s i n g l e  l i n e  w i t h  '::' 
s e p a r a t i n g  each  s t a t e m e n t :  

100 FOR 1=0 TO 10 :: sequence  :: NEXT I 

T h i s  e f f e c t i v e l y  d i s a b l e s  t h e  ESCape key  on t h e  t e r m i n a l  
w h i l e  t h e  l o o p  i s  b e i n g  e x e c u t e d  ( u n t i l  t h e  l o o p  h a s  
comple t ed  i t  i s  n o t  p o s s i b l e  t o  i n t e r r u p t  program e x e c u t i o n  
and  r e t u r n  Power BASIC t o  keyboard  mode). T h i s  i s  because  
Power BASIC o n l y  s c a n s  t h e  keyboard  l o o k i n g  f o r  a n  ' e scape '  
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character when a statement line has been completed. Also, 
if the initial check indicates that t h e  loop is not to be 
executed, error 31 (FOR W/O NEXT) will result as the NEXT 
statement will not be found. 

7.6.2 Subroutines 

As previously stated, statements are normally executed in a 
straightforward sequential manner, A subroutine represents 
a method of executing a number of statements outside the 
normal sequence. 

Pictorally, subroutine execution is: 

Main . . 
, v-wSubroutine start 

Subroutine end 

If a subroutine is only used once, there is little point in 
separating the subroutine code from the calling routine. No 
benefit is derived apart from (perhaps) clarifying the 
program structure. However, there is a benefit when a 
subroutine is used to replace a number of statements that 
appear in several different places in a program. For 
example : 

. 
: I SEQA 

SEQA 0 . 

: 1 SEQA 

Texas Instruments 

Call . 
Call. . 
Call 

to SEQA 

to SEQA 

to SEQA 

SEQA 
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Program execut f o n  ---- w ~ c i l d  beeoine: 

Main . . - Subroutine start 
. 

Subroutine end 

. -+Subroutine start 

. L Subroit ine end . . - Subroutine start 

. . L Subroit ine end 

If the subroutine is large, or it is called from a number of 
different places, there can be a considerable saving 
realised in program storage against a small overhead in 
calling and in returning from the subroutine. 

A Power BASIC subroutine is simply a sequence of statements 
' that is entered via the GOSUB statement and exited via a 
RETURN statement. A subroutine can have multiple exit 
points (each distinguished by a RETURN statement), but this 
is usually considered bad programming practice. The syntax 
for these statements are: 

GOSUB <In> 
RETURN 

A subroutine is identified by its starting line number 
(<ln>), rather t an by a name. For example : 

i i 

100 GOSUB 2000 
110 REM return to here 

2000 REM start of subroutine 

L2300 KETuRN ! exit subroutine 

A GOSUB statement causes the address of the sta$ement 
immediately following it to be pushed onto the GOSUB stack 
and then passes control to the specified line. In the 
above, the address of line 110 is pushed onto the top of the 
stack before control is passed over to line 2000. If the 
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GOSUB 2000 had been followed by (eg) '::FLG=9' then the 
address of this statement would have been pushed onto the 
GOSUB stack. 

The RETURN statement transfers program control back from a 
subroutine to the statement following the last GOSUB 
executed, by popping the top item off the GOSUB stack. In 
the above, the last entry to the stack (address of line 110) 
is popped, allowing control to be passed back to line 110. 

If a subroutine is exited by any way other than a RETURN 
statement, program flow can become unpredictable. Power 
BASIC performs no check that a subroutine has been exited 
(via a RETURN statement). Executing a RETURN statement when 
a subroutine has not been invoked will result in error 12 
(STACK UNDERFLOW). 

Subroutine calls may be nested (a subroutine may call 
another subroutine) up to a maximum of 10 levels for 
Evaluation Power BASIC and 20 levels for Development Power 
BASIC (there can be a maximum of 10 outstanding RETURNS at 
any one time). An attempt to exceed this number will result 
in error 11 (STACK OVERFLOW). 1 

A program with nested subroutine calls is shown below: 

55 GOSUB 200 I 
60 REM return to here from SIR1 I 

. 
200 REM start of S/R1 

to here from SIR2 

1200 RETURN ! exit SIR2 

1 
Pictorally, program execution becomes :- 
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Master 

GOSUB - Subroutine 1 
. I GOSUB - Subroutine 2 

iETuR, 

RETURN 

As a Power BASIC subroutine has complete access to all 
variables defined in a program, no parameter passing 
mechanism is supplied (nor is one really necessary). Power 
BASIC is not a block structured language, and so the 
programmer must make his own checks that variables are not 
accessed incorrectly (inadvertently modified by a 
subroutine). If a subroutine can overwrite critical data, 
it is necessary to use temporary variables for storage of 
this data and the programmer must ensure that the subroutine 
only accesses this data through the temporary variables. 

7.6.3 ON Statement 

The ON statement is a type of 'computed' GOTO. The syntax 
for this is: 

ON <expression> THEN GOSUB/GOTO <11>,<12>,...,<1n> 

A branch is made to line <li>, depending on the value of 
<expression>, via a GOT0 or GOSUB statement. This statement 
is equivalent to: 

IF <expression>=l THEN GOTO/GOSUB <11> 
ELSE IF <expression>=2 THEN GOTO/GOSUB <12> . 
ELSE IF <expression>=n THEN GOTO/GOSUB <In> 

If a GOSUB is used, on returning from the subroutine, 
control passes to the statement following the ON statement. 

If the expression evaluates to less than one or greater than 
<n>, no transfer is made and execution continues from the 
statement following the ON. 
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7.6.4 ERROR Statemezt 

The ERROR statement allows the user to specify a Power BASIC 
routine that is to be executed when an error occurs. The 
syntax for this is: 

ERROR <In> 

When an error condition arises, control is passed to line 
<In> via a GOSUB statement. The address of the statement 
line following the one in which the error occurred is 
preserved on the GOSUB stack. 

When the error handling routine has been invoked, the system 
function SYS can be interrogated to find the cause of the 
error. SYS(1) will return the error code number, and SYS(2) 
the number of the statement in which the error occurred. 

PO ERROR 1000 

1000 REM error handling routine 
1010 IF SYS(1)<>23 THEN PRINT "ERROR= ",SYS(l):: STOP 
1020 RESTOR 
1030 RETURN 

When an error occurs, control is transferred to statement 
1000. If the error was not due to "READ OUT OF DATA" (error 
23), the message "ERROR=" and the error code are output to 
the terminal and program execution STOPS. Otherwise the 
error is corrected by resetting the READ pointer to the 
first DATA statement in the program and a return is made to 
the line immediately following the read statement that 
caused the error. Obviously this "error routine" is not 
particularly useful (as the contents of the "read variables'' 
can not be relied upon), however it does serve to illustrate 
the use of the ERROR statement, 

If the sequence of read operations is of the form: 

100 READ .... . 
200 READ .. . . 
300 READ ., . , 

Then replacing line 1030 by: 

1030 POP:: ON SYS(2)/100 THEN GOT0 100,200,300,... 

allows the "error routine" to be more useful. The POP 
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statement s i m p l y  removes the top address from the GOSUB 
stack (in this case, the address of the line following the 
READ statement that caused the error). 

Once an error has been trapped using this statement, no 
future errors will be trapped until another ERROR statement 
is executed. 

Note: Use of the ERROR statement suppresses the automatic 
printing of error code/message. 

7.6.5 CRU Operations 

The 9900 supplies a bit-oriented method of 1/0 called the 
Communications Register Unit (CRU). Under Power BASIC the 
CRU is accessed using the BASE statement and the CRB and CRF 
functions, For full details of the CRU and its operation 
refer to Section 8.9. 

7.6.5.1 BASE Statement 

CRU operations are performed on a signed displacement (in 
the range -128 to +I27 bits) from a base address. This base 
address is set using the BASE statement. The syntax for 
this statement is: 

BASE <exp> 

where <exp> is any valid arithmetic expression, 

Note: The base address is a 12 bit address that is stored in 
bits 3 to 14 of workspace register 12. Because of this, the 
value of <exp> (known as the software base address) must be 
twice that of the hardware CRU base address desired. For 
example; to access a device that has a CRU base address of 
32, <exp> must evaluate to 64. 

7.6.5.2 CRB Function 

Single-bit 1/0 is performed using the CRB function. 
Depending on the context in which it is used, this function 
either reads or writes to the specified bit. 

When reading, the function returns one if the specified bit 
is set, and zero if it is not set. 

Example: Execute the sequence <seql> if the 15th bit from 
the base address is a '1'. 

IF CRB(15) THEN <seql> 
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?%%en writing, the selected bit is set to '1' if the assigned 
value is non-zero, and to 'Of if the assigned value is 
zero. 

Example: Set the  100th bit from the base address to '1'. 

7.6.5.3 CRF Function 

The specified number of bits are written to or read from the 
CRU starting at the address set by the BASE statement. The 
number of bits to be transferred must be in the range 0 to 
15. If the number is zero, all 16 bits are transferred. 

Example: Transfer the 16 bit value minus one (hex >FFFF) to 
the CRU address specified by the RASE statement. 

Exampie: Read an 8 b i t  value from the CRU base address and 
store the result in VAL. 

VAL will be in integer format with the value occupying the 
least significant byte of the integer word. 

7.6.6 Memory Operations 

The Power BASIC functions MWD and MEM allow the user to read 
or write to an individual word or byte in memory. However, 
care must be exercised when using these functions to ensure 
that no Power BASIC system variables are inadvertently 
corrupted. 

These functions can also be used to directly interface to 
memory mapped 1/0 devices. 

7.6.6.1 MEM Function -- 

This function allows the user to read from or write to the 
specified memory-byte location. 

Example: Output the character 'A' to the device data 
register located at memory address >AEOO. 

ASC returns the decimal ASCII code of the character 
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Example: P i c k  up t h e  c h a r a c t e r  i n  t h e  d e v i c e  d a t a  r e g i s t e r  
l o c a t e d  a t  memory a d d r e s s  >B000. 

The s i n g l e  c h a r a c t e r  s t r i n g  i s  t e r m i n a t e d  by t h e  'XO' .  

7.6.6.2 MWD F u n c t i o n  

T h i s  f u n c t i o n  a l l o w s  t h e  u s e r  t o  r e a d  from o r  w r i t e  t o  t h e  
s p e c i f i e d  memory word l o c a t i o n .  T h i s  f u n c t i o n  i s  
p a r t i c u l a r l y  u s e f u l  f o r  l o a d i n g  s m a l l  a s sembly  l anguage  
r o u t i n e s  i n t o  memory. (The a r e a  of memory used  must be 
o u t s i d e  t h e  Power BASIC envi ronment . )  

Example: Load t h e  a s sembly  l anguage  program i n t o  memory 
s t a r t i n g  from a d d r e s s  >7000. 

MWD(07000H)=e....e. !Load 1 s t  i n s t r u c t i o n  

MWD(07XXXH)=045BH ! Load RT i n s t r u c t  i o n  

Fo r  l a r g e  r o u t i n e s  t h e  above app roach  i s  n o t  r e a l l y  
s u i t a b l e ,  An e a s i e r  method is:  

100 DATA s t a r t  a d d r e s s ,  ..... . 
600 DATA ....., 045BH, term 

1000 READ s t r  !Get s t a r t  a d d r e s s  
1010 READ opc ! G e t  n e x t  i n s t r u c t i o n  
1020 I F  opc = t r m  THEN STOP 
1030 MWD(str)=opc :: s t r = s t r + 2  :: GOT0 1010 

The f i r s t  i t e m  t o  be r e a d  from t h e  DATA s t a t e m e n t  i s  t h e  
a c t u a l  a d d r e s s  i n  ,memory where t h e  program i s  t o  be loaded .  
The o n l y  o t h e r  a d d i t i o n  t o  t h e  r o u t i n e  i s  some way of 
i n d i c a t i n g  when t h e  end of  t h e  r o u t i n e  h a s  been  r eached .  I n  
t h e  above  code ,  t h i s  i s  i n d i c a t e d  by TRM ( t h i s  i s  a un ique  
v a l u e  t h a t  d o e s  n o t  a p p e a r  anywhere w i t h i n  t h e  r o u t i n e  t o  be 
l o a d e d ) .  It c o u l d ,  j u s t  a s  e a s i l y ,  have been  i n d i c a t e d  by 
i n c l u d i n g  t h e  l e n g t h  of t h e  r o u t i n e  as t h e  second  i t e m  i n  
t h e  DATA s t a t m e n t  a t  l i n e  100. I f  t h i s  had been  t h e  c a s e  
t h e n  a s i m p l e  FOR NEXT l o o p  c o u l d  have been  used .  

Example: Check memory a d d r e s s  >6000 t o  s e e  i f  a p a r t i c u l a r  
EPROM se t  h a s  been  i n s t a l l e d  and i f  s o ,  e x e c u t e  t h e  assembly  
l a n g u a g e  r o u t i n e  l o c a t e d  t h e r e .  ( T h i s  EPROM s e t  i s  
i d e n t i f i e d  by t h e  c o n t e n t s  of i t s  f i r s t  word, i t  s h o u l d  be 
>1234e)  

I F  MWD(06000H)=01234H THEN CALL 11routine1' ,06002H,. . . .  
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7 . 6 , 7  Assembly Language Routines 

Although Power BASIC is one of the fastest BASIC 
interpreters commercially available, there are some 
situations where it may be advantageous, or even necessary, 
to write a routine in assembly language, Perhaps a complex 
operation has already been written in assembly language and 
it would certainly be easier, and simpler, to use this 
without having to recode it in the Power BASIC language. Or 
perhaps, to look after a high-speed device where timing is 
critical and a response is required in a matter of a few 
tens of microseconds, (At 3MHz and no memory wait states, 
the TMS9900 microprocessor executes an interrupt context 
switch in 7,3us; a MOV instruction takes between 4,7us and 
lOus depending upon the addressing mode used,) 

With Development, and Configurable, Power BASIC, this sort 
of situation is provided for by the CALL statement, It 
aiisws t he  programmer to fnvoke an asseiiibly language routine 
from within a Power BASIC program, The syntax for this 
statement is : 

CALL <name>,<address>,<var1>,<var2>,<var3>,<var4> 

where the string <name> is the assembly language routine's 
IDT, <address> is the address of the routine in memory, 

- d- IF, 4 1  ~trmtt Lmi' 6 

parameters (these parameters are optional and can be 
omitted, along with their preceeding commas, if they are not 
required), 

When running under either Development Power BASIC or the 
Configurable Power BASIC host interpreter, the <name> 
operand is not checked (but it must be present) and the 
<address> operand is used as the routine's entry point, 
However, a customised Power BASIC target interpreter 
(derived from Configurable Power BASIC) uses the <name> 
operand to generate the routine's entry point and the 
<address> operand is not checked (but it must be present). 

The assembly language routine is entered by a BL 
instruction, which stores the return address in register 
11, A return to the Power BASIC interpreter is made by an 
RT pseudo-instruction (this is equivalent to a B *R11 
instruction), 

---- -. - - 

The parameters are passed across to the assembly language 
routine in registers 4, 5, 6 and 7 of the Power BASIC 
workspace. When a Power BASIC variable is a parameter, its 
contents are converted into a 16 bit twos complement integer 
value before being loaded into the appropriate register, 1 

Enclosing the variable name in parentheses causes the I 
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address of the variable to be passed over. (The formats 
employed by the Power BASIC interpreter are given in section 
7.7.1.) The routine can modify these four registers as 
necessary. If, however, more than four registers are 
required, the assembly language routine should be provided 
with its own workspace as modifying any of the other 
registers could cause the interpreter's execution to become 
unpredictable. 

Example: Invoke the assembly language routine (IDT of TEST) 
located at memory address >8446, with parameters 10 and the 
address of the Power BASIC variable INC. 

CALL "TEST1',08446H, 10, (INC) 

On entry to the routine, R4 will contain 10 and R5 will 
contain the address of INC, 

With the Configurable Power BASIC host interpreter, the user 
must first load the object program from either cassette or a 
floppy disk file. Details on how to do this are given in 
the Assembly Language Support for Power BASIC Application 
Report (MP719), available from TI. (A small assembly 
language routine can be 'loaded' using the mechanism 
described in section 7.6.6.2.) 

7.6.8 Interrupts 

Development Power BASIC allows the uskr to perform interrupt 
handling via a Power BASIC subroutine. This is achieved 
using the Power BASIC interrrupt statements IMASK, TRAP and 
IRTN. 

With the T~990/10OM and / 1 0 1 ~  microcomputer modules, all 
interrupt lines are connected to the onboard TMS9901 
Programmable Systems Interface. It is this device that 
informs the 9900 microprocessor when an interrupt has been 
generated. 

The 9901 is accessed via CRU instructions using a hardware 
base address of >80; this address needs to be doubled (ie 
>loo) when used in the BASE statement to set the base 
address of the 9901. For an interrupt to be recognised by 
the 9901 (and subsequently by the 9900), its level must be 
enabled. This is performed by setting the appropriate mask 
bit in the 9901's CRU address space to '1' (for details on 
the operation of this device refer to the TMS9901 
programmable Systems Interface Data Manual). 

To program the 9901 to enable an interrupt level it is 
necessary to: 

1) Select interrupt mode. 
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2) Write a '1' to the appropriate mask bit. 

For example: To enable interrupt level 7: 

BASE lOOH !set base address of 9901 
CRB(O)=O !set control bit=interrupt mode 
CRB(7)=1 !enable mask 7 

If a '0' is written (instead of a '1') to the mask bit then 
the interrupt level is disabled, For example: To disable 
interrupt level 12: 

CRB(O)=O !select control bit=interrupt mode 
CRB( 12)=O !disable mask 12 

The above example assumes that the base address of the 9901 
has already been set, 

An 'open/close window' mechanism is used to recognise 
interrupts. This mechanism was chosen because it guarantees 
the integrity of the Power BASIC environment, Interrupts 
are only recognised after a Power BASIC statement has been 
executed, As the Power BASIC interpreter is not re-entrant 
(see Sections 8.13.7 to 8.13.9 inclusive), this is necessary 
to ensure that temporary/partial results and even Power 
BASIC system variables are not corrupted by executing a 
Power BASIC interrupt handler while the interpreter is in 
the middle of a statement, 

After a statement has been executed, the interpreter sets 
the status register's interrupt mask to the 'open' value 
(this allows the processor to take the highest priority 
pending interrupt), If there is a pending interrupt, its 
priority level is stored in an internal 'flag register'. 
The interrupt mask is then reset to the 'close' value. If 
the 'flag register' is unchanged, the next Power BASIC 
statement is executed. Otherwise the 'open' value and the 
address of the next instruction to be executed are stacked, 
The 'open' value is reset to the incoming interrupt level 
minus one (this disables interrupts of an equal or lower 
priority) and the appropriate Power BASIC interrupt routine 
is then invoked. (On completion of the interrupt routine, 
both the 'open' value and the address of the next 
instruction to be executed are restored and the above 
sequence is then repeated, ) 

The 'open' and 'close' values are determined during system 
initialisation, This is performed by scanning the interrupt 
vectors (starting from interrupt level 15 and working down 
towards level 3) to find the lowest priority interrupt that 
is not handled by Power BASIC. Both 'open' and 'close' are 
set to the value of this interrupt level (if all interrupts 
are handled by Power BASIC, these two values are set to 3). 
This allows all enabled interrupts that are handled by 
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assembly language routines to be taken immediately they are 
recognised by the processor, no matter what the Power BASIC 
interpreter is doing. However, this means that a11 
interrupt levels below the 'open' value must be handled by 
assembly language routines. If, for example, interrupt 
level 7 is handled by an assembly language routine, the 
Power BASIC interrupt statements can only be used in 
conjunction with levels 8 to 15. 

Additional information on interrupts is contained in Section 
8elOa 

7,6,8,1 IMASK Statement 

The IMASK statement is used to control the TMS9900 
micropr~cessors's interrupt mask (bits 12 to 15 of the 
status register), 

The 9900 recognises 16 distinct interrupt levels, level 0 is 
the highest priority interrupt and level 15, the lowest. 

With the / 1 0 0 ~  and the /101M microcomputer modules, 
interrupt level 0 is reserved for the RESET function and 
interrupt level 3 for the real-time clock. Apart from these 
two, all other interrupt levels may be used by external 
devices, Several devices may even share the same interrupt 
level (if system considerations require it). If this is the 
case, the programmer must determine which device caused the 
interrupt by polling the devices' status registers, 

An interrupt can only be recognised by the TMS9900 when the 
incoming interrupt has an equal or higher priority (equal or 
lower numerical level value) than that specified in the 
interrupt mask, If, for example, the interrupt mask is set 
to 5, then only interrupt levels 0 to 5 will be recognised 
by the processor, The interrupt mask can be changed using 
the IMASK statement, The syntax for this statement is: 

IMASK <exp> 

where <exp> is an expression in the range 0 to .15. 

Note: Care must be taken when using the IMASK statement as 
this causes the 'open' and 'close' values to be changed. 
('Close' is set to the IMASK value. 'Open' is also set to 
this value if it is numerically lower than the current 
'open' value.) 

7,6,8,2 TRAP Statement 

The TRAP statement is used to define a Power BASIC 
subroutine that is to be executed when an interrupt of the 
specified level occurs, The syntax for this statement is: 
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TRAP <exp> TO <In> 

where <exp> is the interrupt level and <In> is the line 
number sf the first statement sf the interrupt routine. 

7.6.8.3 IRTN Statement 

The last statement of an interrupt subroutine must be an 
IRTN. When this statement is executed, the interpreter 
recognises that the interrupt has been serviced and that it 
should continue program execution from where it left off. 
The syntax for this statement is: 

IRTN 

Before this statement is executed, the device that generates 
the interrupt signal must be reset. If this is not done 
then as soon as the IRTN statement has been executed the 
interrupt subroutine will be immediately re-entered (as the 
interrupt signal will still be present). 

7.7 POWER BASIC STORAGE ALLOCATION 

The paragraphs that follow discuss variable storage and the 
system memory map. This information is not necessary in 
order to write Power BASIC programs, but may be of interest 
to users. 

7.7.1 Variable Storage 

As a variable is allocated the same amount of memory no 
matter what it contains (4 bytes in Evaluation Power BASIC 
and 6 bytes in Development Power BASIC), swapping a 
variable's contents between integer, floating point or 
character string formats as the context requires presents no 
problem. 

The memory space for variable storage starts in high memory 
and builds down towards low memory as each new variable is 
declared. Suppose variable storage starts at memory address 
>FEOO. The first variable used will be allocated space as 
follows : 
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1 ST BYTE 2ND BYTE 
> r n F C I  1 1 
EVALUATION POWER BASlC 

POWER BASIC 

>FEOO 

DEVELOPMENT POWER BASlC 

Figure 7-2 F i r s t  Variable Al locat ion  

The next var iab le  w i l l  he a l l o c a t e d  space a s  f o l l o w s :  

I 3RD BYTE 1 4lH BYTE I I 
1ST- 

VARIABLE 

>FDFC 

EVALUATION POWER BASIC \ 

I lSTBYTE I ZNDBYTE I 
I. DEVELOPMENT POWER BASIC 

Figure 7-3 Second Variable Al locat ion  

7 . 7 . 1 . 1  Integer  Format 

Integer  numbers are  s tored a s :  

EVALUATION POWER BASlC 

0 15 16 31 

ALL ZEROS 

DEVELOPMENT POWER BASlC 

TWOS COMPLEMENT 

0 15.16 31 32 47 

Figure 7-4 Integer  Format 

ALL ZEROS 
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The first word /I.-+ \ " L L s  0 to 15) is set to zero indicating an 
integer number. The second word (bits 16 to 31) contains 
the twos complement integer value, For Development Power 
BASIC the third word (bits 32 to 47) also contain zero. 

7.7.1.2 Floating Point Format 

A floating point number is represented internally as a 
fraction multiplied by a power of 16 (this power is known as 
the characteristic) and is stored as: 

EVALUATION POWER BASIC 

SIGN + 

DEVELOPMENT POWER BASIC 

EXPONENT 

SIGN -+, 

Figure 7-5 Floating Point Format 

MANTISSA 

Bit 0 is the sign bit and represents the sign of the 
floating point number: 0 for positive, 1 for negative. Bits 
1 to 7 hold the characteristic coded in Excess 64 notation 
(the true characteristic plus 64; this gives the 
characteristic a range of 0 to 127 representing a true 
exponent range of -64 to +63). The remaining hits (24 for 
Evaluation Power BASIC and 40 for Development Power BASIC) 
contain the normalised mantissa (the mantissa is normalised 
if its first hex digit is non-zero). 

EXPONENT 

Negative fractions are stored in true form with the sign bit 
set to one and not in twos complement notation. 

MANllSSA 

The conversion of a decimal real number into its approximate 
binary equivalent is described in Sections 8.13.2.3 and 
8.13.2.4. 

7.7.1.3 Character String Format 

A character string is stored as follows: 
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EVALUATION POWER BASIC 

BYTE 1 

Figure 7-6 Character String Format 

0 7 8 15 16 23 24 31 32 39 40 47 

Suppose the t w o  variables A and B, defined in that order, 
occupy successive memory locationse The statements: 

(21 BYTE 2 

BYTE 1 

would cause these strings to be stored as follows: 

BYTE 3 

HIGH MEMORY 

DEVELOPMENT POWER BASIC 

LOW MEMORY 

@ BYTE 2 

EVALUATION POWER BASIC DEVELOPMENT POWER BASIC 

Figure 7-7 Character String Storage Example 

BYTE 3 

When a character string is too long to be held in a 
variable, an array should be used, 

7,7,1.4 Array Storage 

BYTE4 

An array is referenced by its array header. This contains 
information such as the size of each dimension and its 
stride (the stride is the number of bytes between successive 
elements of a dimension), For a one dimensional array the 

BYTE5 
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stride Is 4 f c r  Evaluation Power BASIC and 6 for Development 
Power BASIC. 

The memory address of any element in a one dimensional array 
is calculated (in bytes) as: 

start address + n * subscript 
where start address = address of array header + 4 

n = 4 for Evaluation Power BASIC 
6 for Development Power BASIC 

If the array header is located at >EFFO, the 9th element of 
the array, array name(8), starts at memory address: 

For Evaluation Power BASIC = >EFF4 + 4 * 8 = >F014 
For Development Power BASIC = >EFF4 + 6 * 8 = >F024 

To allocate a ten-element array (STR) and store the 
character string 'ABCEEFGXIJ '  into it, the following 
statements are required. 

DIM STR(9) 
$STR(O)=' ABCDEFGHIJ' 

This string would be stored as: 

LDVv' MEiiiiGRY' 
EVALUATION POWER BASIC DEVELOPMENT POWER BASIC 

Figure 7-8 Array Storage 
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The statements: 

PRINT $STR(O) 
PRINT $STR( 1) 
PRINT $STR(2) 

would produce the following output: 

ABCDEFGHIJ ABCDEFGHIJ 
EFGHIJ GHIJ 
IJ 
Evaluation Power BASIC Development Power BASIC 

Individual bytes of an array containing a character string 
can be accessed by following the array subscript with a 
semicolon ( ;  and the number of the required byte. For 
example: $STR(1;3) references the letter 'G' (the letter 'I' 
in Development Power BASIC), 

The statement: 

DIM LST(25,9) 

allocates space for a two dimensional array, which can be 
thought of as 26 one dimensional arrays each containing 10 
elements. The stride for the first index will be 40 for 
Evaluation Power BASIC and 60 for Development Power BASIC; 
the stride for the second will be 4 for Evaluation Power 
BASIC and 6 for Development Power BASIC, 

The memory address of any element in a two dimensional array 
is calculated (in bytes) as: 

start address + n * (subscript1 * multiplier + subscript2) 
where start address = address of array header + 4 * m 

m = number of dimensions 
multiplier = maximum value of subscript2 + 1 
n = 4 for Evaluation Power BASIC 

6 for Development Power BASIC 

If the array header for LST is located at >E4DC then the 
element LST(16,4) is at memory address: 

For Evaluation Power BASIC = >E4E4 + 4 * 164 = >I3774 
For Development Power BASIC = >E4E4 + 6 * 164 = >E8BC 

7.7.2 System Memory Map 

Any additional RAM to that supplied with the TM990/101M and 
/100M CPU boards must be configured to be contiguous and to 

Texas Instruments 7-40 October 1981 



SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC 

end at address >EFFF, For full details on how to do this, 
refer to Section 3 of the TM990/201 and TM890/206 Memory 
Expansion Boards Data Manual, 

The lower limit of RAM is determined at system 
initialisation time by autosizing. This can be altered by: 

NEW <exp> 

where <exp> is the address of the first byte of RAM to be 
used by the system. (The first few bytes of RAM are 
reserved for system use.) 

Once the system has been initialised, the memory map will 
look like this: 

SYSTEM STACKS Y l  
I SYSTEMPTRS 

i GOSUB, WNmON '- END OF USER STORAGE (EUS) 

AND FOR NEXT 
STACKS 

VDT 

VMT 

SLT 

VARIABLE DEFINITION TABLE 

VARIABLE NAME TABLE 

STATEMENT LOCATION TABLE 

USER PROGRAM 

Figure 7-9 System Memory Map 

- BEGlNlNG OF USER STORAGE (BUS) 

ROW& 
POWER BASIC 
iWcRFR€iER 

Texas Instruments 

LO-W MEMORY 
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When a Power BASIC statement is entered, it is checked for 
syntax errors, Syntactically correct statements are encoded 
to minimise storage space, The encoded statement is stored 
in the program space in ascending line number order. 
Program space starts at BUS and builds up in memory towards 
EUS, Line numbers are stripped off the statements as they 
are encoded and are stored in the Statement Location Table 
(SLT) along with the statement's position in the program 
space. (This allows statements that are entered out of 
sequence to be stored in their correct position in the 
program space. ) 

As the program grows the system tables (VNT, VDT and SLT) 
are moved up in memory in order to increase the size of each 
table and to expand the program space. 

When a variable is first encountered, its name is encoded 
and entered into the Variable Name Table (VNT). As a 
statement is being encoded, all variable names present are 
replaced by their position within the VNT. This position 
number is then incremented by >74 to signify that an entry 
in the VNT is being referenced, For example, the statement: 

LET AJ=SIN (PX*RAD) 

will initially be converted into something like: 

LET <77>=SIN(<76>,<75>) 

The angle brackets are used to indicate a two digit hex 
number, <77> signifies the fourth entry in the VNT, (76) 
the third entry and (75) the second entry. 

At run time, space is allocated to each variable as they are 
declared in the program; the address of this space is 
recorded in the Variable Definition Table (VDT), Variable 
storage is allocated from below the 1/0 buffer down towards 
BUS, If insufficient space exists, the run will terminate 
with error 10 (STORAGE OVERFLOW), 
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7.8 REFERENCE SECTION 

An item preceded by an asterisk (*) denotes a feature that 
is not supported by Evaluation Power BASIC. 

7.8.1 Character Set 

1) Upper and lower case alphabet. 
2) Digits 0 to 9. 
3) Special characters 

( ! I ) * : = - + ;  , . ? / < >  

* Non-printable characters may be specified by enclosing 
the character's hex representation with angle brackets. 

Character Use 

Statement separator or THEN keyword 
Tall remark indicator 
Equivalent to PRINT 

7.8.2 Hexadecimal Constants 

A hexadecimal integer constant is one to four hex digits 
followed by the letter H. A hex constant begining with one 
of the letters A - F must be preceded by a zero. 

7.8.3 Variable Names 

A variable name starts with an alphabetic character 
optionally followed by up to two additional alphabetic 
characters or a number in the range 0 to 127. The variable 
name may not be the same as a Power BASIC keyword; nor can 
it form the begining of a keyword. 

7.8.4 Edit Commands 

ESC 
DEL/RUBOUT 

dc Ctrl D <n> 
* Ctrl I <n> 

Ctrl H 
Ctrl F 

<In> Ctrl E 

Enter line into program source 
Enter line into program source and enable 
the auto-numbering facility 
Cancel input line, return to keyboard mode 
Backspace and delete character 
Delete <n> characters 
Insert <n> blanks 
Backspace 1 chaaracter 
Forwardspace i character 
Display line <In> for editing 
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7,8.5 Bower BASIC Commands 

Power BASIC commands may not appear within a program, 

Command Function 

CONtinue * Continue execution from last break 
<In> LISt List currebt program from specified line 

<ln>=Null, Line=Firs t line number 
<In>+ Null, Line=<ln> 

LOAd <exp> Load BASIC program from specified device 
<exp>=Null, Device=733 digital cassette 

* <exp>=O, Device=733 digital cassette 
* <exp>=l or 2, Device=Audio cassette 
* <exp>=Address, Device=2716 EPROM 

NEW <exp> Clear system for new program 
<exp>=Null, RAM limit set by autosizing 

* <exp>#~ull, RAM limit =<exp> 
PROgram * Burn current program into 2716 EPROM 
RUN Clears all variable space, pointers, and 

stacks and executes current program from 
first line number 

SAVe <exp> Save current program on specified device 
<exp>=Null, Device=733 digital cassette 

* <exp>=O, Device=733 digital cassette 
* <exp>=l or 2, Device=Audio cassette 

SIZe Display size of current program 
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7*8 .6  Power BASIC Statements 

Power BASIC program lines are of the form: 

( line number ) statement [ :: statement ] { ! comment ) 

where { } indicates optional items 
[ ] indicates that the item is repeated as many 

times as required - 0,1,, , , . 
Exceptions: 

DATA should be the only statement on a line 
NEXT should not be preceded by '::statement(s)' 
REM should not be followed by '::statement(s)' 

* BAUD <expl> , <exp2> 
Sets the baud rate of the serial 1/0 port(s) of the TMS9902 
Asynchronous Communications Controller, 

<exp l>=O, port=A (CRU address >80) 
< e x p D f C ,  pcrt=E (CRY address X80) 
<exp2>=0, baud rate=19200 
<exp2>=l, baud rate=9600 
<exp2>=2, baud rate=4800 
<exp2>=3, baud rate=2400 
<exp2>=4, baud rate=1200 
<exp2>=5, baud rate=300 
<exp2>=6, baud rate=llO 

BASE <exp> 
Sets CRU base address to <exp> for subsequent CRU 
operations, 

* CALL <name> , <add> { , <parm> ) 
Transfers control to the assembly language subroutine <name> 
located at <add>, Up to 4 parameters, <parm>, are allowed 
in the statement (each separated by commas); these are 
passed to the subroutine in R4, RS, R6 and R7. (If a 
variable is contained in parenthesis, the address of the 
variable is passed,) The return address is contained in 
R11, 

DATA <item> [ , <item> ] 
Defines an internal data block for access by READ, <item> 
is either an expression or a string, 

* DEF FN<i> { ( <arg> ) } = statement 
Defines a single line arithmetic statement containing a 
maximum of 3, single letter, dummy variables <arg> (each 
separated by commas). <i> is the single alphabetic 
character function identifier, when caiiing Fiu'<f> the d.;m-,y 
arguments are replaced by the actual parameters, which may 
be any Power BASIC variable, array element or expression, 
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D I M  <var> ( <nun) [ , <num> ] ) 
Allocates user space for the dimensioned array <var>, <num> 
is the number of elements in a dimension; each dimension 
starts at element 0, 

* ELSE statement [ :: statement ] 
When the most recently executed IF THEN statement is false, 
all subsequent ELSE statements are executed; otherwise they 
are ignored, 

END 
Terminates program execution and returns to keyboard mode, 

* ERROR <In> 
Specifies a Power BASIC subroutine, starting at line <In>, 
that is to be executed via a GOSUB statement when an error 
occurs. 

* ESCAPE 
Enables the ESCape key to interrupt program execution. 

FOR <var> = <expl> TO <exp2> ( STEP <exp3> ) 
The FOR statement is used with the NEXT statement to open 
and close a program loop, Both identify the same FOR 
variable <var>, <expl> is the start value, <exp2> is the 
end value and <exp3> is the stepsize. If STEP is omitted, a 
stepsize of 1 is assumed, 

GOSUB <In> 
Transfers control to a Power BASIC subroutine starting at 
line <In>, The address of the statement following the GOSUB 
statement is stored on the GOSUB stack. 

GOT0 <In> 
Transfers control to line <In>, 

IF <cond> THEN statement [ :: statement ] 
The statement(s) following the THEN keyword are executed if 
the condition <cond> is true, 

* IMASK <exp> 
Sets the interrupt mask of the TMS9900 microprocessor to 
allow interrupts of higher or equal priority to <exp> (in 
the range 0 to 15). 

9 

INPUT <var> [ , <var> ] 
Take input (numeric or string) from the terminal and store 
it into next variable <var> in the INPUT list. Input is 
prompted with a question mark ( ? )  for numeric data and a 
colon (:) for character data, A double question mark ( ? ? )  
signifies an illegal number. See section 7.8.14 for more 
details, 
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* IRT?? 
Is used to return from an interrupt routine; it restores the 
program environment existing prior to taking the interrupt, 

{ LET ) <varS = <exp> 
Evaluate <exp> and store the result in the variable, string 
variable or array element <var>, 

NEXT <var> 
Delimits a FOR loop, The variable <var> must match the FOR 
variable, 

* NOESC 
Disables ESCape key on the terminal, 

GOSUB 
* ON <exp> THEN GOT0 <In> [ , <In> ] 

Transfer control, via a GOSUB or a GOT0 statement, to the 
line specified by the value of the expression (when <exp>=i 
use the ith <In> in the list), If <exp> is outside the 
specified range (less than 1 or greater than the number of 
Cinh in the l i s t )  then drop through to the newt statement 
line. 

* POP 
Removes the top item from the GOSUB stack, 

PRINT <exp> [ , <exp> ] 
Prints (without formatting) the value of <exp>, See section 
7.8.15 for more details, 

* RANDOM <exp> 
Sets the seed for the random number generator to the value 
of <exp>. 

READ <var> [ , <var> ] 
Takes input from the internal DATA block and stores it in 
the next <var> in the READ list, 

REM <text> 
Inserts comment lines (REMarks) into a user program. The 
whole line is taken as a comment, 

RESTOR ( <In> ) 
Resets the DATA pointer to the specified DATA line <In>, If 
<In> is not present, the pointer is set to the first DATA 
statement in the program. 

RETURN 
Return from a Power BASIC subroutine, the return address fs 
the last entry in the GOSUB stack, 

STOP 
Terminates program execution and returns to keyboard mode. 
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TIME ( <item> ) 
~nterrogate/set the 24 hour time of day clock. 

<item>=Null - Output time in HR:MN:SD format 
<item>=$<var> - Store time in string variable <var> 
<item>=<expl>,<exp2>,<exp3> - Set clock to specified 

time (<expl>=hours; <exp2>=mins; <exp3>=secs) 

* TRAP <exp> TO <In> 
Defines the entry point, <In>, of a Power BASIC interrupt 
subroutine for interrupt level <exp>, Level 0 (RESET) and 
level 3 (CLOCK) are reserved and can not be serviced by the 
TRAP statement* 

* UNIT <exp> 
Designates the device(s) to receive all printed output. 

<exp>=l, 1/0 port-A 
<exp>=2, 1/0 port=B 
<exp>=3, I/o ports A and B 
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7.8.7.1 Arithmetic Operators 

A=B 
A-B 
A+B 
A*B 
A18 
AAB 
-A 
+A 

As s ignmen t 
Subtraction 
Addition 
Multiplication 
Division 
Exponentiation 
Unary minus 
Unary plus 

7.8.7.2 Relational Operators 

Return values of '1' (TRUE) or '0' (false). 

A=B TRUE if equal, else FALSE 
A==B * TRUE if approximately equal (+/- 9.5E-7), 

else  FALSE 
A<B TRUE if less than, else FALSE 
A<=B TRUE if less than or equal, else FALSE 
A>B TRUE if greater than, else FALSE 
A>=B TRUE if greater than or equal, else FALSE 
A<>B TRUE if not equal, else FALSE 

7.8.7.3 Boolean Operators 

Return values of '1' (TRUE) or '0' (FALSE). A non-zero 
value variable is considered TRUE; a zero-valued variable is 
considered FALSE. 

NOT A * TRUE if FALSE (zero), else FALSE 
A AND B * TRUE if both TRUE (non-zero), else FALSE 
A OR B * TRUE if either TRUE (non-zero), else FALSE 

7.8.7.4 Logical Operators 

Perform bitwise operations on the operand(s). Operand(s) 
are converted into 16 bit integers before the operation. 

LNOT A * 1s complement 
A LAND B * Bitwise AND 
A LOR B * Bitwise OR 
A LXOR B * Bitwise exclusive OR 
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7.8.7.5 Operator Precedence 

Expressions in parentheses 
Exponentiation and negation 
*,/ 
+, - 
<= , <> 
>=,< 
=,> 
== , LXOR 
NOT, LNOT 
AND, LAND 
OR,LOR 
Assignment (=) 

7.8.8 Arithmetic Functions 

I-----------------I--------I.------------.--.------------- I 
1 Function I Explanation 
I-----------------I----.--.-----------------.------.-- 

I 
I 

I * ABS ( <exp> ) I Absolute value of <exp> I 
I ATN ( <exp> ) I Arctangent of <exp>, <exp> in radians I 
I COS ( <exp> ) 1 Cosine of <exp>, <exp> in radians I 
I * EXP ( <exp> ) I Raise E to the power of <exp> I 
I INP ( <exp> ) I Signed integer part of <exp> I 
I * LOG ( <exp> ) 1 Natural logarithm of <exp> I 
I RND ( <exp> ) I Random number between 0 and 1 I 
I SIN ( <exp> ) 1 Sine of <exp>, <exp> in radians I 
I SQR ( <exp> ) I Square root of <exp> 
111--11--------~-ll--II.-----------~----I---~-------------- 

I 
I 
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7.8.9 CRU Operatisns 

To use the  f o l l o w i n g  CRU f u n c t i o n s  i t  i s  flrst n e c e s s a r y  t o  
s e t  t h e  CRU b a s e  a d d r e s s  v i a  t h e  BASE s t a t e m e n t ,  (The v a l u e  
supplieC to the BASE statement is twice t h e  a c t u a l  hardware 
b a s e  a d d r e s s , )  

7.8.9.1 CRB Func t ion  

CRB ( <exp> ) 
Read t h e  CRU b i t  s p e c i f i e d  by t h e  CRU hardware base  a d d r e s s  
p l u s  <exp>, <exp> i s  v a l i d  o v e r  t h e  range  -128 t o  +127, 

CRB ( <exp l> ) = <exp2> 
S e t / r e s e t  t h e  CRU b i t  s p e c i f i e d  by t h e  CRU b a s e  a d d r e s s  p l u s  
<expl> .  I f  <exp2>=0 t h e n  r e s e t  ( 0  t h e  s e l e c t e d  b i t ,  
o t h e r w i s e  set ( ' 1 ' )  t h e  b i t .  <exp l>  i s  v a l i d  o v e r  t h e  range 
-128 t o  +I270 

7 , 8 , 9 , 2  CRF Funetfons 

CRF ( <exp> ) 
Read <exp> CRU b i t s  from t h e  CRU hardware base  a d d r e s s .  
<exp> i s  v a l i d  ove r  t h e  range  0 t o  15, I f  <exp>=O t h e n  16 
b i t s  w i l l  be r e a d ,  

CRF ( <expl> ) = <exp2> 
Output  <exp l>  b i t s  of t h e  v a l u e  <exp2> t o  t h e  CRU l i n e s  
s t a r t i n g  a t  t h e  CRU hardware base  a d d r e s s ,  <exp l>  i s  v a l i d  
o v e r  t h e  r ange  0 t o  15 ,  I f  <expl>=O t h e n  16  b i t s  w i l l  be 
o u t p u t ,  
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7.8.10 Memory F u n c t i o n s  

7.8.10.1 BIT F u n c t i o n  

* BIT ( < v a r >  , <exp> ) 
Read t h e  <exp> th  b i t  of t h e  v a r i a b l e  <va r> .  

* BIT ( < v a r >  , < e x p l >  ) = <exp2> 
Modify t h e  < e x p l > t h  b i t  of t h e  v a r i a b l e  <va r> .  The s e l e c t e d  
b i t  i s  s e t  t o  '1' i f  <exp2> i s  non- zero ,  o t h e r w i s e  i t  i s  set  
t o  '0'. 

7.8.10.2 MEM F u n c t i o n s  

MEM ( <exp> ) 
Read t h e  memory b y t e  s p e c i f i e d  by <exp>.  

MEM ( < e x p l >  ) = <exp2> 
S e t  t h e  memory b y t e  s p e c i f i e d  by < e x p l >  t o  t h e  v a l u e  
<exp2>.  

7.8.10.3 MWD F u n c t i o n s  

* MWD ( <exp> ) 
Read t h e  memory word s p e c i f i e d  by <exp>. 

* MWD ( < e x p l >  ) = <exp2> 
S e t  t h e  memory word s p e c i f i e d  by < e x p l >  t o  t h e  v a l u e  
<exp2> . 
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7 , 8 , ? ?  Miscellaneous Funct ions 

78.11.1 NKY Function 

NKY ( <exp> ) 
Samples the keyboard in run-time mode. If <exp>=O then 
return the decimal value of the last key struck. (Zero is 
returned if no key was struck.) If <exp>#O then compare the 
last key struck with the decimal value of <exp> and return a 
value of 1 (they are the same) or 0 (they are not the 
same). 

7.8,11,2 SYS Function 

* SYS ( <exp> ) 
Obtain system parameters generated during program 
execution, 

<exp>=O, parameter=input control character 
<exp>=l, parameter=error code number 
<exp>=2, parameter~error lf ne number 

7.8,11,3 TIC Function 

TIC ( <exp> ) 
Samples the real time clock and returns the current TIC 
value minus the value of <exp>, One TIC equals 40 
milliseconds. TIC(0) obtains the current value, 
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7,8,12 String Operations 

<$var> denotes either a literal string, enclosed in 
quotes, or a string variable 

$<var> denotes a string variable 

A variable is specified as being a string variable by 
preceeding the variable name by a dollar sign ($ ) ,  

An individual byte within a dimensioned string variable can 
be accessed by following the last array subscript with a 
semicolon (;) and the byte position, 

$<var> = <$var> 
Character Assignment: Copy characters into the string 
variable until a null (zero) byte is found, 

$<var> = <$var> , <exp> 
Character Pick: Copy <exp> characters into the string 
variable and then terminate the string with a null byte, 

$<var> = <$var> + <$var> [ + <$var> ] 
Character Concatenation: Concatenate the strings into the 
string variable (in the specified order) and terminate the 
completed string with a null byte, 

$<var> = <$var> ; <exp> 
Character Replacement: Copy <exp> characters into the string 
variable (do ,not add the null byte), 

* $<var> = / <$var> 
Character Insertion: Insert the characters into the string 
variable, 

* $<var> = / <exp> 
Character Deletion: Delete <exp> characters from the string 
variable, 

$<var>= % <exp> [ % <exp> ] 
Byte Replacement: Replace the specified byte by the 
character equivalent of <exp>, 

IF <$var><relop><$var> ( , <exp> ) THEN <sequence> 
String Comparison: Where <relop> is a relational operator, 
If the second string is followed by a comma, <exp> indicates 
the number of characters to be compared. 

* <varl> = <$var> , <var2> 
Convert from ASCII to Binary: Convert the character string 
into its binary equivalent, The number delimiting character 
is stored in the first byte of <var2>, 
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* $<var> = <exp> 
Convert from Binary to ASCII: Convert the number <exp> into 
an ASCII character string. The string is automatically 
terminated with a null character. 

$<var>= d <$var> , <exp> 
Formatted conversions can be made by preceding <exp> with 
the formatting operator (1 , )  and a string. 

7.8.13 String Functions 

* ASC ( $<var> ) 
Returns the ASCII decimal value of the first character in 
the specified string. 

* LEN ( $<var> ) 
Returns the length of the specified string. Zero is 
returned if the string is the null string, 

* MCH ( $<varl> $<var2> ) 
Return the number of characters that are the same in the two 
strings. A zero is returned if no match is found. 

* SRH ( $<varl> , $<var2> ) 
Return the character position of where the first string is 
located in the second. A zero is returned if the search is 
U ~ S U C C ~ S S ~ U ~ .  
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7 , 8 . 1 4  INPUT Options 

INPUT <feature> <item> [ <del> <feature> <item> ] 

<item> Either a variable, a string variable, or an 
array element 

<del> Explanation 

9 Delimit <item>s in the INPUT list 
9 Delimit <item>s in the INPUT list. Suppress 

<CR> <LF> if at the end of the statement line 

<feature> Explanation 

<string> Prompt with <string> then get input 
? <In> * Upon an invalid input or control charcater, a 

GOSUB to the line <In> is executed 
X <-exp> * Requires entry of exactly <exp> characters 
# <exp> A maximum of <exp> characters to be entered 

3 Suppress prompting 
null Prompt ( ? for numeric, : for character) and 

and then get input 
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7,8*15 PRINT Options 

PRINT <feature> <item> [ <del> <feature> <item> ] 

<item> Either a variable, an expression, a string 
variable, a string, or an array element 

<del> Explanation 

s Delimit <Ftem>s in the PRINT list and TAB to 
the next print field 

9 Delimit <item>s in the PRINT list. Suppress 
<CR> <LF> if at the end of the statement line 

<feature> Explanation 

<string> * Output <string> 
TAB ( <exp> ) TAB to column specified by <exp> 

# <exp> * Print <exp> in hex free format 
, <exp> * Print <exp> in hex (word) 

# ; < ~ x p >  * Print <exp> in hex (byte) 
# <string> * Decimal formatting - (In Enhancement Software 

Package and Configurable Power BASIC). 
<string> can be 
9 Digit holder 
0 Digit holder or force 0 
$ Digit holder and floats $ 
S Digit holder and floats sign 
< Digit holder before decimal and floats on 

negative number 
> Appears after decimal if negative 
E Sign holder after decimal . Decimal point specifier 
, Comma in output - suppressed if before 

significant digit 
A Translated to decimal point on output 
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7.8.16 F l o a t i n g  P o i n t  XOP Package 

Fo r  u s e  w i t h  assembly  language  r o u t i n e s .  

FORMAT XOP ga , op 

where GA - Genera l  memory a d d r e s s  operand 
OP - XOP number 

FPAC - F l o a t i n g  P o i n t  Accumulator 

XOP no. F u n c t i o n  

LOAD FPAC w i t h  6  b y t e  number a d d r e s s e d  by GA 
STORE FPAC i n  6 b y t e  number a d d r e s s e d  by GA 
ADD 6  b y t e  number a d d r e s s e d  by GA t o  FPAC, s t o r e  
r e s u l t  i n  FPAC 
SUBTRACT 6  b y t e  number a d d r e s s e d  by GA t o  FPAC, 
s t o r e  r e s u l t  i n  FPAC 
MULTIPLY FPAC by 6 b y t e  number a d d r e s s e d  by GA, 
s t o r e  r e s u l t  i n  FPAC 
DIVIDE FPAC by 6 b y t e  number a d d r e s s e d  by GA, 
s t o r e  r e s u l t  i n  FPAC 
SCALE a d j u s t s  FPAC's exponent  t o  v a l u e  of b y t e  
a d d r e s s e d  by GA 
MORMALISE FPAC - 1 s t  hex d i g i t  of m a n t i s s a  i s  
non- zero. Operand n o t  used  
CLEAR FPAC. Operand n o t  used  
NEGATE FPAC - change  1st  b i t .  I f  FPAC=O t h e n  no 
change.  Operand n o t  used 
FLOAT FPAC's 2nd word - 16 b i t  twos complement 
number t o  f l o a t i n g  p o i n t .  Operand n o t  used 

C o n v e r t i n g  I n t e g e r .  t o  F l o a t i n g  P o i n t  

1 )  S e t  words 1  and 3 of  6- byte r e s e r v e d  a r e a  t o  ze ro .  
2 )  S t o r e  i n t e g e r  number i n  2nd word of a r e a .  
3 )  LOAD t h i s  6- byte  number i n t o  FPACo 
4 )  FLOAT FPAC. 
5 )  STORE FPAC i n  6  b y t e  a r e a .  

DECNO BSS 
FLPT BSS 

CLR 
CLR 
L I  
MOV 
XOP 
XOP 
XOP 

@DECNO 
@DECN0+4 
RO , NUM 
RO,@DECNO+Z 
~ D E C N O ,  o 
0 , lO 
@FLPT, 1 
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7.8.17 Variable Storage 

A variable occupies 4 consecutive bytes in Evaluation Power 
BASIC and 6 in Development Power BASIC. Variable storage is 
allocated down through memory (from high memory to low). 
The variable is referenced by the address of the lowest byte 
it occupies. 

Character String Format 

0 7 8 15 16 23 24 31 
1--------1--------1--------I-------- I 
1 Byte 1 1 Byte 2 1 Byte 3 1 0 I 
1--------I--------I--------II------- I 
Evaluation Power BASIC 

0 7 8 15 16 23 24 3 1  32 39 40  47 
I--------)--------I--------I--------I--------~-------- 1 
I Byte 1 I Byte 2 1 Byte 3 1 Byte 4 1 Byte 5 1 
I--------1--------I--------I--------l-------- 

0 I 
I -------- 1 

Development Power BASIC 

Integer Format 

0 15 16 ' 32 
I----------------I---------------- I 
I All zeros I Twos complement 1 
I----------------I------------ I 
Evaluation Power BASIC 

0 15 16 31 32 47 
I----------------l---.---------------------- I 
I All zeros I Twos complement 1 All zeros 1 
~---d---------w--l-----------~--~-l------LI-------- I 
Development Power BASIC 

Floating Point Format 

0 1 7 8 3 1 
1-1.------1------------.---------.- I 
IS1 Exp I Mantissa 
1-1-------1--------.-------------.- 

I 
I 

Evaluation Power BASIC 

0 1 7 8 47 
111-------1.---------.---------------II---------.--. I 
I S f  Exp I Mantissa I 
!~!-------~---------------------~----=-------~.--.-- i 
~evelb~ment Power BASIC 
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708,18 A S C I I  C h a r a c t e r  S e t  

CHAR HEX CHAR HEX 

NUL 00 
SOH 0 1  
STX 02 
ETX 0 3  
EOT 04 
ENQ 05  
ACK 06 
BEL 07 
BS 08  
HT 09 
LF OA 
VT OB 
FF OC 
CR OD 
SO OE 
S1  OF 
DLE 10  
D C 1  11 
DC2 12 
DC3 1 3  
DC4 14 
N AK 1 5  
SYN 16  
ETB 17 
CAN 18 
EM 19 
SUB 1 A  
ESC 1B 
FS 1 C  
GS i n  
RS 4.E 
US IF 
S p a c e  20 
! 2 
11 2 

23 
$ 24 
% 25 
& 26 
8 27 
( 28 
1 29 
J( 2A 

Texas  I n s t r u m e n t s  7-60 

CHAR HEX 

DEL 

O c t o b e r  1981  



SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC 

7.8.19 Eex-Decimal Table 

------ ----------.----.---.- 
Even Byte 

,-------..---1-----.------- 
Hex Dec 1 Hex Dec 

------------.I------------- 
0 0 1  0 0 
1 4,096 1 1 256 
2 8,192 1 2 5 12 
3 12,288 1 3 768 
4 16,384 1 4 1,024 
5 20,480 1 5 1,280 
6 24,576 1 6 1,536 
7 28,672 1 7 1,792 
8 32,768 1 8 2,048 
9 36,864 1 9 2,304 
A 40,960 1 A 2,560 
B 45,056 1 B 2,816 
C 49,152 1 C 3,072 
D 53,248 1 D 3,328 
E 57,344 1 E 3,584 
F 61,440 1 F 3,840 

-------------I------------- 
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7.8.20 E r r o r  Codes 

Code Error message 

Syntax error 
Unmatched parenthesis 
Invalid line number 
Illegal variable name 
Too many variables 
Illegal character 
Expecting operator 
Illegal function name 
Illegal function argument 
Storage overflow 
Stack overflow 
Stack underf low 
No such line number 
Expecting string variable 
Invalid screen command 
Expecting dimensioned variable 
Subscript out of range 
Too few subscripts 
Too many subscripts 
Expecting simple variable 
Digits out of range (0< no. digits > i 2 )  
Expecting variable 
Read out of data 
Read type differs from data type 
Square root of negative number 
Log of non-positive number 
Expression too complex 
Division by zero 
Floating point overflow 
Fix error 
FOR without NEXT 
NEXT without FOR 
Exp function has invalid argument 
Unnormalised number 
Parameter error 
Missing assignment operator 
Illegal delimiter 
Undefined function 
Undimensioned variable 
Undefined variable 
Expansion EPROM not installed 
Interrupt without TRAP 
Invalid baud rate 
Tape read error 
EPROM verify error 
Invalid device number 
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POWER BASIC 

TI Publications 

Power BASIC Reference Manual (MP308) 

Configurable Power BASIC Reference Manual (MP318) 

TMS9901 Programmable Systems Interface (MP003) 

TM990/100M Microcomputer User's Manual (MP321) 

TM990/101M Microcomputer User's Manual (MP337) 

TM990/201 and ~~990/206 Memory Expansion Boards (M~334) 

TM990/302 Software Development Board User's Guide (MP343) 

Assembly Language Support For Power BASIC Application 
Report (MP7 19) 
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CHAPTER 8 

ASSEMBLY LANGUAGE 

8.1 INTRODUCTION 

The relationship between assembly language and the computer 
it was designed to support is displayed below, Assembly 
language provides the interface between the hardware 
operation and the high-level language specifying the 
problem. Assembly language is therefore machine dependent 
and thus it has the capability to access all low-level 
features of the machine (memory, hardware registers, etc). 

Problem (Real Word) 

Figure 8-1 Assembly Language and the Computer 

Due to its low-level nature, assembly language does not have 
the programming aids that are built into high-level 
languages, For example, high-level languages automatically 
provide the necessary data mappings and addressing 
mechanisms used to access declared variables, while the 
assembly language programmer must perform this housekeeping 
for himself, 

Assembly language is useful when tight control must be 
maintained over the use of resources (for example where 
particularly compact or efficient code is required), The 
disadvantage is that skill and a lot of time is needed to 
realize this compactness and efficiency, Using high-level 

Texas Instruments 8- 1 October 1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

ianguages can speed up program production considerably and 
the program will he less prone tn  errore, A l n n ,  en n g q ~ ~ h l y  

language program becomes more and more difficult to manage 
as its size increases, 

However, assembly language is ideal for short, frequently 
executed program segments such as 1/0 routines and for 
high-volume applications where savings on code (and 
hardware) outweigh the extra development effort. 

The machine instruction is a hardware defined operation and 
is the basic unit. of processing. The complete range of 
hardware instructions designed into a particular processor 
forms the instruct ion set. (Sixty-nine instructions make up 
the TMS9900 instruction set.) 

Every program written for the 9900 (or any other processor) 
will eventually be broken down into a sequence of these 
basic instructions, Each instruction is actually stored in 
program memory as a number (a string of '0's and '1's). In 
this state the instruction is usually referred to as a 
machine code instruction, 

While programming at the machine code level is possible, it 
is not very practical. Moreover, understanding the function 
of a machine code program is difficult and requires very 
careful study. 

Assembly language allows programming directly in the 
machine's instruction set using mnemonics instead of 
numbers, Further, most assembly languages allow symbolic 
referencing: using a name to reference a data item or a code 
segment (the assembler translates these references into 
their actual memory addresses), 

Consider the following example, A value is stored at 
address >4E70 (symbolic location START), This value is to 
be transferred to address >5630 (symbolic location NEW), 
The assembly language instruction 

will do this, The machine code equivalent is: 

The symbol ')' indicates that the number that foilows is a 
hexadecimal number (the hexadecimal number system is 
described in section 8.13,2.1), 

Before an assembly language program can be executed, it must 
first be converted into a form the processor can handle 
(machine code). This conversion is performed by an 
assembler 'on a one-for-one basis. (A single assembly 
language instruction generates one machine code 
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Instructions can be one, two or three words long, The 
length of an instruction depends on the number of operands 
contained and the type of addressing allowed, The MOV 
instruction above has two memory address operands (START and 
NEW) and thus requires three words of storage. If one of 
these operands had been a register only two words would be 
needed. Had both operands been registers one word would be 
sufficient. 

8.2 INSTRUCTION FORMAT 

An instruction consists of four fields, each separated from 
the other by at least one space. Several examples follow. 
The asterisk (*) in the first column indicates a comment 
line. 

OP- 
Label code Operand(s) Comment s 

RESET CI R4,>100 * Contents of R4= >loo? 

* operands - 1 workspace register, 1 immediate value * 
C R2,R3 Contents of R2=R3? * 

* operands - both workspace registers * 
Branch to RESET 

* operands - 1 symbolic memory location * 
RSET Reset the 9900 * 

* operands - none * 

The instruction fields are: 

1) Label field - An optional field; when used the 
user supplied name is assigned the current 
value of the location counter (the address in 
memory where the instruction will be stored). 
This field starts in column one. An asterisk 
in column one indicates that the whole line is 
a comment . 

2) Opcode field - The operation code, or mnemonic, 
specifies what the instruction does (eg MOV). 
Assembler directives, assembly language 
instructions and pseudo-instructions are 
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covered by this term. 

3) Operand field - This field specifies the 
opcode's argument(s); eg, where the data is to 
be taken from (source) and/or where the data is 
to be stored (destination), 

4) Comment field - An optional field ignored by 
the assembler and used for documentation 
purposes. Although comments have no effect on 
the code produced, they are extremely useful, 
They allow the programmer to describe exactly 
what is done at the point in the code where the 
action is performed, If used properly, 
comments can make a program completely self- 
documenting. 

The assembler places no restrictions on the position of any 
field in the line, except for the label field, However, it 
is advantageous for the programmer to adopt some 
convention. The recommended convention is: 

o LABEL field Starts in column 1 

o OPCODE field Starts in column 8 

o OPERAND field Starts in column 13 

o COMMENT field Starts in column 31 

8 . 3  INSTRUCTION FORMAT RESTRICTIONS 

Restrictions to instruction formats are listed below. 

1) If a label is present it must start in column 
one; otherwise column one must be left blank, 

2) A label consists of up to six alphanumeric 
characters, the first of which must be 
alphabetic, 

3) All fields are separated by one or more 
spaces, 

4) Operands, if more than one is required, are 
separated by commas. 
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8.4 MEMORY ORGANIZATION 

Computer memory is sequential and consists of a large number 
of storage cells or locations. Each location has a unique 
address. Using this address, the processor is able to 
directly reference a particular location. 

Memory is used for storing patterns of bits that may be 
interpreted as either: 

1) Programs - lists of instructions that tell the 
processor what to do. 

or 2) Program Data - patterns of bits that can be 
used to represent numbers, status of switches, 
etc (anything that the computer is programmed 
to deal with). 

8.4.1 Byte 

A byte is a group of eight binary digits (bits). The most 
significant bit (MSB) is designated hit zero and the least 
significant bit (LSB) as bit seven. The contents of a byte 
can be represented by two hex digits (>00 to >FF). 

k 
0 1 2 3 4 5 6 7  

Bit Position 

Figure 8-2 A Byte 

8.4.2 Word 

A memory word, on the 9900, occupies 16 bits (2 bytes). A 
word's MSB is designated bit 0 and its LSB as bit 15. The 
contents of a word can be represented by four hex digits 
(>0000 to >FFFF). 

The architecture of the TMS9900 is based on words. However, 
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semi9csr;~uct~r i i l e n ~ i y  is ---- UDdaPPy organf zed i n  bytes. 
Therefore, although the word is the basic unit, byte 
addressing is used. This means that the addresses of 
consecutive words in storage are n, n+2, n+4, etc. The 
first byte of a word (the most significant byte) must be on 
an even numbered address. 

Figure 8-4 Memory Organisation 

Storing a single byte's worth of data in a memory word is 
not very efficient. The 9900 instruction set provides a 
number of instructions for byte operations (eg MOVB, CB, AB, 
SB, etc). Using these instructions, it is possible to 
individually access/manipulate each of the bytes within a 
word. 

b 

4 Word * 

8.4.3 Registers 

- Byte ----------YW 

Most computers provide a number of general purpose hardware 
registers that are accessible to the assembly language 
programmer. All operations are centred around these 
registers. To add the contents of two memory locations (A 
and B) together and store the result in the first location 
(A), these steps are necessary: 

- Byte b 

o Load the contents of one of the locations into a 
register. 

o Add the contents of the other location into the 
register. 

o Store the contents of the reaiscer into memory 
location A. 

The register oriented instruction evolved because sf the 
great differences in operation speeds between hardware 
registers and ferrite core memory. 

The introduction of semi-conductor memory (considerably 
faster than ferrite core) into computer systems has 
eliminated the need for such registers. With the TMS9900 
microprocessor, direct memory-to-memory operations are 
possible. The above example can now be performed in a 
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single instruetior, 

The 9900 has only three dedicated hardware registers: 

1) Program Counter (PC) - contains the address of 
the next instruction to be executed, 

2) Workspace Pointer (WP) - contains the address 
of the first word of the current workspace, 

3) Status Register (ST) - contains the processor's 
status flags (bits 0 to 6) and the current 
interrupt mask (bits 12 to 15). Bits 7 to 11 
are reserved for future use, 

$ , 4 , 4  Workspace Registers 

The TMS9900 does not provide a unique set of hardware 
implemented registers, Instead any contiguous 16-word area 
of readlwrite memory (RAM) may be defined as the 16-word 
workspace. The 16 workspace registers (RO to R15) may be 
used exactly as if they were implemented in hardware, 
However, the location of the workspace may be changed during 
program execution to give 16 completely new registers, This 
is called a context switch and occurs automatically during 
an interrupt, when' a BLWP instruction is used to call a 
subroutine, or when an XOP instruction is executed. The 
workspace can also he changed using the Load Workspace 
Pointer Immediate instruction (LWPI), 

Although the registers can be located anywhere in memory, 
only 4 bits are needed to completely specify any register 
within the workspace, This allows a register operand to be 
incorporated into the instruction word without having to set 
aside another word for the address, 

The BSS (Block Starting with Symbol) assembler directive 
allows the user to reserve an area of data storage for use 
as a workspace, The following lines of code reserve a 16 
word area starting at address >200O, The LWPI instruction 
causes this value to be loaded into the WP, When this 
instruction has been executed, RO references address >2000, 
R1 references address >2002, etc, 

AORG >2000 
WKSP BSS 32 Reserve 16 word area 

b 

LWPI WKSP Set WP= >2000 

The benefit of this approach is realized when it is 
necessary to save the contents of the registers (for 
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example, on interr~pt). V i t h  the t r a d i t i o n a l  approach ,  t h e  
c o n t e n t  of e v e r y  r e g i s t e r  h a s  t o  be copied Fntn reserve2 
memory l o c a t i o n s ,  With t h e  9900, o n l y  t h e  t h r e e  d e d i c a t e d  
r e g i s t e r s  need t o  be saved  and t h e  WP loaded w i t h  t h e  
a d d r e s s  of a n o t h e r  workspace, T h i s  i s  handled  a u t o m a t i c a l l y  
when an i n t e r r u p t  o c c u r s ,  

8 ,4 ,5  R e g i s t e r  F u n c t i o n s  

I n  g e n e r a l ,  when a  r e g i s t e r  i s  r e q u i r e d  a s  a n  operand f o r  an  
i n s t r u c t i o n ,  any of t h e  16 workspace r e g i s t e r s  can  be used. 
However, f o r  c e r t a i n  o p e r a t i o n s  ( i n  p a r t i c u l a r  t h e  c o n t e x t  
s w i t c h )  some of t h e  r e g i s t e r s  have s p e c i a l l y  d e s i g n a t e d  
f u n c t i o n s ,  a s  f o l l o w s :  

RO I f  t h e  count  operand t o  a  s h i f t  i n s t r u c t i o n  
i s  z e r o ,  t h e  s h i f t  count  i s  t a k e n  from b i t s  
12 t o  15  o f  RO, I f  t h e s e  4  b i t s  a r e  a l l  
z e r o s ,  t h e  s h i f t  count  i s  s e t  t o  16, 

R11 Branch and Link  i n s t r u c t i o n  u s e s  R 1 1  t o  s t o r e  
i t s  r e t u r n  addres s .  Also t h e  XOP i n s t r u c t i o n  
u s e s  R11 t o  s t o r e  t h e  e f f e c t i v e  a d d r e s s  of 
t h e  s o u r c e  operand,  

R12 B i t s  3  t o  14 o f  R12 c o n t a i n  t h e  hardware base  
f o r  CRU i n s t r u c t i o n s ,  

R13 When a  c o n t e x t  s w i t c h  o c c u r s ,  R13 i s  used t o  
s t o r e  t h e  o l d  WP, 

R14 When a  c o n t e x t  s w i t c h  o c c u r s ,  R14 i s  used t o  
s t o r e  t h e  o l d  PC, 

R15 When a  c o n t e x t  s w i t c h  o c c u r s ,  R15 i s  used t o  
s t o r e  t h e  o l d  ST, 

Note: The MPY and D I V  i n s t r u c t i o n s  u s e  two c o n s e c u t i v e  
r e g i s t e r s .  The f i r s t  i s  s u p p l i e d  a s  an  operand t o  t h e  
i n s t r u c t i o n  ( e g  i f  R2 i s  t h e  r e g i s t e r  operand,  R2 and R3 a r e  
b o t h  u s e d ) ,  I f  R15 i s  t h e  s p e c i f i e d  r e g i s t e r ,  t h e  word 
f o l l o w i n g  t h e  workspace i s  used t o  s t o r e  e i t h e r  t h e  
remainder  f o r  D I V  o r  t h e  l e a s t  s i g n i f i c a n t  h a l f  of t h e  
r e s u l t  f o r  MPY, 

8 ,4 ,6  Context  Switch 

When a  c o n t e x t  s w i t c h  o c c u r s ,  t h e  WP and PC r e g i s t e r s  a r e  
loaded  w i t h  new v a l u e s ,  The o l d  c o n t e n t s  of t h e  WP, PC and 
ST r e g i s t e r s  a r e  t h e n  s t o r e d  i n  t h e  new workspace r e g i s t e r s  
13,  14 and 15 r e s p e c t i v e l y ,  The o l d  r e g i s t e r s  can be 
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accessed using the indexed mode of addressing (see 
Addressing Modes, section 8.4.7.4) on the new register 13. 

Hardware interrupts, XOP instructions and the BLWP 
instruction cause a context swdtch to take place. For an 
interrupt and an XOP instruction, the WP and PC are taken 
from the interrupt's or XOP's vector. The BLWP instruction 
requires the address of a two word area, containing the new 
WP and PC, as its operand. This two word area is known as a 
RLWP vector. 

Executing a RLWP instruction does not affect the ST 
register. An XOP instruction causes the ST register's bit 6 
to be set to a one. The hardware interrupt only changes the 
ST register's interrupt mask (bits 12 to 15); this is set to 
one less than the incoming interrupt level (a level six 
interrupt resets this mask to five). 

A context switch provides a completely fresh environment, or 
context, for program execution and results in program 
control being transferred to a new routine, The last 
instructfsri in this routine must be an? RTWP, This r e s t e r e s  
the environment existing prior to the context switch. 

Consider the following code: 

Address Label Instruction Comment 

AORG >200 
0200 MAINWP BSS 32 Define MAIN'S WP 
0220 SUBWP BSS 32 Define SUB'S WP 
0240 SURPTR DATA SUBWP Ref SUB'S workspace 
0242 DATA SUB Ref SUB'S entry point 

. 
MAIN EQU $ Entry point for MAIN 

LWPI MAINWP Load WP with >200 

1000 

1200 STJB 

. 
BLWP @SUBPTR Execute subroutine SUB . 

. . 
1300 RTWP 

Entry point for SUB 

Exit from SUB 

The context switch is shown diagrammaticaliy in Figures 8-5, 
8-6 and 8-7. 
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Figure 8-5 Before Executing the BLWP Instruction 

Figure 8-6 After Executing the BLWP Instruction 

SUB WP 

> 0240 w 

Figure 8-7 After Executing the RTWP Instruction 

> 0200 
> 1004 

MAIN WP 

8.4.7 Addressing Modes 

* 

Often a programmer wants to use an instruction in slightly 
different ways. For example: At one point he may want an 
operand to be a workspace register. Later, he may want the 
operand to be a specified memory location, or he may want it 
to be a memory location the address of which is contained in 

RO 

R13 
R14 
R15 

A 
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a workspace register. 

Implementing these different ways af accessing operands by 
way of a different instruction for each method is wasteful, 
and can easily lead t o  confusion. If, instead, a part of 
the instruction is reserved for specifying which method is 
to be used, a compact, but very powerful, instruction set is 
produced. (The method of accessing an operand is usually 
referred to as the addressing mode.) 

The 9900 microprocessor provides five distinct addressing 
modes for instructions that specify a general address as an 
operand. Full details on these modes are available in 
Section 3 of the TMS9900 Assembly Language Programmer's 
Guide. A simplified description of each of these modes is 
presented below. 

8.4.7.1 Register Addressing 

A workspace register contains the operand. 

* Copy the contents of R4 into R10 * 
MOV R4,RlO 

Be£ ore After 

8.4.7.2 Register Indirect Addressing 

A workspace register contains the address of the operand. 
To identify this mode the workspace register is preceded by 
an asterisk (*). 

* Copy the contents of the address in R7 to R9 * 
MOV *R7 ,R9 

Bef ore After 

Contents 1 L2;;;on Contents 
4376 437 6 
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8.4.7.3 Symbolic Memory Addressing 

A memory address contains the operand. To identify this 
mode, the memory address is preceded by an at sign (@). 
(If a symbolic name such as TABLE is used, the name must be 
defined somewhere in the program.) 

* Copy the contents of the word at symbolic address TABLE 
* into address >7C * 

MOV @TABLE, @ > 7 ~  

Bef ore 
Location Contents 
007C 0471 

. 
TABLE 6483 

After 
Location Contents 
007C 6483 

TABLE 6483 

8,4.7,4 Indexed Memory Addressing 

A memory address contains the operand. The address is the 
sum of the contents of a workspace register and a symbolic 
address. This mode is written as an address preceded by an 
at sign (@) and followed by a workspace register enclosed in 
parentheses (the index register), Register 0 can not be 
used as an index register, 

* Copy the contents of word at location (2 + contents of R7) 
* into location (address of TABLE + contents of R10) * 

MOV @~(R~),@TABLE(R~~) 

Before Af ter 

Location 
1000 
1002 

TABLE 

Contents 
4849 
2041 

Locat ion 
1000 
1002 

Contents 
4849 
2041 
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8.4.7.5 Register Indirect Autoinereneat Addressing 

This is similar to the register indirect addressing mode 
except that after obtaining the address from the workspace 
register, the register is incremented (by one for byte 
operations and two for word operations). To identify this 
mode the register is preceded by an asterisk (*) and 
followed by a plus sign (+). 

* 
* Copy the contents of the word at the address in R3 into 
* the word at the address in R2. Increment R3 by 2 * 

MOV *R3+,*R2 

Before After 

Contents 
FF90 

0482 372C 

This mode is very useful for working with structures such as 
tables, where a succession of memory locations must be 
accessed in sequence. 

8.4.8 Specialized Addressing Modes 

The preceding addressing modes are all used to address 
variables (data) and can be used with any instruction that 
specifies a general memory address as its operand(s). The 
following three modes have more specialized applications. 

8.4.8.1 Immediate Addressing 

This is used by immediate instructions; the word immediately 
following the instruction contains the operand (the operand 
is contained in the program code). Immediate instructions 
that require two operands have a workspace register 
preceding the immediate value. 

LWPI >FE70 Set WP= >FE70 
LI R5,1000 Set R5= 1000 
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8.4.8.2 CRU Bit Addressing 

This is used by CRU bit instructions for performing bit 
I/O. The operand is a signed displacement in the range -128 
to +I27 bits from the CRU base address which is stored in 
workspace register 12. (Only bits 3 to 14 are actually 
used.) When the CRU is addressed the least significant bit 
(bit 15) of this register is not transferred onto the 
address bus. Because of this it is necessary to store the 
doubled base address in the register. Thus, if register 12 
contains >80, the actual base address of the hardware 
accessed is only >40. For full details on the operation of 
the CRU, refer to section 8.9. 

SRO 8 Sets the CRU bit, 8 greater then the base 
address, to one. If R12 contains >20 then 
CRU bit 24 will be set to one by this 
instruction 

SRZ DTR Sets the CRU bit to zero. If DTR has the 
value 10, and R12 contains >40, then this 
instruction sets CRU bit 42 to zero 

8.4.8.3 Program Counter Relative Addressing 

This is used by the jump instructions. The operand for this 
mode is a symbolic address (not preceded by an at sign) or a 
signed displacement. This addressing mode can only be used 
to transfer control to a location within the range of -128 
to +I27 words from the current location. For jumps outside 
this range, the branch instruction must be used 
(B @location) . 
When a symbolic address is given, the assembler performs the 
following: 

o Subtracts the value of the incremented PC 
(address of the next instruction) from the 
symbolic address. 

o Halves the difference to arrive at the 
displacement in words. 

To jump to symbolic location THERE, the instruction 

JMP THERE 

is required. If THERE was at location >2090 and the jump 
instruction is at location >2060, then 

JMP $+>30 >30 byte jump from here 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

would perfzrru t he  same operation, The symbol ' $ '  is used to 
represent the current value of the location counter (the 
address at vhich the instruction will he stored in memory), 

8.5 SUBROUTINES 

In a low-level language a subroutine, or procedure, is 
simply a sequence of assembly language instructions preceded 
by a symbolic name (a label) and terminated by a return 
statement. 

The subroutine CLOSE can be defined by: 

CLOSE .... 1st instruction 

Another way of defining this subroutine is: 

CLOSE EQU $ 
.,., 1st instruction 

Although both approaches produce the same machine code, the 
second clearly indicates a subroutine's entry point and thus 
aids program documentation, 

Care must be exercised when using the second approach to 
ensure that the assembler's location counter is on an even 
address (ie a word- boundary) when the subroutine name (CLOSE 
above) is defined, The only time this location counter 
might have an odd address is when the assembler has just 
allocated some space via the BYTE or TEXT directive, If 
this is the case then it is necessary to follow the 
directive by an EVEN directive, EVEN tells the assembler to 
increment its location counter by one if it contains an odd 
address (ie a byte boundary), otherwise it is ignored. 

BOD BYTE >OD or MSG TEXT 'ENTER COMMAND' 
EVEN 

CLOSE EQU $ 

Note that this is not strictly necessary with the first 
approach as the assembler automatically forces its location 
counter to a word boundary when assembling instructions, 

The Branch and Link instruction (BL) causes the address of 
the instruction following the BL to be stored in workspace 
register 11, and then passes control to the specified 
routine, The operand for this instruction is the address 
(or the name if the symbolic memory addressing mode is used) 
of the required subroutine, For example, if subroutine 
RESET is located at memory address >2000, then either of the 
following may be used.  h he first is much clearer,) 
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The BL i n s t r u c t i o n  p r o v i d e s  a  ' s h o r t  l i n k a g e '  which i s  b e s t  
u sed  f o r  a  s m a l l  s u b r o u t i n e  t h a t  i s  l o c a l  t o  t h e  a r e a  of t h e  
program from which i t  i s  c a l l e d ,  A s u b r o u t i n e  c a l l e d  w i t h  a  
BL u s e s  t h e  same workspace a s  t h e  c a l l i n g  program, and s o  
t h e  s u b r o u t i n e  i s  a b l e  t o  d i r e c t l y  acce 'ss  t h e  c a l l i n g  
r o u t i n e ' s  r e g i s t e r s .  

The Branch and Load Workspace P o i n t e r  i n s t r u c t i o n  (BLWP) 
c a u s e s  a  c o n t e x t  s w i t c h  t o  t a k e  p l a c e  and t h e n  t r a n s f e r s  
c o n t r o l  t o  t h e  s p e c i f i e d  s u b r o u t i n e ,  The operand f o r  t h i s  
i n s t r u c t i o n  i s  t h e  a d d r e s s  of a  two word a r e a  t h a t  c o n t a i n s  
t h e  a d d r e s s e s  of t h e  new workspace and of t h e  s u b r o u t i n e  t o  
b e  e x e c u t e d ,  (When a  c o n t e x t  s w i t c h  t a k e s  p l a c e  t h e  a d d r e s s  
o f  t h e  i n s t r u c t i o n  f o l l o w i n g  t h e  BLWP i s  s t o r e d  i n  r e g i s t e r  
14  o f  t h e  new workspace , )  

SUB DATA STJBWP SUB'S workspace 
DATA SUBPC SUB'S e n t r y  p o i n t  

BLWP @SUB 

If SUB i s  a t  a d d r e s s  >1000 t h e n  'BLWP @>10008 can  be used ,  

A BLWP e s t a b l i s h e s  a  comple te ly  new c o n t e x t  t h a t  i s  s e p a r a t e  
from t h e  c a l l i n g  program, t h u s ,  a  BLWP s u b r o u t i n e  can  be 
w r i t  t e n  s e p a r a t e l y  from t h e  c a l l i n g  program w i t h o u t  any 
d a n g e r  t h a t  i t  w i l l  i n a d v e r t e n t l y  c o r r u p t  t h e  c a l l e r ' s  
r e g i s t e r s ,  The r e g i s t e r s  of t h e  c a l l i n g  program can  be 
a c c e s s e d  u s i n g  t h e  indexed a d d r e s s i n g  mode on r e g i s t e r  1 3  o f  
t h e  new workspace. When t h e  c o n t e x t  s w i t c h  i s  per formed,  
r e g i s t e r  1 3  of  t h e  new workspace a u t o m a t i c a l l y  c o n t a i n s  t h e  
a d d r e s s  of t h e  o l d  workspace,  R e g i s t e r  5 ,  f o r  example, of 
t h e  o l d  workspace can  be r e f e r e n c e d  by u s i n g  '@10(R13)'  a s  
t h e  operand of a n  i n s t r u c t i o n ,  The indexed a d d r e s s  i s  
o b t a i n e d  by add ing  t e n  b y t e s  t o  t h e  c o n t e n t s  of r e g i s t e r  
13. A s  r e g i s t e r  13 c o n t a i n s  t h e  a d d r e s s  of t h e  o l d  
workspace ,  add ing  t e n  b y t e s  ( o r  f i v e  words)  t o  t h i s  a d d r e s s  
means t h a t  t h e  s i x t h  word of t h e  o l d  workspace ( o r  t h e  o l d  
r e g i s t e r  5 )  i s  a c c e s s e d .  (The f i r s t  word, o r  o l d  r e g i s t e r  
0, i s  a c c e s s e d  by a d d i n g  z e r o  t o  r e g i s t e r  13;  t h e  second,  o r  
o l d  r e g i s t e r  1, by a d d i n g  two; e t c . )  

The BLWP i n s t r u c t i o n  i s  a  v e r y  u s e f u l  i n s t r u c t i o n  f o r  
implement ing  modular  s o f t w a r e  i n  assembly  language  ( s e e  
S e c t i o n  4.3).  

C o n t r o l  i s  r e t u r n e d  from a  s u b r o u t i n e  by e i t h e r  an  RTWP 
i n s t r u c t i o n  ( i f  t h e  s u b r o u t i n e  was invoked by a  BLWP 
i n s t r u c t i o n )  o r  t h e  RT p s e u d o- i n s t r u c t i o n  ( i f  t h e  s u b r o u t i n e  
was invoked by t h e  BL i n s t r u c t i o n ) ,  
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An RTWP irstruction r e s t o r e s  the context (PC, WP and ST) of 
the calling program from registers 13, 14 and 15 of the new 
workspace. 

The RT pseudo-instruction translates into 'B *Rile, which 
is a branch to the address contained in R11 (the register 
used by the BL instruction to store the return address). 

8.6 PARAMETER PASSING 

All high-level languages have a built in parameter passing 
mechanism. When using subroutines (or procedures, in the 
more modern languages) the programmer must conform to their 
conventionse 

Low-level languages, on the other hand, impose no such 
restrictions as all parameter passing mechanisms must be 
explicitly implemented by the programmer. To avoid 
confusion, if is important that the programmer choases his 
own convention and sticks to it. 

However, when low-level language routines are to be 
incorporated into a high-level language program, it is 
necessary that these routines use the conventions of the 
host language. 

The three main methods of parameter passing and their 
implementation in 9900 assembly language are given below. 

1) The parameter is stored in a register. 

a) Subroutine invoked by BL instruction: 

* 
* Called routine has direct access to all the 
* calling routine's registers * 

b) Subroutine invok,ed by BLWP instruction: 

* Copy the contents of calling routine's workspace 
* space register N into TEMP * 

MOV @2*n(~13),temp 
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Subroutine's 
Workspace 

Calling routine's 
Workspace 

Figure 8-8 Parameter Passing 1 

Note: The register number is doubled as byte addressing is 
used on the 9900. 

2) The parameter is stored in an area of memory that is 
referenced by a register. (Parameter numbering starts from 
zero. ) 

a) Subroutine invoked by BL instruction: 

* Copy contents of the Mth word (Mth parameter) of 
* the parameter block into TEMP * 

MOV @2*m(~n),temp 

Calling routine's 
Workspace 

1st Word 

mth Word 

Parameter Block 

Figure 8-9 Parameter Passing 2 

b) Subroutine invoked by BLWP instruction: 

* 
* Copy address in the cailing routine's workspace 
* register N into register S * 

MOV @2*n(R13),Rs * 
* Now copy contents of Mth word of parameter block 
* into TEMP * 

MOV @2*m(~s),temp 
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I I- Parameter B I O C ~  

Sub routine's 
Workspace 

Calling Routine's 
Workspace 

Figure 8-10 Parameter Passing 3 

3) This is a variation on the previous method in that the 
parameter block appears in-line (it immediately follows the 
call). With this approach the subroutine must ensure that 
the return address (where control is transferred to when the 
subroutine is exited) is updated to skip over the parameter 
block and pick up the instruction after the call. This can 
be done using the indirect autoincrement addressing mode on 
R11 for the BL fnstruction and R14 for the BLWP 
instruction. 

a) Subroutine invoked by BL instruction: 

BL @SUBR Call SUBR 
DATA .... Parameter block 

l 

SUBR MOV *Rll+,temp Get 1st parameter in TEMP, 
update return address in R11 

Re turn 

b )  Subroutine invoked by RLWP instruction: 

SUBADD DATA SUBWP SlJB's workspace 
DATA SURR SUB'S entry point 

. 
BLWP @SUBADD Call SUB 
DATA .. Parameter block 

. 
SUBR MOV *R14+,temp Get 1st parameter in TEMP, 

update return address in R14 

. 
RTWP Return 

This in-line approach should only be used when the 
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data to be passed to the subroutine is constant 
(its value is known when the  prcgrgm is 
assembled), since program code is likely to be 
placed in ROM. 

Note: Invoking a subroutine is faster using the BL 
instruction as no context switch takes place, but there is a 
risk that data might be inadvertently lost when any of the 
calling routine's registers are used for temporary storage 
purposes. 

8.7 STRUCTURING 

With a high-level language, structuring presents no 
problem. High-level languages were designed with this in 
mind; structuring constructs are an integral part of the 
language. 

However, assembly (or low-level) languages are designed 
around the hardware and are not considered to be problem 
oriented languages. The programmer must provide the 
necessary structures. Turning a software design into an 
executable program is considerably more difficult in 
assembly language because problem oriented design constructs 
must be translated accurately into groups of low-level 
machine instructions. The information that follows 
describes assembly language implementation of the sequence, 
selection and iteration constructs used in software design. 
The sequence, selection and iteration constructs (and the 
notation used here) are described in Section 4.5. 

In writing an assembly language program, it is effective to 
produce a software design before writing the code; this 
enables the programmer to design the application's logic 
before worrying about the implementation details (which, in 
assembly language, are considerable). This approach has 
been shown to lead to better and more correct software, and 
has been used very successfully for internal TI projects. 

8.7.1 Selection 

Normally the action taken at a specific point in a program 
depends on a number of factors or conditions. If one of the 
conditions changes, the action to be performed changes. 
This choice of action is represented by the selection 
construct displayed below. 
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ACTION 1 

ACTION 2 

ACTION N 

Figure  8-11 General  S e l e c t i o n  Cons t ruc t  

8.7.1.1 Condi t ion  Codes 

Implementing t h e  s e l e c t i o n  c o n s t r u c t  a t  t h e  assembly 
language l e v e l  r e q u i r e s  an unders tand ing  of t h e  c o n d i t i o n  
codes ( o r  s t a t u s  f l a g s ) .  These a r e  s t o r e d  i n  t h e  p rocessor  
s t a t u s  word (on t h e  9900 t h i s  i s  a s p e c i a l  hardware r e g i s t e r  
c a l l e d  t h e  s t a t u s  r e g i s t e r  - ST) ,  w i th  each f l a g  occupying 
one b i t .  

F i g u r e  8-12 Condi t ion  Codes f o r  t h e  TMS9900 S t a t u s  R e g i s t e r  

LOGICAL GREATER THAN (L>) c o n t a i n s  t h e  r e s u l t  of a  
comparison of words/bytes  a s  unsigned b i n a r y  numbers; a s  t h e  
s i g n  b i t  i s  i n t e r p r e t e d  a s  p a r t  of t h e  number, a  n e g a t i v e  
number i s  l o g i c a l l y  g r e a t e r  t h a n  a  p o s i t i v e  one. 

ARITHMETIC GREATER THAN (A>) h o l d s  t h e  r e s u l t  of a  
comparison of words/bytes  a s  s igned  b i n a r y  numbers. 

EQUAL (EQ) i s  s e t  when t h e  words/bytes  being compared a r e  
equa l .  Also c o n t a i n s  t h e  TB CRU b i t .  

CARRY (C) i s  s e t  by a  c a r r y  o u t  of t h e  most s i g n i f i c a n t  b i t  
of a  wordlbyte  d u r i n g  a r i t h m e t i c  o p e r a t i o n s .  This  b i t  i s  
a l s o  used by t h e  s h i f t  i n s t r u c t i o n s  t o  hold  t h e  l a s t  b i t  
s h i f t e d  out  of t h e  s p e c i f i e d  workspace r e g i s t e r .  

OVERFLOW (OV) i s  s e t  when t h e  r e s u l t  of an a r i t h m e t i c  
o p e r a t i o n  i s  too  l a r g e  o r  t o o  smal l  t o  be c o r r e c t l y  s t o r e d  
i n  16 b i t s .  

ODD PARITY (OP) i s  s e t  when t h e  r e s u l t  of a byte o p e t a t i c n  
h a s  odd p a r i t y  (when t h e  number of b i t s  i n  a  b y t e  having a  
v a l u e  of '1' i s  odd). 
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EXTENDED OPERATION (XI is set h e n  an extended operation 
instruction is performed by software. 

The processor automatically sets (or resets) the appropriate 
status flags once it has executed an instruction. Only 
certain instructions affect certain flags, for example, the 
'X' flag is only set by an extended operation instruction. 
Full details on which flags are affected by a given 
instruction are given in the reference section of this 
chapter. 

8.7.1.2 Jump Instructions 

Perhaps the most important members of a machine's 
instruction set are the jump instructions. These transfer 
control (unconditonally or conditionally according to the 
state of one or more status flags) from one point in a 
program to another, without affecting the flags. The jump 
instructions available are listed below: 

JMP JOC JE Q JGT JHE 
JLT JH JL JNE JLE 
JNC JNO JOP 

The conditional jump instructions (all those listed above 
except JMP) can be used to implement the selection 
construct. 

Example: Depending on the contents of R2 0 1 0 ,  =lo, or < l o )  
execute the sequence ACT1, ACT2 or ACT3 respectively. Then 
execute the sequence ACT4. 

The structure diagram for this is: 

L F  
Figure 8-13 A Three Way Selection Example 

This can be coded as: 
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ACT0 EQ?.? $ 
C I R2,lO Compare X2 w i t h  10 
JGT ACT1 To ACT1 i f  R2 > 10 
JEQ ACT2 To ACT2 i f  R2 = 10 

ACT3 EQU $ To h e r e  i f  R2 < 10 

Code f o r  ACT3 

JMP ACT4 To ACT4 
ACTl EQU $ . 

Code f o r  ACTl . 
JMP ACT4 To ACT4 

ACT2 EQU $ 

Code f o r  ACT2 . 
ACT4 EQU $ . 

Code f o r  ACT4 

Note: I f  R2 c o n t a i n s  10 t h e n  a f t e r  e x e c u t i n g  t h e  code f o r  
ACT2, program c o n t r o l  d rops  through t o  t h e  code f o r  ACT4. 

For  a s imple  two-way s e l e c t i o n :  

ACT 0 

F i g u r e  8-14 A Two Way S e l e c t i o n  Example 

T h i s  can be coded a s :  

ACT0 EQU $ 
' t e s t '  

JNE ACT2 To ACT2 i f  c o n d i t i o n  f a l s e  
ACTl EQU $ . 

Code f o r  ACTl . 
JMP ACT3 To ACT3 
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ACT2 EQU $ . 
Code for ACT2 . 

ACT3 EQU $ . 
?ode for ACT3 

8.7.2 Iteration 

Quite often it is necessary for a sequence of instructions 
to be executed a number of times. One way of implementing 
this repetition is to code the sequence the required number 
of times. However, if either the sequence to be coded 
and/or the repetition number is large, a large amount of 
memory will be used. Further, if the sequence is to be 
repeated until a particular condition arises, the repetition 
number is unknown. The use of the iteration construct 
overcomes these problems. 

Example: A.sequence (SEQl) must be repeated N times (where N 
is a Gariable supplied by a previous stage) followed by the 
execution of SEQ2. 

The structure diagram illustrating this follows: 

REPEAT 

Figure 8-15 An Iteration Example (REPEAT) 

This can be coded as: 

SEQA EQU $ 
MOV (Qn,RO Copy count into R0,sets flags 

SEQAST JEQ SEQ2 To SEQ2 if RO = 0 
SEQl EQU $ . 

Code for SEQl . 
DEC RC) Decrement repetition count 
JMP SEQAST TO SEQAST b 
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SEQ2 EQU $ . 
Code f o r  SEQ2 

I f  N i s  a c o n s t a n t  ( eg  20) then :  

L I  R0,20 S e t  RO t o  20 
SEQl EQU $ . 

Code f o r  SEQl . 
DEC RO Decrement r e p e t i t i o n  count  
JNE SEQl To SEQl i f  RO > 0 

SEQ2 EQU $ To h e r e  i f  RO = 0 

Code f o r  SEQ2 

Example: While KEY=O pe r fo rm SEQI. When KEY i s  changed 
pe r fo rm SEQ2. 

The s t r u c t u r e  diagram f o r  t h i s  is:  

F i g u r e  8-16 An I t e r a t i o n  Example (WILE)  

T h i s  can  be coded a s :  

SEQA EQU $ 
C I  @key,O CompareKEY w i t h 0  
JNE SEQ2 To SEQ2 i f  KEY#O 

SEQl EQU $ To h e r e  i f  KEY = 0 . 
Code f o r  SEQl . 
JMP SEQA To SEQA 

SEQ2 EQU $ . 
Code f o r  SEQ2 
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8.7.3 sequence 

On the surface, the sequence is the simplest construct to 
implement, as it merely involves executing one instruction 
after another. Unfortunately, with assembly languages there 
is a great temptation to write programs in an unsequenced 
fashion with program flow jumping backwards and forwards in 
an irregular manner. This usually leads to 'spaghetti 
code'; code so convoluted and complex (often much more 
complicated than is actually necessary) that it is difficult 
to follow or understand and almost impossible to maintain. 

The sequence represents a number of elements that are 
executed one after the other. At the single instruction 
level, assembly language programs are naturally sequential. 
However, when writing a program with a complex structure, 
some additional thought is needed to ensure that the logical 
flow of the program is always sequential and from top to 
bottom. 

Probably the best way to do this is to exactly follow the 
order in which blocks of code appear on the structure 
diagram (see Section 4 . 5 . 1 ) .  Further, it is important that 
a single block on the structure diagram be implemented as a 
single block of code. 

This is, in fact, the simplest and the most natural way to 
write programs; it is certainly the easiest to follow. 

Consider this structure diagram: 

Figure 8-17 A Sequence Example 

This can be coded in (at least) three ways: 
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' t e s t  ' ' test '  ' t e s t '  
J N E  B J N E  B J N E  B 

A EQU $ A E(2U $ A EQU $ . 
Code f o r  A 

. . 
Code f o r  A Code f o r  A . . . 

JMP C c EQU $ 
B 

c EQU $ 
EQU $ . . . Code f o r  C Code f o r  C 
Code f o r  B . . . D EQU $ JMP D 

c EQU $ . B EQU $ . Code f o r  D . 
Code f o r  C . Code f o r  B . . 

D EQU $ JMP C . B EQU $ D EQU $ 
Code f o r  D . . . Code f o r  B Code f o r  D . 

JMP C 

Of t h e  t h r e e  s e t s  of code l i s t e d  above, o n l y  t h e  f i r s t  i s  
s t r u c t u r e d  accord ing  t o  t h e  diagram. The o t h e r  two a r e  both 
l e s s  c l e a r  and l e s s  compact t h a n  t h e  f i r s t .  

When a program i s  no t  s e q u e n t i a l ,  i t  i s  easy  t o  omit a 
branch i n s t r u c t i o n ,  o r  even branch t o  t h e  wrong l o c a t i o n .  
With a  more complex s t r u c t u r e  diagram ( s e e  below), t h e  
p r o b a b i l i t y  of producing an i n c o r r e c t  program i n c r e a s e s  
d r a m a t i c a l l y .  Th i s  can  be reduced by e x a c t l y  fo l lowing  t h e  
d iagram when w r i t i n g  t h e  code. 

F i g u r e  8-f8 A Complex S t r u c t u r e  
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The code for this is: 

SEQ 1 'test' 
JNE SEQ2 . 
Code for A . 
JMP C, 

SEQ2 EQU $ 
'test' 
JNE SEQ3 . 
Code for B . 
JMP F 

SEQ3 EQU $ 
LI R0,20 

c EQU $ . 
Code for C . 
DEC RO 
JNE C 
'test' 
JNE E 

0 EQu $ . 
Code forfD . 
JMP 
EQU . 
Code 

. 
Code 

To SEQ2 if false 

To SEQ3 if false 

To F 

Set loop count to 2 0  

Decrement loop count 
To C if count > 0 
To here if count = 0 
To E if false 
TQ; here if true 

for E 

I 

for F 

. 
Code for G . 

8.8 PROGRAMMING FOR RX AND COMPONENT SOFTWARE 

When writing a software system as a single unit, any method 
can be adopted for the use of memory, way of calling 
subroutines, etc, provided the system is internally 
consistent. 
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However, there is often a requirement for writing software 
that can: 

a) Make use of existing pieces of software. 

or b) Be used by other pieces of software. 

or c) Be reliably updated at a later date, perhaps by 
someone other than the person who wrote it. 

All these requirements dictate the use of standard 
conventions: a set of rules which are known to be complete 
and consistent, and can be written down. 

Pieces of software developed according to such conventions 
will work together. (Of course, if one piece of software 
wishes to make use of another piece, it must know what 
functions are available in the second piece of software and 
how to access them.)' Conventions make it possible both to 
write pieces of software that will not conflict, and to 
'package' them in standard ways. Software packages can be 
stored in Ifbraries, then s e l e c t e d  and ccnnected together to 
form a new system. 

TI's Component Software provides a framework of standard 
conventions within which pieces of software can be written 
separately to perform independent tasks. The pieces can 
then be 'plugged together' to build a system. The parts 
plugged together may have been written by the user, or they 
may have been bought 'off the shelf' from TI or other 
vendors. 

TI's Realtime Executive (Rx) is the means of welding these 
separate parts together to make a complete, coherent 
system. Component programs call Rx routines to perform 
commonly needed operations (such as calling other routines, 
requesting additional memory space, etc). Rx manages all 
the resources of the system so that conflicts do not occur. 

This is an extension of the program modularity described 
above (in relation to sequence, iteration, etc). Rx 
provides 'time modularity' too: it allows independent 
application functions to he written as separate programs 
with different demands on the time of the processor (some 
functions may need to be executed every Sms, say; others 
only when an operator presses a key, or a particular device 
interrupts). 

When building an application system, these functions are 
linked together, in a semi-automatic process know as 
configuration. 

Rx provides a standard mechanism for handling interrupts, 
standard ways of dealing with file I/O, and standard methods 
for calling other routines (whether written in assembly 
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language, Pascal or other languages), 

The benefits of this 'component' approach are: 

o Systems can make use of existing Component 
Software packages, 

o Software modules writ ten according to Component 
Software standards can be used again, in other 
systems, 

o Reliability is improved, because each task in a 
real time system can be programmed and tested 
separately, and then linked with the other parts 
to form the system, 

o Systems can be upgraded easily, because the 
component parts can be separated out and 
replaced, changed or added to as necessary, 

o Because of the above, systems can be developed 
more quickly and for less cost, 

The conventions that must be followed mainly relate to calls 
between routines and the access to registers and memory, 

In a high-level language, many of these requirements are 
taken care of automatically by the compiler, The assembly 
language programmer must himself ensure that the conventions 
are followed when writing the program, 

The standards are set out in the Component Software Handbook 
and the Realtime Executive User's Manual, Adherence to 
these standards (which are not too restrictive) means that 
programs written can be used with other Component Software 
routines, whether written in Microprocessor Pascal or 
assembly language, See Chapter 5, 

Routines to be used with Component Software should be 
written according to the Rx standards from the start. This 
is much easier than converting routines already written, 

8-9 COMMUNICATIONS REGISTER UNIT 

The 9900 supplies a bit-oriented method of 1/0 called the 
Communications Register Unit (CRU), This provides a maximum 
of 4096 bits of read space and 4096 bits of write space. 
Each bit (or line) is individually addressable, Although 
the CRU uses the address bus to access its read and write 
spaces, these are totally independent from the memory 
address space, 
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The CRU transfers data alccg a separate three-wire bus (the 
wires are known as CRUIN, CRUOUT and CRUCLK), 

Using the CRU, it is possible to test, set or reset a single 
b i t  anywhere in the 4095 b i t  address space, using a single 
instruct ion. Instruct ions are also provided to read and 
write to any group of from 1 to 16 bits. 

This 'bit-picking' 1/0 is particularly useful for control 
applications, where input and output is typically single 
bits (sensors, switches, warning lights, relays, valves, 
etc) all of which are either on or off. 

The CRU was developed from Texas Instruments' experience in 
designing minicomputers for process control applications. 
It grew out of the method of 1/0 used on the 960 
minicomputer, As the majority of microprocessor 
applications involve some kind of control, this feature is 
very valuable, 

The 9900 is the only major microprocessor to have a bit 
oriented IjO structure, as well as the byte and wcrd 
oriented techniques such as memory mapping, 

The five CRU instructions operate from a base address, which 
must be stored in workspace register 12 (RlZ), The contents 
of this register are known as the software base address. 
(In fact only bits 3 to 14 of this register are used to 
generate the address, the other bits are ignored, The value 
of these 12 bits is referred to as the hardware base 
address. The keywords 'hardware' and 'software' are used to 
avoid confusion when specifying the base address, The 
software base address is twice the hardware base address,) 

The three single bit CRU instructions use a signed 
displacement, from the base address, to reference a 
particular line, This displacement allows the instructions 
to access any CRU bit within a range of -128 to +I27 bits 
from the base address, 

Suppose a number of CRU operations are required around CRU 
line >I00 and a particular instruction needs to access CRU 
line >120. To do this, set the hardware base address to 
>I00 (a software base address of >200) and use a signed 
displacement of +32 (>20). The CRU bits required to control 
a particular device should be grouped together, If a system 
has several identical devices the same piece of code 
(structured as a subroutine) can be used for each, It is 
only necessary to set the CRU base address for the 
appropriate machine and call the subroutine. 

With the two multiple bit CRU instructions, the base-address 
must reference the first CRU line that the instruction is to 
access. For example, if the transfer is to start at CRU 
line >50 then the hardware base address must be >SO. (This 
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8.9.1 Single-Bit CRU Instructions 

The operand of a single bit CRU instruction is a signed 
displacement (in the range -128 to +127) from the base 
address. This specifies the particular line to be 
accessed. 

niagrammatically this can be shown as: 

X X X  I 

\yy , 7 ,  8 9 , 1 0 1 1 1 ,  1 2 1 1 3 , 1 4 ,  
SIGN EXTENDED 

SIGNED DlSP FROM BASE 

k- CRU BIT ADDRESS ~-- 
ADDRESS BUS rr4 

X - BIT IS IGNORED 
0 - BIT SET TO '0'  

Figure 8-19 CRU Bit Addressing 

SBO : Set Bit to One. This sets the specified CRU output 
line to a logical one. 

Assume a control device is connected to CRU output line 
>10F. This device turns on a motor when its CRU line is set 
to a one. If the hardware base address is set to >I00 (this 
corresponds to a software base address of >200) then a 
displacement of +15 is required. The instructions to active 
this motor are: 

LI R12 ,>20O Set software base address 
SBO 15 Set CRU bit >10F to 1 
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SBZ : Set B i t  to Z e r o *  This sets the s p e c i f i e d  CRU o u t p u t  - 
l i n e  t o  a  l o g i c a l  zero .  

Assume t h a t  a  c o n t r o l  d e v i c e  i s  connec ted  t o  CRU o u t p u t  l i n e  
> $ G o  T h i s  device z'loszs a valve when its CICV l i ~ e  is set to 
z e r o .  Also assume t h a t  workspace r e g i s t e r  12 c o n t a i n s  
>140. To a c c e s s  CRU o u t p u t  l i n e  >80 a  d i sp lacemen t  of ->20 
i s  r e q u i r e d .  The i n s t r u c t i o n  t o  c l o s e  t h e  v a l v e  is :  

SBZ ->20 S e t  CRU b i t  >80 t o  0  

TB : T e s t  B i t .  T h i s  i n s t r u c t i o n  r e a d s  t h e  d i g i t a l  i n p u t  
and  s e t s  t h e  e q u a l  s t a t u s  f l a g  ( b i t  2 )  t o  t h e  v a l u e  of t h e  
b i t .  

Assume t h a t  workspace r e g i s t e r  12 c o n t a i n s  > I40  ( t h i s  i s  a  
hardware  b a s e  a d d r e s s  of >AO). The f o l l o w i n g  l i n e s  w i l l  
t e s t  t h e  i n p u t  on CRlJ i n p u t  l i n e  >A4 and e i t h e r  e x e c u t e  t h e  
code  a t  l o c a t i o n  RUN ( i f  i n p u t  i s  a  '1 ' )  o r  WAIT ( i f  i n p u t  
i s  a  '0 ' ) .  

TB 4  
JEQ RUN 

WAIT 

T e s t  CRU i n p u t  l i n e  >A4 
I f  on, go t o  RUN 
I f  o f f ,  c o n t i n e  . 

RUN EQU $ 

8.9.2 M u l t i p l e- B i t  CRU I n s t r u c t i o n s  

The operands  of a  m u l t i p l e  b i t  CRU o p e r a t i o n  a r e :  

1 )  A g e n e r a l  memory a d d r e s s .  For  a  ' r e a d '  
o p e r a t i o n  t h i s  a d d r e s s  s p e c i f i e s  where t h e  
i n p u t  i s  t o  be s t o r e d ,  and f o r  a  ' w r i t e '  
o p e r a t i o n  from where t h e  o u t p u t  i s  t o  be 
t aken .  

2 )  A coun t  of t h e  number of b i t s  ( i n  t h e  r ange  0 
t o  15)  t o  he  t r a n s f e r r e d .  

These  i n s t r u c t i o n s  t r a n s f e r  from 1 t o  16 b i t s .  A 16 b i t  
t r a n s f e r  i s  s p e c i f i e d  by s e t t i n g  t h e  coun t  t o  ze ro .  

Un les s  o t h e r w i s e  e x p l i c i t l y  s t a t e d ,  when less t h a n  n i n e  b i t s  
o f  d a t a  i s  be ing  t r a n s f e r r e d ,  t h e  p r o c e s s o r  u s e s  t h e  most 
s i g n i f i c a n t  b y t e  of a  word f o r  t h e  o p e r a t i o n .  ( T h i s  can  be 
o v e r r i d d e n  by u s i n g  t h e  i n d i r e c t  a d d r e s s i n g  mode t o  
r e f e r e n c e  t h e  r e q u i r e d  by te . )  

The base  a d d r e s s  f o r  t h e  o p e r a t i o n  i s  t h e  CRU a d d r e s s  of t h e  
f i r s t  CRU l i n e  t o  be a c c e s s e d .  
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For a transfer of more than 8 bits: 

ASSEMBLY LANGUAGE 

Figure 8- 20 CRU Transfer Of More Than 8 Bits 

For example, in a transfer involvfng 10 bits, the data Is 
taken from, or stored in, bits 15 to 6. 

For a transfer of 8 bits or less: 

CRU INPUT BITS CRU OUTPUT BITS 

N N 

EFFECTIVE MEMORY ADDRESS 

N+7 
OUTPUT 

Figure 8- 21 CRU Transfer Of 8 Bits Or Less 

For example, in a transfer involving only 5 bits, the data 
is taken from, or stored in, bits 7 to 3. 

LDCR : Load Communications Register. This instruction 
transfers ('writes') the specified number of bits from the 
source operand into the CRU. 

To write 9 data bits from symbolic location OUT to the CRU 
starting at CRU output line >40, the necessary instructions 
are : 

LI R12,>80 Set software base address 
LDCR @OUT,9 Output 9 bits 
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iOCAiiGN GUT 
I I 

0 1  1 1  
CRU LINES 

F i g u r e  8-22 CRU Output  Example 

STCR : S t o r e  Communications R e g i s t e r .  T h i s  i n s t r u c t i o n  
t r a n s f e r s  ( ' r e a d s ' )  t h e  s p e c i f i e d  number of b i t s  from t h e  
CRU i n p u t  l i n e s  i n t o  t h e  s p e c i f i e d  memory l o c a t i o n .  

To r e a d  7 b i t s ,  s t a r t i n g  from CRU i n p u t  l i n e  >60, into the 
memory l o c a t i o n  a d d r e s s e d  by workspace r e g i s t e r  2,  t h e  
n e c e s s a r y  i n s t r u c t i o n s  a r e :  

L I  R12,>CO S e t  s o f t w a r e  b a s e  a d d r e s s  
STCR *R2,7 Read i n  7 b i t s  

WORD REFERENCED BY R2 
1 

1 7 1 8 1  1 14 1 15 
CRU LINES 

t i m  > 60 

> 61 

F i g u r e  8-23 CRU I n p u t  Example 

Note: I f  workspace r e g i s t e r  2 had c o n t a i n e d  a n  odd a d d r e s s  
( i e  i f  i t  r e f e r e n c e d  a word's l e a s t  s i g n i f i c a n t  b y t e )  t h e n  
t h e  i n p u t  would have been s t o r e d  i n  b i t s  15 t o  9. 

8.10 INTERRUPTS 

I n  a r e a l- t i m e  sys tem,  t h e r e  a r e  two mechanisms f o r  
d e t e r m i n i n g  when a n  e x t e r n a l  e v e n t  h a s  occu red  ( f o r  example,  
when a  d e v i c e  connec ted  t o  t h e  computer  needs  t o  be  
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serviced)  : - -  rolling - • -- - and  I n t e r r u p t s .  

I n  t h e  p o l l i n g  mechanism, t h e  program p o l l s ,  o r  t e s t s  e v e r y  
d e v i c e  known t o  i t  i n  a  c y c l i c  f a s h i o n .  When a  ready d e v i c e  
i s  found,  t h e  d e v i c e  i s  immedia te ly  s e r v i c e d ,  and t h e  
program c o n t i n u e s  i t s  p o l l i n g  c y c l e .  

Although t h e  program immedia te ly  s e r v i c e s  a  d e v i c e  when i t  
i s  found t o  be r eady ,  t h e r e  can  be a  c o n s i d e r a b l e  d e l a y  
between t h e  t ime when t h e  d e v i c e  i n d i c a t e s  t h a t  i t  i s  ready  
and t h e  t i m e  when t h e  program a c t u a l l y  d i s c o v e r s  t h a t  i t  i s  
r e a d y ,  Because of t h i s ,  p o l l i n g  i s  o n l y  p r a c t i c a l  on a  
s i m p l e  sys tem,  o r  when r e s p o n s e  t ime i s  n o t  c r i t i c a l .  

With t h e  i n t e r r u p t  mechanism, t h e  d e v i c e  s i g n a l s  t h e  
p r o c e s s o r  when i t  i s  r eady  t o  per form t h e  next  o p e r a t i o n .  
T h i s  s i g n a l  i s  known a s  an  i n t e r r u p t .  

With a  more complex sys tem (one t h a t  c o n t a i n s  a  number of 
d e v i c e s )  t h e  p r o c e s s o r  i s  a b l e  t o  per form some o t h e r  
o p e r a t i o n  w h i l e  w a i t i n g  f o r  an  i n t e r r u p t .  A s  soon a s  an  
i n t e r r u p t  o c c u r s ,  t h e  p r o c e s s o r  s t o p s  what i t  was doing  and 
s e r v i c e s  t h e  d e v i c e  t h a t  caused  t h e  i n t e r r u p t .  When t h e  
d e v i c e  h a s  been s e r v i c e d ,  t h e  p r o c e s s o r  c o n t i n u e s  t h e  a c t i o n  
i t  was pe r fo rming  p r i o r  t o  t h e  i n t e r r u p t .  

8.10.1 I n t e r r u p t  S t r u c t u r e  

The 9900 s u p p o r t s  up t o  16 i n t e r r u p t  l e v e l s ,  numbered from 0  
t o  15. Level  0 h a s  t h e  h i g h e s t  p r i o r i t y ;  15 t h e  lowes t .  
The i n t e r r u p t  mask, b i t s  1 2  t o  15  of  t h e  s t a t u s  r e g i s t e r ,  
d e t e r m i n e  which i n t e r r u p t s  a r e  t o  be r e c o g n i s e d  by t h e  
p r o c e s s o r  . 
A d e v i c e  w i t h  a  lower  p r i o r i t y  ( h i g h e r  l e v e l  number) t h a n  
t h a t  c o n t a i n e d  i n  t h e  i n t e r r u p t  mask i s  no t  a l lowed t o  
i n t e r r u p t  t h e  p r o c e s s o r .  

F o r  example, i f  t h e  i n t e r r u p t  mask c o n t a i n s  '0011', on ly  
d e v i c e s  w i t h  a n  i n t e r r u p t  l e v e l  of 0  t o  3 a r e  a l lowed t o  
i n t e r r u p t  t h e  p r o c e s s o r .  An i n t e r r u p t  from a  d e v i c e  w i t h  a  
lower  p r i o r i t y  i s  ignored  u n t i l  t h e  i n t e r r u p t  mask i s  r e s e t  
t o  a  v a l u e  t h a t  i s  g r e a t e r  t h a n  o r  e q u a l  t o  t h e  d e v i c e ' s  
i n t e r r u p t  l e v e l .  

Of t en ,  i n s t e a d  of be ing  coupled  d i r e c t l y  t o  t h e  9900 
m i c r o p r o c e s s o r ,  i n t e r r u p t  l i n e s  a r e  connected  t o  a  TMS990l 
Programmable Systems I n t e r f a c e .  The 9901 d e c i d e s  whether  
t h e  i n t e r r u p t i n g  d e v i c e  i s  a l lowed t o  g e n e r a t e  i n t e r r u p t s  
and ,  i f  s o ,  p a s s e s  t h e  i n t e r r u p t  t o  t h e  9900. A d e v i c e  t h a t  
i s  a l lowed  t o  g e n e r a t e  i n t e r r u p t s  i s  s a i d  t o  be enabled .  An 
i n t e r r u p t  i s  enab led  by s e t t i n g  t h e  9901's c o n t r o l  b i t  t o  
'0' ( s e l e c t  i n t e r r u p t  mode) and t h e n  w r i t i n g  a  1 t o  t h e  
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appropriate mask bit, Full d e t a i l s  of t h e  o p e r a t i o n  of t h i s  
d e v i c e  a r e  g iven  i n  t h e  TMS9901 Programmable Systems 
I n t e r f a c e  Data  Manual, 

Interrupt Mask 
B i t s  

12 13 14 15 
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0  1 1  1 
1 0 0 0  
1 0 0 1  
1 0 1 0  

," 1 0 1 1  
1 1 0 0  
1 1 0 1  
I i P O  
1 1 1 1  

Levels 
Allowed Level  s e t t i n g  Mask 

0 , l  High p r i o r i t y  
2 
3 
4 
5 
6 
7  
8  
9 

10 
11 
12 
13 
14 
15 bcw p r i o r i t y  

Tab le  8-1 I n t e r r u p t  Mask Tab le  

Note: The 9901 i s  a  CRU-driven d e v i c e ;  b e f o r e  i t  can  be 
a c c e s s e d  ( u s i n g  CRU i n s t r u c t i o n s )  i t s  b a s e  a d d r e s s  must be 
s t o r e d  i n  workspace r e g i s t e r  12,  F u r t h e r ,  t h i s  base  a d d r e s s  
i s  dependent  on t h e  hardware c o n f i g u r a t i o n ,  

8.10.2 I n t e r r u p t  V e c t o r s  

Every i n t e r r u p t  l e v e l  h a s  a  two word d e d i c a t e d  a r e a  (known 
a s  t h e  i n t e r r u p t  v e c t o r )  c o n t a i n i n g :  

1 )  The a d d r e s s  of t h e  workspace t h a t  i s  t o  be used 
by t h e  i n t e r r u p t  s e r v i c e  r o u t i n e ,  

2 )  The a d d r e s s  of t h e  s e r v i c e  r o u t i n e ' s  e n t r y  
p o i n t ,  

Low o r d e r  memory, a d d r e s s  >00 t o  >3F, i s  r e s e r v e d  f o r  t h e s e  
t r a n s f e r  v e c t o r s  ( s e e  Tab le  8 - 2 ) ,  

A p a r t i c u l a r  i n t e r r u p t  v e c t o r  ( f o r  i n t e r r u p t  l e v e l  8 ,  s a y )  
c a n  be a s s i g n e d  t h e  a p p r o p r i a t e  v a l u e s  by: 

AORG >20 I n t e r r u p t  l e v e l  8  v e c t o r  a t  >20 
DATA INT8WP Workspace f o r  i n t e r r u p t  l e v e l  8  
DATA INT8PC E n t r y  p o i n t  f o r  l e v e l  8  h a n d l e r  
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Address  Leve 1 Vector c o n t e n t s  

0000 
0002 
0004 
0006 
0008 
0OOA 
OOOC 
OOOE 
0010 
0012 
0014 
0016 
0018 
OOlA 
OOlC 
0OlE 
0020 
0022 
0024 
0026 
0028 
002A 
002C 
002F: 
0030 
0032 
0034 
0036 
0038 
003A 
003C 
003E 

WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  
WP a d d r e s s  
PC a d d r e s s  

f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  
f o r  

l e v e l  0 
l e v e l  0 
l e v e l  1 
l e v e l  1 
l e v e l  2 
l e v e l  2 
l e v e l  3 
l e v e l  3 
l e v e l  4 
l e v e l  4 
l e v e l  5 
l e v e l  5 
l e v e l  6 
l e v e l  6 
l e v e l  7 
l e v e l  7 
l e v e l  8 
l e v e l  8 
l e v e l  9 
l e v e l  9 
l e v e l  10 
l e v e l  10 
l e v e l  1 1  
l e v e l  1 1  
l e v e l  12 
l e v e l  12 
l e v e l  13 
l e v e l  13 
l e v e l  14 
l e v e l  14 
l e v e l  15 
l e v e l  15 

T a b l e  8-2 I n t e r r u p t  V e c t o r  T a b l e  

8.10.3 I n t e r r u p t  Sequence 

The l e v e l  of t h e  h i g h e s t  p r i o r i t y  pending  i n t e r r u p t  r e q u e s t  
i s  c o n t i n u a l l y  compared w i t h  t h e  c o n t e n t s  of t h e  i n t e r r u p t  
mask. When t h e  i n t e r r u p t  l e v e l  of t h e  pending  r e q u e s t  i s  
e q u a l  t o  o r  less  t h a n  t h e  mask c o n t e n t s ,  t h e  i n t e r r u p t  i s  
t a k e n  a f t e r  t h e  c u r r e n t l y  e x e c u t i n g  i n s t r u c t i o n  h a s  
completed, (Note:  The l e v e l  0 i n t e r r u p t ,  t h e  RESET 
i n t e r r u p t ,  w i l l  a lways  be t a k e n  and can  n o t  be masked o u t , )  

F o r  example ,  i f  t h e  p r o c e s s o r  i s  s e r v i c i n g  a  l e v e l  4 
i n t e r r u p t ,  o n l y  i n t e r r u p t s  of l e v e l  3 and  h i g h e r  ( i e  l e v e l s  
0 t o  3) w i l l  be  r e c o g n i z e d ,  

To p r o c e s s  a n  i n t e r r u p t ,  a  c o n t e x t  s w i t c h  t a k e s  p l a c e ,  The 
c o n t e n t s  of t h e  i n t e r r u p t  v e c t o r ' s  f i r s t  word i s  s t o r e d  i n  
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the WP reglster and those of the second word in the PC 
register. The old contents of the WP, PC and ST registers 
are stored in the new workspace registers 13, 14 and 15 
respectively. 

After storing the contents of the ST register, the processor 
decrements the incoming interrupt level by one and stores 
the result in the interrupt mask. This disables the current 
interrupt level, leaving only higher levels enabled. (This 
does not happen with level O interrupts.) 

INTERRUPT 
8 VECTOR 

f 
ADDRESS 

ST 

INTERRUPT MASK = F 

CONTENTS 

> 0270 
> 0290 

INTERRUPT 8 WP 

INTERRUPT 8 ROUTINE 

PROGRAM'S WP 

PROGRAM DATA 

EXECUTIVE PROGRAM 

INC R1 

Figure 8-24 State Prior to a Level 8 Interrupt 

No additional interrupt is taken until the first instruction 
of the service routine has been executed. If the first 
instruction is a 'LIMI 0' (Load Interrupt Mask Immediate 
with zero) then further interrupts will be inhibited. 

The last instruction in the service routine must be an 
RTWP. This causes the processor to restore the contents of 
the WP, PC and ST registers from workspace registers 13, 14 
and 15 respectively (ie it restores the original 
environment). Control then returns to the point where the 
interrupt was taken. 

Several interrupt lines may be combined at one level. It 
then becomes the programmer's responsibility to determine 
which device generated the interrupt by polling the devices 
and then executing the appropriate service routine. 
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ADDRESS 

INTERRUPT 
8 VECTOR 

>'0290 

[l11-& O B O  ST 

INTERRUPT MASK = 7 

F i g u r e  8-25 S t a t e  A f t e r  a  Leve l  8 I n t e r r u p t  

Any i n t e r r u p t  r e q u e s t  must remain a c t i v e  u n t i l  i t  i s  r e s e t  
by t h e  i n t e r r u p t  s e r v i c e  r o u t i n e .  I n t e r r u p t s  t h a t  j u s t  
d i s a p p e a r  ( w i t h o u t  be ing  r e s e t )  can  cause  program e x e c u t i o n  
t o  become u n p r e d i c t a b l e ;  t h e  i n t e r r u p t  l e v e l  p r e s e n t e d  t o  
t h e  p r o c e s s o r  cou ld  become c o r r u p t e d  and s u b s e q u e n t l y  t h e  
wrong i n t e r r u p t  s e r v i c e  r o u t i n e  would be invoked. F a i l u r e  
t o  r e s e t  an  i n t e r r u p t  w i l l  c a u s e  t h e  p r o c e s s o r  t o  r e- take  
t h e  i n t e r r u p t  a s  soon a s  t h e  s e r v i c e  r o u t i n e  has  completed.  

8.10.4 F a u l t  T o l e r a n t  I n t e r r u p t  Systems 

I n  an  i n t e r r u p t - d r i v e n  c o n t r o l  envi ronment  i t  i s  a lmos t  
i m p o s s i b l e  t o  g u a r a n t e e  t h a t  o n l y  v a l i d  i n t e r r u p t  s i g n a l s  
a r e  going  t o  be g e n e r a t e d .  T h i s  i s  e s p e c i a l l y  t r u e  i n  
e l e c t r i c a l l y  n o i s y  envi ronments  ( f o r  example when s w i t c h i n g  
on a  motor) .  The sys tem d e s i g n e r  must be aware of t h e  
p o s s i b l i t y  of r e c e i v i n g  f a l s e  i n t e r r u p t  s i g n a l s  and should  
be  a b l e  t o  r e c o g n i s e  t h e  s i t u a t i o n s  where t h e s e  may occur .  
F u r t h e r ,  p a r t  of t h e  sys tem d e s i g n  g o a l ( s )  shou ld  be 
conce rned  w i t h  overcoming t h i s  problem. 

It i s  a l s o  a good i d e a  t o  b u i l d  a c e r t a i n  amount of f a u l t  
t o l e r a n c e  i n t o  t h e  system. Obvious ly  t h e  more t h a t  i s  b u i l t  
i n t o  t h e  sys t em t h e  more r e l i a b l e  t h e  system i s  going  t o  
be. However, t h i s  does  i n c r e a s e  t h e  complex i ty  and hence 
t h e  c o s t  of t h e  system. Some sys tems may n o t  r e q u i r e  much 
( i f  any)  f a u l t  t o l e r a n c e ;  i t  may be s u f f i c i e n t  t o  s imply  
power down a l l  t h e  equipment i n  some o r d e r e d  sequence.  I n  
o t h e r s ,  a  l a r g e  amount may be needed,  e s p e c i a l l y  i f  t h e  
sys t em i s  e x p e c t e d  t o  r e c o v e r  from t h e  f a u l t .  The a c t u a l  
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amount of fault tolerance built into a system depends on the 
design criteria (speed, simplicity, recoverabilitg, 
reliability, cost, etc). 

A classic example of including fault tolerance in a system 
is the overflow pipe in a domestic water supply, in 
particular, in the cistern. In normal operation, no 
overflow pipe is required; the ball-cock floats on top of 
the water and determines how much more water is needed, 
opening or closing the water inlet value as necessary. 
However, what happens if the ball-cock loses its buoyancy or 
the inlet value sticks open? It would mean water running 
down the walls, damaging carpets, furniture, etc. Typically 
this doesn't happen as the overflow pipe is included to 
cater for this problem. The system tolerates this type of 
fault: water overflows, but not on the carpet. 

In an interrupt-driven environment, a simple piece of fault 
tolerance is to "tie" all unused interrupt levels to a 
common interrupt service routine (this is often referred to 
as a 'spurious interrupt handler'). What this handler 
actually does is e ~ t f r e l y  up to the user; it may be nothing 
more than an RTWP instruction or it may, for example, 
provide the user with some form of statistics on false 
interrupts. If the handler does anything other than the 
RTWP it will be necessary to either perform the 'LIMI 0' 
instruction or to allocate some memory to be used as a 
workspace (not necessarily a whole workspace, but at least 
three words for R13, R14 and R15) for each unused interrupt 
level. 

Although this doesn't stop any false interrupt signals from 
being generated, it does ensure that a false interrupt on an 
unused interrupt level will not have disastrous side 
effects. How to cope with false interrupt signals on a used 
interrupt level is another problem. It may be possible to 
investigate the "interrupting" device and to determine 
whether it actually interrupted or not. Or it may be 
possible to state that a particular device can only 
interrupt when some specific set of conditions prevail; if 
all the coditions are met then assume that it was a true 
interrupt, otherwise it could be treated in a similar 
fashion to an unused interrupt level. 

8.11 EXTENDED OPERATION INSTRUCTIONS 

Extended operation instructions (XOPs) enable the user to 
extend the existing instruction set by defining additional 
"instruct ions" that are implemented by software routines . 
XOPs provide a kind of "fast subroutine call" for often 
peyformed operations. The 9900 supports 16 extended 
operation instructions, numbered 0 to 15. 
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If the program is running under an operating system, XOP 
instructions are often predefined by the system, They are 
used as a method of calling operating system routines that 
perform specific functions, These functions, in particular 
input/output operations, are provided by the system as it is 
not safe to allow a user to implement them (they could, too 
easily, affect other users). The XOP mechanism isolates the 
user from the internal workings of the operating system. 
Extended operation instructions, used in this manner are 
also known as extracodes or supervisor calls (SVCS), 

This type of instruction is often referred to as a software 
interrupt, Software interrupts differ from hardware 
generated interrupts in that software interrupts have no 
priority sequencing, (There is no waiting to be recognized 
by the processor, an extended operation instruction is taken 
as soon as it is issued), Also, the XOP instruction 
requires an operand; this allows a parameter to be passed 
over to the service routine, 

One potential problem with XOPs is that there is only one 
set of XOPs in each system, Where a system can execute 
multiple programs, there is a potential conflict over use of 
XOPs, as different programs may wish to use the same XOP 
number for different operations. 

8.11,l Defining Extended Operation Instructions 

XOP is a valid assembly language mnemonic; unfortunately, it 
does not convey any information about the operation a 
particular XOP performs, However, it is possible to assign 
a more meaningful mnemonic to an extended operation 
instruction using the Define Extended Operation (DXOP) 
directive, DXOP has 2 operands: 

1) The mnemonic by which the XOP is to be known, 

2) The number of the XOP involved. 

This directive associates the mnemonic with a particular XOP 
(it does not generate any code). When the mnemonic appears 
as an instruction opcode, the assembler generates the 
machine code to execute the appropriate XOP routine. (It 
translates the mnemonic into the correct XOP instruction and 
then assembles that.) For example: 

DXOP CALL,4 

CALL @FRED 
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The first instruction associates the mnemonic CALL to XOP 
4. The second is an example of an XOP instruction (although 
it doesn't look like it), The effect of these two 
instructions is to execute the XOP 4 instruction with the 
symholic address FRED as its parameter. 

8.11.2 Extended Operation Instruction Vectors 

Like a hardware interrupt, an extended operation instruction 
has a two word dedicated vector containing: 

1) The address of the workspace to be used by the 
XOP 

2) The address of the XOP routine's entry point. 

These vectors are located at memory addresses >40 to >7F 
(see Table 8-3 ) .  

Before an extended operation fnstructisn is executed, its 
vector must contain the appropriate values. For the CALL 
extended operation above : 

AORG >50 CALL'S vector at >50 
DATA CALLWP Workspace for CALL 
DATA CALLPC Entry point for CALL 

8.11.3 Extended Operation Instruction Execution 

When an extended operation instruction is executed, the 
processor performs the following sequence: 

1) Locates the XOP's vector (4 times the XOP 
number plus >40) and then loads the WP and PC 
registers with the values contained there. 

2) Performs a context switch. 

3) Sets bit 6 of the status register to 1 (this 
indicates that an extended operat ion 
instruction is being executed) if it is 
implemented in software. 

4) Places the effective address of the 
instruction's operand into the new workspace 
register 11. 

5) Passes control to the routine's entry point. 

Return from an extended operation instruction is via the 
RTWP instruction. This restores the program environment 
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sea AA3tfng - before t h e  f n s t r u c t f o n  was e x e c u t e d ,  

Addres s  XOP Number Vec to r  C o n t e n t s  

a d d r e s s  f o r  XOP 0  
a d d r e s s  f o r  XOP 0  
a d d r e s s  f o r  XOP 1  
a d d r e s s  f o r  XOP 1  
a d d r e s s  f o r  XOP 2  
a d d r e s s  f o r  XOP 2  
a d d r e s s  f o r  XOP 3 
a d d r e s s  f o r  XOP 3 
a d d r e s s  f o r  XOP 4 
a d d r e s s  f o r  XOP 4  
a d d r e s s  f o r  XOP 5 
a d d r e s s  f o r  XOP 5 
a d d r e s s  f o r  XOP 6 
a d d r e s s  f o r  XOP 6 
a d d r e s s  f o r  XOP 7 
a d d r e s s  f o r  XOP 7 
a d d r e s s  f o r  XQP 8 
a d d r e s s  f o r  XOP 8 
a d d r e s s  f o r  XOP 9 
a d d r e s s  f o r  XOP 9 
a d d r e s s  f o r  XOP 10 
a d d r e s s  f o r  XOP 10 
a d d r e s s  f o r  XOP 11 
a d d r e s s  f o r  XOP 11 
a d d r e s s  f o r  XOP 12 
a d d r e s s  f o r  XOP 12 
a d d r e s s  f o r  XOP 13 
a d d r e s s  f o r  XOP 13 
a d d r e s s  f o r  XOP 14 
a d d r e s s  f o r  XOP 14 
a d d r e s s  f o r  XOP 15 
a d d r e s s  f o r  XOP 15 

T a b l e  8-3 XOP Vec to r  T a b l e  

Note: Extended  o p e r a t i o n  i n s t r u c t i o n s  c a n  a l s o  be c a l l e d  
u s i n g  t h e  XOP i n s t r u c t i o n ,  T h i s  r e q u i r e s  two ope rands :  

1 )  S o u r c e  ope rand ,  a s  above f o r  CALL 

2 )  XOP number 

The e x t e n d e d  o p e r a t i o n  i n s t r u c t i o n  shown e a r l i e r  

CALL @FRED c a n  be  w r i t t e n  a s  XOP  FRED,^ 

The l a t t e r  does  n o t  r e q u i r e  t h e  DXOP d i r e c t i v e  t o  be  used .  
However, i t  i s  recommended t h a t  t h e  f i r s t  app roach  be 
a d o p t e d  as t h e  mnemonic c a n  i n d i c a t e  what t h e  r o u t i n e  
a c t u a l l y  does  and t h u s  a i d s  program r e a d a b i l i t y ,  
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XOP2 VECTOR 

ADDRESS 

ASSEMBLY LANGUAGE 

CONTENTS I 

XOP2 WP 

XOP2 ROUTINE 

PROGRAM WP 

EXECUTING PROGRAM 

XOP *1,2 

F i g u r e  8-26 S t a t e  Before  Execu t ing  t h e  XOP 2  I n s t r u c t i o n  

XOP 2 VECTOR 

ADDRESS 

STATUS BIT 6='1' 

CONTENTS 

> 0220 
0240 

XOP2 WP 

> xxxx 

> 0700 
> 0892 

XOP2 ROUTINE 

RTWP 

F i g u r e  8-27 S t a t e  A f t e r  Execu t ing  t h e  XOP 2 I n s t r u c t i o n  
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8.12 9900199000 FAMILY 

The 9900/99000 family of microprocessors gives a choice of 
different cost/performance/environment options using the 
same software. Because of the nature of some of the options 
(eg the 9995 is designed for use as a microcontroller) there 
are small differences in architecture which are outlined 
below. 

Modifications to assembly language software to run on a 
different processor in the family are usually quite 
straightforward. For high level language (eg Pascal) 
programs the differences will be taken care of within the Rx 
executive. 

NMOS technology 
16 bit data bus 
~ M H Z  

3 power rails (+5V, -5V and +12V) 
4 phase clock 
64 pin package 
Up to 64K byte address space 
16 prioritized interrupts 
Memory-to-memory architecture 
3 dedicated registers - PC, WP and ST 
16 general registers - RO to R15 
Workspace register set - any 32 byte block of RAM 
5 workspace register addressing modes 
16 extended operation instructions (XOPs) 
Serial 1/0 via CRU - up to 4K bits 
3 single bit and 2 multiple bit CRU instructions 
Automatic context switch for interrupts, XOPs and 
subroutines 
69 instructions, includes hardware multiply (MPY) 
and divide (DIV) 
DMA capabilit y 
5 external instructions 

o Integrated injection logic (I2L) technology 
o Fully static operation 
o Single phase clock 
o Up to 3MHz at 500mA injector current 
o Approved to MIL standard 883B and RS9000 
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c Single power rail 
o 64  pin package 

o 8 bit data bus 
o Up to 16K byte address space 
o 4 prioritized interrupts 
o On chip 4 phase clock generator 
o 40 pin package 

As for the 99808 except: 

o No -5v rail required 
o On chip crystal oscillator 

Note: The TMS9981 has a different pin out to the TMS9980Ae 

8 bit data bus 
On chip oscillator and clock generator 
Single +5V power rail 
40 pin package 
Optional automatic first wait state generation 
12MHz (internally divided by 4 )  
On chip RAM (256 bytes) organised as 16 bit words 
On chip decrementer/event counter 
5 prioritized interrupts 
Macro Instruction Detect feature 
Arithmetic overflow interrupt 
Up to 32K bits of serial I/o via CRU 
Minimum memory cycle time of 333ns 
Instruction pre-fetch 
CRU flag register (16 bits) 
Signed multiply (MPYS) and divide (DIVS) 
Load WP and ST from register (LWP and LST) 

8.12.5.1 Macro Instruction Detect 

The Macro Instruction Detect (MID) feature enables the user 
to extend the instruction set in a similar way to the XOP 
instructions, 

An XOP instruction, which is a valid 9900 assembly language 
instruction, occupies a range of opcodes: for example, the 
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'XOP 0' instruction uses opcodes >2C00 to >2C3F; the 
'XOP 1' instruction uses >2C40 to >2C7F; etc, When the 
processor encounters an XOP instruction it evaluates the 
address of the XOP instruction's vector, uses the least 
significant 7 bits of the instruction to determine the 
address of the source operand, stores this address in the 
XOP's workspace register 11, and performs a context switch 
to the appropriate routine. (Full details on XOPs is given 
in section 8.11.) 

With the MID feature, the user can implement some, one, or 
all, of the undefined instruction opcodes (such as the 
opcodes >0000 to >007F) in software. When an undefined 
opcode (a MID opcode) is encountered by the 9995 processor, 
a non-maskable level 2 interrupt is generated. This causes 
the processor to perform a context switch using the 
interrupt level 2 vector. The level 2 interrupt handler 
must identify which software routine actually implements the 
particular opcode and then pass control to that routine. A 
routine may implement a single opcode, or a range of opcodes 
(like the XOP instruction). This is totally up to the user 
to decide when designing the level 2 interrupt handler and 
its callable routines.' The MID opcode instruction can he 
accessed by: 

MOV @-2(R14),temp Copy opcode into TEMP 

As the processor stores the incremented program counter when 
the context switch takes place, a simple RTWP instruction 
returns control to . the interrupted program at the 
instruction following the MID opcode. 

If any MID opcode instructions are executed in the level 2 
interrupt handler itself then care must he taken to ensure 
that the original program context is not lost, and also that 
the handler does not cycle endlessly. 

8.12.5.2 Arithmetic Overflow 

The user can cause the processor to generate an arithmetic 
overflow interrupt (a level 2 interrupt) whenever an 
instruction sets the arithmetic overflow status bit (status 
bit 4 ) .  This is done by setting the arithmetic overflow 
interrupt enable status bit (status bit 10) to a ' 1  and 
enabling level 2 interrupts via the processor's interrupt 
mask. Both of these operations can be performed using the 
'LST register' instruction. 

8.12.5.3 Test for MID or Arithmetic Overflow 

The MID interrupt and the arithmetic overflow interrupt both 
generate level 2 interrupts (they share the same interrupt 
vector). Thus, when a level 2 interrupt is taken by the 
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p r ~ c e s s o r ,  the level 2 interrupt handler must determine what 
actually caused the interrupt, Was ft a MID? Or was it an 
arithmetic overflow? When this has been decided the 
appropriate routine can be invoked. (Note: Before control 
is re turaed  t o  the interrupted program, the interrupt must 
be reset, otherwise the level 2 interrupt handler will be 
immediately re-taken,) 

If the MID flag (at on chip CRU software base address >lFDA) 
is a '1' then a MID caused the interrupt (this is reset by 
writing a '0' to the MID flag) otherwise it was an 
arithmetic overflow (this is reset by masking the arithmetic 
overflow status bit to a '0'). 

8,12.5,4 On Chip CRU Flag Register 

The CRU flag register consists of 16 read/write CRU bits 
(named FLAGO, FLAGl, ..., FLAGF) starting at a CRU software 
base address of >lEEO, The first 5 of these flags (FLAGO to 
FLAG4) are used internally, but the remaining 11 are user 
der'inabie, 

8.12.5.5 On Chip Decrementer/~vent Counter 

The decrementer can be configured as either a timer or an 
event counter using FLAGO, and enabled/disabled using 
FLAGl. When FLAGO is set to 'O', the decrementer functions 
as a timer, and when it is set to '1' it is an event counter 
(the level 4 interrupt line is used as the input for the 
event counter), If FLAGl is set to 'O', the decrementer is 
disabled, but if it is a 'l', the decrementer is enabled to 
generate a level 3 interrupt. 

The decrementer is configured by: 

o Set FLAGO to the required mode, 

o Load the required 16 bit start count into the 
decrementer register (this is located at memory 
address >FFFA). In timer mode, the count is 
decremented every fourth CLKOUT cycle (every 
1.333~~). (A count of >3A98 gives a 'delay' of 
2Oms, while a count of zero disables the 
decrementer,) When the count reaches zero, a 
level 3 interrupt is generated, the original 
count is reloaded and decrementing continues, 

o Enable the decrementer by setting FLAGl to '1'. 

o Enable level- 3 interrupts by setting the 
in.terrupt mask to 3 or higher, 
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X o t e :  The 256 bytes of internal RAM is distributed as 252 
bytes from address >F000 to >FOFR, and 4 bytes from >FFFC to 
>FFFF. (These last 4 bytes are the two-word LOAD vector.) 
This RAM can not be switched out of the address map. The 
internal RAM is automatically selected when any of the above 
addresses are referenced, regardless of what is located at 
these addresses off chip. 

Integrated injection logic (I2L) technology 
Fully static operation 
Single phase clock 
Up to 4.4MHz at 500mA injector current 
Conforms to MIL standard 883B 
Single power rail 
64 pin package and chip-carrier 68 pin 
Multiprocessor interlock signal (MPILCK) 
Extended instr. processor present signal (XIPP) 
Interrupt acknowledge signal (INTACK) 
Arithmetic overflow interrupt 
Memory map enable signal (MPEN) 
- to drive TIM99610 memory mapper chip 
- as an extra address bit for 2 * 64K byte pages 
Signed multiply (MPYS) and divide (DIVS) 
Load WP and ST from register (LWP and LST) 

8.12.6.1 MPILCK 

In an environment consisting of a number of microprocessors, 
where some sharing of the system memory is necessary (if 
only for the microprocessors to communicate with each other) 
there is a possible software memory contention problem: one, 
or more, processors are attempting to read the contents of a 
piece of memory while another processor is attempting to 
modify it. While the piece of memory is being read from, no 
processor should be allowed to modify it. Similiarly, while 
the memory is being written to, no processor should be 
allowed to read it. 

This problem is more acute if the memory location in 
question is used to allow or inhibit access to another piece 
of memory (in software, such a memory location is known as a 
semaphore). 

What is required is some mechanism that implements a 'test 
and set' operation in an indivisible manner while also 
inhibiting access to the semaphore. This is performed via 
the MPILCK (multiprocessor interlock) signal, which is 
generated whenever the ABS instruction is executed. If the 
semaphore is initially set to >FFFF to indicate that it is 
not in use, exclusive access to the piece of memory can be 
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guaranteed by: 

test ABS semaphore Is the semaphore tn use? 
JGT test +ve - semaphore in use 

The ABS instruction 'converts' a negative value into a 
positive value and sets the status bits according to the 
original value. If the semaphore is not in use (contains 
the negative value 1 the ABS instruction resets the 
semaphore value to 1 and resets the arithmetic greater than 
status bit to '0'; program control will 'drop through' the 
JGT instruction. When the semaphore is in use (contains the 
positive value I), the ABS instruction simply sets the 
arithmetic greater than status bit to '1'; program control 
will be sent hack to the 'test instruction', 

When a processor has finished with the piece of memory, the 
semaphore is reset to >FFFF (the semaphore is not in use), 

8,12,6,2 XIPP 

The extended instruction processor present (XIPP) signal is 
the same as the attached processor present signal used in 
the 99000 family processors, It works in a similar manner 
to an attached processor using the MID feature (except that 
the 9989 does not have a macrostore), This is defined below 
in sections 8.12,7,1 and 8,12.7.2, 

80 1206.3 INTACK 

The interrupt acknowledge (INTACK) signal allows the 9989 to 
acknowledge the presence of an interrupt during times when 
it has handed over control of the system bus to an extended 
instruction~processor, 

8.12.7 TMS99000 Family 

Scaled NMOS (SMOS) technology 
Multiplexed 16 bit address and data bus 
Single +5V power rail 
Up to 24MHz (internally divided by 4) 
40 pin package 
On chip oscillator and clock generator 
Minimum memory cycle time of 167ns 
Instruction pre-fetch 
Privileged mode 
Bus status codes to identify processor activity 
Multiprocessor interlock signal (MPILCK) via bus 
status codes 

o Multiprocessor support instructions - test memory 
bit (TMB), test and clear memory bit (TCMB), and 

Texas Instruments 8-51 October 1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

test and set --- UICLUGT~~  bf t (TSi4B) 
Macrostore emulation of user defined instructions 
Attached processor present signal (APP) - with 
access to PC, WP and ST registers 
Macro Instruction Detect feature 
Arithmetic overflow interrupt 
Interrupt acknowledge signal (INTA) 
Up to 16K bits of serial 1/0 via CRU 
Up to 16R bits of parallel I / O  via CRU 
Optional automatic first wait state generation 
Memory map enable signal (ST8) to drive TIM99610 
memory mapper chip 
Memory expansion instructions via macrostore - 
load map file (LMF), long distance source (LDS), 
and long distance destination (LDD) 
Signed multiply (MPYS) and divide (DIVS) 
Load WP and ST from register (LWP and LST) 
Stack support instructions - branch and push link 
to stack (RLSK), and branch indirect (BIND) 
Double precision 32 bit instructions - add double 
(AM), subtract double (SM) , shift left arithmetic 
double (SLAM) and shift right arithmetic double 
( SRAM) 

8.12,7,1 Macrostore 

In the 99000 family, the concept behind the MID (the ability 
to define 'new instructions' that are implemented in 
software) has been extended to allow these routines to be 
stored in a high-speed memory that is addressed 
independently of main memory, This high-speed memory 
(minimum cycle time of 167x1s) is known as macrostore. 

When a MID opcode is detected by the processor, program 
control is transferred to the macrostore. 

The first few words of the macrostore contain a specially 
ordered table, Each entry in this table defines the 
macrostore address of the routine that implements a 
particular group of MID opcodes, This address table is used 
to determine whether the MID opcode is, in fact, implemented 
by a macrostore routine, If so, program control is passed 
to the appropriate routine, If not, a level 2 interrupt is 
generated. Although a special internal, 16 word, workspace 
(this is known as macrostore RAM, or MRAM) is used when the 
processor is executing out of macrostore, it is a simple 
matter to access data in the user's main memory, When the 
macrostore routine has completed, an exit is made from the 
macrostore (program control is returned to the user's 
program) via an RTWP instruction. 

If the user defined instruction allows the standard 
addressing modes (register, register indirect, symbolic, 
etc) for the source and/or the destination operand then the 
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apprcpriate MID routine must calculate the operand's actual 
address, (This is automatfcaily performed by the microcode 
for the standard instructions,) To save the overhead of 
having to do this calculation in software, the 99000 family 
sf processors prcvI.de the EVAD (evaluate address) macrostore 
instruction, 

Internal to the 99000 family processors is a 1K byte 
macrostore ROM (MROM) which can be expanded to 61K bytes 
using off chip high-speed ROM, PROM, or even RAM, 

71 RAM 

SYSTEM BUS 

New instructions defined as Software Routines in high-speed on or off chip macrostore. 

Figure 8-28 Macrostore 

* 

The macrostore can be addressed in three different modes: 

EXPANSION 
MROAA 

o Standard mode - The on chip MROM and MRAM are 
both enabled, This allows the software routines 
in MROM to be used, 

MRAM MROM - 

o Prototyping mode - The MROM is disabled but the 
MRAM is enabled, This allows the user to 
re-configure the system so that a lk byte block 
of the off chip macrostore is used as though it 
was the MROM, This enables the user to try out 
and test the macrostore routines before 
committing them to mask, 

o Baseline mode - All macrostore is disabled. 
Only the baseline 99000 instruction set can be 
executed; with the exception of the parallel CRU 
instructions this is identical to that of the 
9995, 

8,12,7.2 Attached Processors 

To increase system throughput, some of the macrostore 
routines can be taken out of the macrostore and implemented 
in an attached processor (a specially designed unit to 
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handle a particular function) which is attached to the 
system via a special interface. If these routines are 
frequently used, or relatively slow and complicated (such as 
floating point arithmetic routines), then a considerable 
speed improvement will he noticed. (Floating point 
routines, for example, could be replaced by a high-speed 
floating point processor,) 

When the system processor encounters a MID opcode it outputs 
a MID bus status code. Any attached processor that 
recognises the MID opcode can then inform the system 
processor that it is prepared to execute the opcode (using 
the attached processor present signal), If this happens, 
the system processor relinquishes the bus to the attached 
processor and waits until the attached processor signals 
that it has finished* 

Before giving up the bus, the system processor copies its 
internal WP, PC and ST registers into RAM, When it regains 
control of the bus these hardware registers are reloaded 
from RAM, This allows the attached processor to access the 
user's workspace, to access any multiple word operands 
(updating the PC to skip over these operands as necessary) 
and to return status information. 

+ 

ROM RAM 

SYSTEM BUS 

CPU must block and relinquish the BUS while the attached processor executes. 

PROCESSOR 

Figure 8-29 Attached Processor 

PROCESSOR 

Unfortunately, attached processors can not simply be 
attached to a high-speed bus without limit. They are not 
completely self-contained computing systems as they require 
the services of the system bus (to access memory, for 
example), and they operate by suspending (or blocking) 
execution of the main program until they have completed 
their operation, Even so, an attached processor can 
increase the system throughput for specific operations by 10 
to 100 times* 
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8.12.7.3 Attached Computers 

Attacked computers, cn t h e  other hand, only require the 
services of the system bus infrequently (when the macrostore 
instruction invokes them with the required parameters, for 
some hand-shaking signals and for completion signaling). 

SYSTEM BUS. 

ROM 

b 

AITACHEQ I COMPUTER b-* 

RAM 

Once paramaters have been passed, the CPU can continue to execute in parallel 
with the attached computer (the attached computer has its own BUS). 

Figure 8-30 Attached Computer. 

As attached computers are totally self-contained systems, no 
blocking action is necessary, which means that they can 
execute in a true parallel fashion. An attached computer 
can increase the system throughput for particular operations 
up to 1000 times. 

The complete procedure when a MID opcode is encountered by 
the processor is shown in Figure 8-31. 

8.12.7.4 Interrupts 

All interrupts (except RESET) are inhibited while executing 
from macrostore. However, there are two instructions that 
allow the user to test for any pending interrupts while 
executing a routine in macrostore. Using these, MID opcodes 
requiring long execution times can be written so that they 
can be interrupted and resumed after the interrupt has been 
serviced. If the MID opcode is being handled by an attached 
processor when a pending interrupt is detected, the attached 
processor can temporarily return control to the system 
processor to handle the interrupt. Upon completion of the 
interrupt servicing, the system processor returns control 
back to the attached processor. (When the interrupt is 
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taken by the system processor it automatically outputs the 
interrupt acknowledge bus status code, INTA, which can be 
used to reset the interrupting device.) 

* Process in 
CPU microcode 

lnvoke Attached 
Computer and continue 

lnvoke Attached 
Procesor and wait 

lnvoke Macrostore 
~ y - ~ Y l ,  

lnvoke main memory 

I Operating system 
handles violation 

Figure 8-31 Full TMS99000 Instruction Sequence 

8.12.7.5 MPILCK 

In a multiprocessor environment where communication is 
performed via shared memory it is necessary to have a 
mechanism that allows a portion of memory to be exclusively 
'owned', so that while one processor is accessing that 
portion every other processor in the system is physically 
inhibited from accessing it. This is guaranteed via the 
multiprocessor interlock (MPILCK) bus status code and the 
multiprocessor support instructions (TMR, TCMB and TSMB); 
the ABS instruction can also be used. 

8.12.7.6 CRU Operations 

On the 99000 family of processors, CRU operations use bits 0 
to 14 of register 12 (instead of just bits 3 to 14 with the 
T~S9900). This expands possible CRU I/O operations from the 
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previous maxdwum of 4K bits (with the TMS9900) to a new 
maximum of 32K bits. The 32K bfts is split into two 16K bit 
blocks; the first block (0 to 16K) is used for serial I/O 
transfers, and the second block (16K to 32K) is used for 
parz l l e l  I / O  transfers. (If the most significant hit of 
register 12 is set to a '1' then a parallel transfer is 
indicated otherwise it is a serial transfer.) 

For parallel CRU operations, the count supplied to the LDCR 
and the STCR instructions is used to select either an 8 or a 
16 bit transfer and also to specify whether or not the CRU 
base address is to be incremented by 2 after the transfer 
has been performed. (With serial CRU operations, the count 
is used to specify how many bits are to be transferred.) 
The possible valid values for the count, using parallel CRU, 
are shown below: 

Byte transfer 

Word transfer 

All other values for count are reserved for future expansion 
of the parallel CRU capability and should not be used. 

When operating in user mode (status bit 7 is set to 'l'), an 
attempt to execute an LDCR or an STCR instruction using a 
CRU base address in the range >1C00 to >7FFE or >9~00 to 
>FFFE is flagged as a privileged opcode violation. (This 
condition generates a level 2 interrupt request and also 
inhibits transfer of the remaining bits.) 

Note: The SBO, SBZ and TB instructions should be used with 
caution when an access is made within the parallel CRU 
address space. SBO and SBZ will setjreset the CRUOUT line 
(the same line as data bit D15), while the other 15 bits (DO 
to D14) will be undefined. TB takes its value from the 
CRUIN line (the same line as data bit DO). 

There will be different versions of the 99000, each 
supporting an extended instruction set, implemented in the 
macrostore. These instruction sets will be tailored to 
particular requirements, eg: 

99105 Baseline version, instruction set as 9995 ,  
no macrostore 

99110 High performance floating point package 
99120 Realtime executive (Rx) kernel 
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8 13 ALGORITHMS AND TECHNIQUES 

The paragraphs that follow provide information about 
algorithms and techniques that are applicable to 9900 
assembly language programming. 

8.13.1 Invoking the 9900 Family of Assemblers 

The 9900 family of assemblers are upward compatible. 
However, there are restrictions on the use of certain 
instructions. The first three instructions below are only 
valid on the 990/10 or 112 minicomputers with map option. 
The remaining five instructions (external instructions) 
perform specific functions on the /lo, 112 and the / 4  mini- 
computers. Although they are not illegal for the TMS9900 
microprocessor, the functions they actually perform are 
dependent upon the external hardware. 

Long distance destination 
Long distance source 
Load memory map file 
Clock off 
Clock on 
Idle 
Load ROM and execute 
Reset 1/0 

LDD 
LDS 
LMF 
CKOF 
CKON 
IDLE 
LREX 
RSET 

8 1 3 1 1  LRLA 

The Line-By-Line Assembler is a two-EPROM package that is 
used in conjunction with the TIBUG monitor supplied with the 
TM990/101 and /I00 microprocessor boards. With these two 
additional EPROMs correctly installed, the Line-By-Line 
assembler is entered by the following sequence: 

? R 
W=XXXX space 
P=XXXX 9E8 return (9E6 in some versions) 
? E 

TIRUG Monitor User Replies 
Prompts and Replies 

This initializes the workspace, sets the program counter to 
the entry point of the assembler and begins execution. 

The assembler prints the address of the first word of memory 
into which the subsequent program will be stored and waits 
for instructions to be entered. To exit from the assembler 
and return to TIBUG press the escape key (ESC). 

Texas Instruments October 1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

Gnce the grograa has been entered, it can be executed by 
performing the same sequence of commands used for entering 
the assembler. However, P should be set to the program's 
entry point instead of 9E8. 

For further details refer to the T~990/402 Line-By-Line 
Assembler User's Guide. 

8.13.1.2 SYMBOLIC 

SYMBOLIC is a ROM resident two-pass assembler (see footnote) 
that is supplied with the ~~990/302 Software Development 
Board. It takes source statements stored on audio cassette 
(created via the resident text editor) and produces absolute 
(not relocatable) machine code. The first instruction in 
the program should be an AORG directive that sets the 
location counter to the absolute start address of the 
program, Before; executing the symbolic assembler, the 
cassette containing the source statements must be positioned 
to the begining of the program. The assembler is invoked 
by: 

.SA <devl>,<dev2>,<dev3> return 

where <devl> is the device number of the cassette containing 
the source statements. <dev2> is the device number of the 
cassette where the object code is to be stored; and <dev3> 
is the device number of the listing device, 

After the first pass, the assembler responds with: 

** REWIND TAPE 
** HIT 'CR' TO GO 

If <devl> and <dev2> are the same, the assembler responds 
with these messages following the second pass: 

** SWAP TAPES 
** HIT 'CR' TO GO 

If the program is too large to fit into the assembler's 
buffer at one time, more steps will be involved, 

Having stored the object code on cassette, the next step is 
to invoke the Relocating Loader to load the absolute program 
into the board's user memory. 

A two-pass assembler reads the source program twice. On the 
first pass it builds a symbol table containing the name of 
every symbol used in the program and the address where it 
was defined. During the second pass the machine code is 
produced using the instruction opcodes and the completed 
symbol table. 
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This is performed by: 

.RL <dev> return 

where <dev> is the device number of the cassette containing 
the object code. 

The loader requires information to determine where the 
program is to be loaded into memory, how much of the program 
is to be loaded, etc. When the loader is ready for this 
information, it informs the user by prompting '?'. 

Once loaded, the assembled program is executed by invoking 
the Debugger Utility (the DP command), setting the program 
counter, workspace pointer and status register to the appro- 
priate values using the IR command, and then issuing the EX 
command. 

See the ~ ~ 9 9 0 / 3 0 2  Software Develpoment Board User's Guide 
for further details. 

8.13.1.3 TXMIRA 

TXMIRA is a two-pass assembler that runs on a 990/4 mini- 
computer under the floppy disc based TXDS Control Program. 
The assembler is invoked by replying to the Control Program 
prompts as follows: 

PROGRAM : DSCX:TXMIRA/SYS return 
INPUT: DSCX:NAME/ASM return 
OUTPUT : DSCX:NAME/OBJ,DSCX:NAME/LST return 
OPTIONS : return 

TXDS Control User Replies 
Program Prompts 

DSCX:NAME/EXT is the full pathname of the file (or device) 
containing the program to be assembled. 

During output, if a file does not exist, it will be 
created. The second output parameter specifies where the 
listing is to be sent. This is usually a device such as the 
line printer (LP). If this parameter is missing, the system 
default printer will be used. 

For a full list of the available options refer to Section 
5.4 of the Model 990 Computer Terminal Executive Development 
System (TXDS) Programmer's Guide. 

The TXDS Linking Utility Program (TXLINK or TXSLNK) must be 
used to resolve any external references (REFS) contained in 
the program. 

If the program has been written to run on a TM board based 
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system then  it may be possible to test and debug it using 
TIBUG or the Software Development Board. However, the AMPL 
in-circuit emulator (if one is available) could make the 
testing a lot easier, simpler, quicker and less painful. 

If the program has been written to run on a /4 then there 
are two options available. If it doesn't use any operating 
system facilities then the EX or RU commands of the TXDS 
Standalone Debug Monitor (TXDBUG) can be used. If it does 
use operating system facilities and if the Operator 
Communications Package (OCP) has been included in the 
generation of the /4 operating system (using GENTX) then OCP 
may be used. 

For a program to run on the /4 the first three words of the 
program must contain (in the following order): 

1) The address of the initial workspace. 

2) The address of the program's entry point. 

3 )  The address sf the error handling routine to be 
invoked when the operating system detects a 
non-fatal error. If this address is less than 
15 then it is assumed that an error handler is 
not included in the program. 

As the 990/4 minicomputer is based around the TMS9900 
microprocessor it is possible to use the AMPL in-ciruit 
emulator to debug a /4 based program. Note: there can be 
timing problems with the host cpu. 

8,13.1.4 SDSMAC 

SDSMAC (Software Development System Macro Assembler) is a 
multipass macro assembler that runs on a 990/10 or /12 
minicomputer under the hard disc based DXlO operating 
system. This assembler is invoked by issuing an XMA command 
to the SCI (System Command Interpreter) prompt and then 
supplying the relevant information to the XMA prompts, 

[ I  XMA return 

SCI prompt 
a 

EXECUTE MACRO ASSEMBLER 
SOURCE ACCESS NAME: DISC.SOURCENAME return 
OBJECT ACCESS NAME: DISC.OBJECTNAME return 

LISTING ACCESS NAME: DISCOLISTNAME return 
ERROR ACCESS NAME: DISC.ERRORNAME return 

OPTIONS : return 
MACRO LIBRARY PATHNAME: DISC.LIBRARYNAME return 

XMA Command Prompts User Replies 
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DISC specifies the name of the (installed) disc on which the 
file resides. If the file does not exist prior to the 
command for the listing, object, and error access name 
prompts, it will be created on the specified disc with the 
name given. 

DISC.xxxxNAME is the full pathname of the file (or device) 
to be used. 

When creating a program on the 110 or 112 it is a good idea 
to create a directory (using the CFDIR command) through 
which all files related to that particular program are 
referenced. This allows the replies to the XMA prompts to 
be of the form: 

where PROGNAME is the directory name for the program files, 
and EXT is one of ASM, OBJ, LST, ERR, MACRO. 

When the assembly is complete it may be necessary to execute 
the Link Editor (XLE command) or even the TX Link Editor 
(TXXLE command) to resolve all external references in the 
assembled program. 

For a TM board based or for a 99014 based program refer to 
the relevant comments under TXMIRA above. 

For a 990/10 or 112 minicomputer the fully linked (if 
necessary) program must be installed as either a procedure, 
task or overlay (using the IP, IT or I0 commands). (For 
most applications the program is usually installed as a 
task.) This can then be executed using the XT (execute 
task) command, or debugged using the XD (execute debug) 
command and the SCI debugger commands. 

The first three words of the 990/10 or 112 based program 
must contain task information; this is the same as for a 
99014 based program and is described under TXMIRA. 

8.13.2 Number Representations 

The information in this subsection discusses how numbers are 
formed and how they are stored internally. Note: The 
TMS9900 performs all arithmetic using twos complement 
notation; it does not contain any instructions that directly 
manipulate fractional, floating point or binary coded 
decimal numbers. If a program needs to use these types of 
number systems, then the user must supply the routines to 
actually perform the required arithmetic operations. It 
will also be necessary to provide the routines to convert 
between the required number system and the twos complement 
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form, The TMS99iiG provides floatfag p e f c t  instructions in 
macrostore, 

8 . 1 3 . 2 . 1  Number Systems 

A number in the decimal, base 10, system is composed of the 
digits 0 to 9, Numbers greater than 9 are represented using 
the decimal place convention, The value of each place is 
ten times that of the place to its immediate right, 

For example, the decimal number 2976 means 

Note: 10' = 1 

While the decimal system is the most frequently used number 
system it is not suitable for use on a computer, 

The smallest unit of storage in a computer is the bit (from 
BInary digiT). The bit can be thought of as a single wire 
that can only be in one of two states: on or off, 'high' or 
'low', ' 1  or '0' The binary system automatically lends 
itself to this, 

A number in the binary, base 2, system uses only the digits 
0 and 1. The value of each place, in the binary 
place convention, is twice that of the place to its 
immediate right (as opposed to 10 in the decimal system), 

For example, the binary number 1011101 (93 decimal) means 

Note: 2' = 1 

Writing large numbers in their binary representation is too 
cumbersome for most applications. However, it is possible 
to group bits together and represent each group by a single 
digit. This gives rise to the octal and hexidecimal number 
systems, 

Octal, base 8, representation uses the digits 0 - 7. An 
octal digit corresponds exactly to 3 bits, 

Hexadecimal (or hex for short) notation, base 16, uses the 
digits 0 - 9 plus A - F to represent the decimal values 10 - 
15. Each hex digit corresponds to exactly 4 bits, 
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I I l l i  I 
Binary 

I 

It-lnd+-l st -1 Her 

Figure 8-32 Bit Grouping 

Note: Ten does not correspond to an integral power of two. 
Therefore conversion from decimal to binary (and vice versa) 
is more difficult. 

Binary 

10 
1000 
10 10 

10000 
11111111 

8.13.2.2 Representation of Negative Numbers 

Negative numbers are stored in twos complement form. In 
this form, the most significant bit of a word (bit 0 )  
indicates the sign of the number. If it contains a ' 0 ' ,  the 
number is positive; if it contains a 'l', it is negative. 
The other 15 bits (bits 1 - 15) hold the twos complement 
value of the number. For a positive number this is simply 
the binary representatdon of that number. 

Octal 

2 
10 
12 
20 

37 7 

The representation of a negative number, however, (for 
example 1096) is derived as follows: 

1) Take the magnitude of the number, in this case 
1096, and write it in binary, using the full 
word length of the machine. (16 bits for the 
9900.) 

Decimal 

2 
8 
10 
16 

255 

2) Take the ones complement of this number (change 
the state of each bit; replace '0's with '1's 
and '1's with '0's). 

Hex 

2 
8 
A 
10 
FF 

3) Add 1 to the least significant hit. 
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The positive number 1096 is stored as >0448 while the 
negative number -1096 is stored as >FBB8. 

8.13.2.3 Representation of Fractions 

The general equation to convert a binary fraction into its 
decimal equivalent is: 

where dl .. . . . . dn represent binary digits 
For example, the binary fraction 0.1001 is equivalent to 

To convert a decimal fraction to its approximate binary 
equivalent, multiply the decimal fraction continually by 2, 
saving the integer part of the result (either '0' or '1') 
until the result is zero. Unfortunately it is not always 
possible to produce an exact binary representation. 

Consider the number 0.8125. 

This number can be accurately expressed as 0.1101. 

Now consider the number 0.9725. 

We could continue this process indefinately, but there is 
little point to it as the number 0.9725 can not be 
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accurately represented b x  binary. After 8 iterations the  
binary approximation to the number is 0.111110001. This 
yields the number 0.970703125; an error of 0,001796875. 
Obviously the error can be reduced further by performing 
several more iterations. However, there are practical 
limitations to how far this can be taken. 

8.13.2.4 Representation of Floating Point Numbers 

Floating point numbers can be stored in two consecutive 9900 
memory words using Excess 64 notation. The 32-bit real word 
is formed as: a sign bit, a 7 bit exponent and a 24 bit 
mantissa: 

Figure 8-33 Floating Point Format 

0 1 7 8 31 

The sign bit (bit 0 of the first word) is used to show 
whether the number is positive or negative (a '1' means that 
it is negative). A real number is converted into the form 
'fraction*exponentm. The fractional part is stored in the 
24-bit mantissa field in true form and not twos complement. 
The exponent part is stored in the exponent field in "Excess 
64 notation". 

SIGN BIT  b 

The most significant hex digit of the mantissa must be 
normalized (ie it must contain a value other than zero). 
This is performed by shifting the number four bits to the 
left (one hex digit) and decrementing the exponent value by 
one until the mantissa is normalized, 

Excess 64 notation means that the number stored in the 
exponent field is 64 greater than the actual value of the 
exponent part. Thus, the true exponent values 0 to 63 will 
be stored as 64 to 127. The exponent field values 0 to 63 
are used to represent the true exponent range of -64 to -1. 

EXPONENT 

Consider the number -107,5 

MANTISSA 

Binary Form Frac*Exp Form Normalised 

01101011.1000 0.0110101110000 * 16* No change 

In floating point form 1 1000010 0110101110000....0 

The number -107.5 would be stored as >C26B8000 (sign = -ve, 
exponent= +2). 
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Co~sider the number Oe03125 

Binary Form Frac*Exp Form Normalised 

In floating point form 0 0111111 1000000000000....0 

The number 0.03125 would be stored as >3F800000 (sign= +ve, 
exponents -1). 

8.13.2.5 Binary Coded Decimal 

A number that is stored in a decimal form is said to be in 
Binary Coded Decimal notation (BCD). In this form a word 
holds four decimal digits with each digit occupying four 
bits. For numbers greater than 9999, more than one word is 
required to store the BCD value. 

If signed numbers are allowed, the user must decide on some 
convention ~ O P  indicating whether a number is positive or 
negative (such as using the least significant four bits of 
the least significant word to contain the sign). 

Most significant Word 

4 
Most Significant Digit 

Least Significant Word 

Figure 8-34 A Possible BCD Format 

.... 

8.13.3 Position Independent Code 

t Sign digit 

A program is normally assembled and linked to produce an 
executable object module that is designed to reside at a 
particular position in memory. Typically, if the, program is 
loaded at any other address than the program will not 
execute correctly. 

Least Signifitnt Digit 

However, it is possible to write a program such that without 
any modifications at all it will execute at any position in 
memory. A program that exhibits this form is said to be 
written in Position Independent Code. (This is different 
from relocatable code, which is not directly executable 
until it has gone through a location step to resolve all 
addresses tagged relocatable into absolute form. It is then 
no longer relocatable.) 

The real value of position independent code may not be 
immediately obvious so consider the following: You have an 
EPROM based monitor (like TIBUG) and want to add new 
capabilities to it (say an assembler, a disassembler and a 
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f l o a t i n g  point  package)  and t h e s e  a r e  a l s o  going  t o  be EPROM 
based .  Where a r e  t h e s e  e x t r a  EPROMs going  t o  be p l aced  i n  
memory? A t  t h e  same a d d r e s s ?  P o s s i b l y ,  b u t  t h i s  would 
r e q u i r e  you t o  power down your  sys tem,  remove t h e  unwanted 
EPROM(s) and i n s e r t  t h e  r e q u i r e d  ones.  And t h e n  you would 
have  a c c e s s  t o  o n l y  one of t h e s e  e x t r a  f a c i l i t i e s  a t  any one 
t ime ,  A t  d i f f e r e n t  a d d r e s s e s ?  T h i s  would be b e t t e r  a s  i t  
a l l o w s  a c c e s s  t o  a l l  of t h e  new f e a t u r e s  a t  any t ime ,  

A f t e r  a  w h i l e ,  you cou ld  have b u i l t  up a  h e a l t h y  s e l e c t i o n  
of  e x t r a  m o n i t o r  f a c i l i t i e s  and a  number of u s e f u l  
a p p l i c a t i o n  packages.  The o n l y  problem i s  t h a t  a l l  of them 
a r e  s p e c i f i c  t o  some p a r t i c u l a r  a d d r e s s ,  What happens when 
you want t o  u s e  a  combina t ion  of t h e s e  packages and e x t r a  
f a c i l i t i e s ?  It  i s  q u i t e  l i k e l y  t h a t  you w i l l  have an  a d d r e s s  
c l a s h  ( two packages  r e q u i r i n g  t h e  same memory a d d r e s s )  and 
i t  w i l l  become n e c e s s a r y  t o  go hack and re- assemble one of 
them ( t a k i n g  g r e a t  c a r e  t h a t  a n o t h e r  a d d r e s s  c l a s h  d o e s n ' t  
happen) ,  Now you've go t  two v e r s i o n s  of a  p i e c e  of s o f t w a r e  
t h a t  o n l y  d i f f e r  i n  t h e i r  l o a d  a d d r e s s e s .  Nothing wrong 
w i t h  t h i s  b u t  i t  does  mean t h a t  any u p d a t e s  ( a  bug c o r r e c t e d  
o r  new f a c i l i t i e s  added) must be a p p l i e d  t o  bo th  p i e c e s  of 
s o f t w a r e ,  T h i s  l e a d s  t o  a  p r o l i f e r a t i o n  of n e a r  i d e n t i c a l  
p a r t s  and t h a t  i s  a  r e a l  headache  from a  main tenance  p o i n t  
of view, 

I f  t h e  packages  a r e  w r i t t e n  i n  p o s i t i o n  independent  code 
t h e n  o n l y  one copy of a  package i s  e v e r  r e q u i r e d ,  When one 
of t h e  packages  i s  wanted i t s  EPROM(s) a r e  s imply  i n s e r t e d  
i n  any unused memory space ,  A package i s  t h e n  invoked w i t h  
t h e  a d d r e s s  of t h e  package ' s  EPROM(s) a s  t h e  s t a r t  a d d r e s s .  

The c a l l i n g  sequence  f o r  p o s i t i o n  independen t  code i s  shown 
below, a l o n g  w i t h  t h e  r e l o c a t a b l e  code e q u i v a l e n t  , 

ENTRY EQU $ ENTRY EQU $ 

SUB EQlJ $ SUB EQTJ $ 

R e l o c a t a b l e  Code P o s i t i o n  Independent  Code 

I n  t h e  above example, workspace r e g i s t e r  4  (R4) c o n t a i n s  t h e  
a c t u a l  a d d r e s s  of ENTRY, T h i s  i s  o b t a i n e d  by: 

START EQU $ 
L I  R10,>045 Load R10 w i t h  RT i n s t r u c t i o n  
BL R10 Execute  i n s t r u c t i o n  i n  R10 

ENTRY EQU $ R11 c o n t a i n s  a d d r e s s  of ENTRY 
MOV Rl l ,R4 R4 c o n t a i n s  a d d r e s s  of ENTRY 

Note: START i s  t h e  r e a l  e n t r y  p o i n t  f o r  t h e  p o s i t i o n  

Texas I n s t r u m e n t s  8-68 October  1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

independent code program. 

8.13.4 ROM/RAM Systems 

Before burning a program into ROM (the usual course of 
events for a microprocessor based application/control 
program), it is necessary to separate the variable data and 
temporary storage locations from the constant data and 
program instructions, and then add instructions to the 
program to ensure that all the variable data is correctly 
initialized (see Figure 8-35). 

c ROM 

- 

PROGRAM 

RAM 

4 Interrupts and XOPs b 

4 Variables and RAM Image 
workspaces 

PROGRAM 

* 

The simplest way of initializing data is by using the DATA, 
BYTE, and TEXT assembler directives: 

At run time, the RAM image (held in ROM) is copied into the appropriate 
RAM storage area. 

Figure 8-35 RoM/RAM Partioning 

TEMP1 DATA 100 
TEMP2 DATA 25 . . 
MSG TEXT 'READY' 

BYTE >D,>A,O 

While this will work in a RAM environment such as a 
development system, where the program is loaded prior to 
each execution, it will not work in a dedicated 
microcomputer. There will be no operating system to load 
the progam and initialize the data. If the data is placed 
in RAM, it will never be initialized; if in ROM, it cannot 
be changed by the program (this is perfectly all right for 
constants). Even in a RAM environment, if the program is 
restarted without reloading, the data will not be 
reinitialized. 

The only way of ensuring variables are correctly initialized 
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is to include instructions in the  program c o d e  to do the 
initialization. This can be performed by: 

* 
* Data storage allocation in RAM 
* 
TEMPl BSS 2 

MSG BSS 8 

VAREND RSS 0 

* 
* Initial variable values in ROM 
* 
VALUES DATA 100 

DATA 25 

TEXT 'READY ' 

* Initialisation loop * 
ENTRY EQU $ 

LI R1 ,TEMP1 R1 points to TEMP1 
LI R2, VALUES R2 points to VALUE 

INIT MOV *R2+,*Rl+ Load initial values 
CI R 1 , VAREND Done? 
JNE INIT To INIT if no 

The label VAREND (no storage space is allocated to it) is 
used to delimit the block of data; its address is used to 
terminate the initialization loop INIT, 

The initialization can also be performed by: 

LI R1,100 
MOV ~ 1 ,  @TEMP 1 Set TEMP1=100 
LI R1,25 
MOV R~,@TEMP~ Set TEMP2=25 

The above does not make use of the table of values (VALTJES), 
MOV @VALUES, @TEMP 1 Set TEMP I=  100 
MOV @VALUES+~,@TEMP~ Set TEMP2=25 

Although both of these methods are simple and 
straightforward, they can be more costly in memory space 
(they both require 4 words of ROM for each variable) for 
programs with a number of variables to be initialized, 
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Note: A complete ROM/RAM system must satisfy the following 
three conditionds. 

If any interrupt level is not used then a spurious interrupt 
handler should be written and lncluded in the system. All 
unused interrupt levels should set their PC to access this 
routine. It may be necessary to allocate some RAM to each 
unused interrupt level's WP, but this depends on exactly 
what the spurious interrupt handler does. 

If any XOPs are used then the appropriate XOP trap vectors 
must be included. 

If the LOAD vector is not used then it should be treated as 
though it was an unused interrupt level. Typically this 
vector is used to perform a 'warmstart' operation; it allows 
the user to halt the application program (usually when an 
error has been detected) and for it to be restarted from a 
known state (eg immediately before the code that copies the 
RAM image into memory). 

8.13.5 Macro Processing 

Suppose a sequence of source lines will be used often in a 
program. There are several methods to accomplish this: 

1) Explicitly write the sequence wherever it is to 
appear. 

2) Make a subroutine out of the sequence and code 
subroutine calls wherever the sequence should 
appear . 

3) Write the sequence at the begining of the 
program, associating a name with it. Insert 
this name wherever the sequence is to appear in 
the program and pass the program through a 
special program called a macro processor. The 
output from this is a program in which every 
occurrence of the sequence name is replaced by 
the sequence of source lines. 

The following text is only concerned with the last method 
macro. described above. The sequence of source lines is a 

Associating a name to a macro is called macro definition and 
writing this name in a source line is known as a macro 
call. 

Like the subroutine, macros can have parameters. Macro 
calls may require text that is almost, but not exactly, the 
same. For example, some instructions may use different 
operands. This can be handled by defining parameters for 
the macro. The actual operands required are then specified 
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in the macrt c a l l  (an example is presented beiowj. 

A macro processor processes text. This text may, in fact, 
be a program but to the macro processor it is simply text. 
The macro processor is only concerned with macro related 
operations, and source lines containing none of these are 
output unchanged. Input to a macro processor is text 
containing macro definitions, macro calls, macro 
instructions and macro keywords. Output is text that has 
had all the macro calls replaced by their replacement text 
and all other macro operations removed. 

Diagrammatically, this can be expressed as: 

TEXT + MACRO CALLS I 
INSTR-UCJIONS d 
AND KEYWORDS 

MACRO DEFINITIONS 
d 

MACRO 
PROCESSOR 

MODIFIED SOURCE TEXT 
(all Macro operations removed, 

calls replaced by substitution 
1 text) 

Figure 8-36 Macro Processor Operation 

A macro processor has two phases: Macro Definition and Macro 
Expansion. 

Macro Definition - A macro is defined and subsequently 
included into its macro library, 

Macro Expansion - A macro operation is found in the source 
text. A macro call causes the input to be 'switched' to the 
macro's replacement text. Processing continues from there 
until this text is exhausted. Other macro operations cause 
the macro processor to perform the necessary, inbuilt, 
operation. 

The benefit of using a macro processor is that, once 
defined, a macro can be "called1' from anywhere within the 
source (or replacement) text, with each call having specific 
arguments. Obviously, it is a good idea to build up a macro 
library (containing both special and general purpose 
macros), This can then be either automatically accessed 
when the macro processor is used or actually included into 
the macro processor itself. 

Although a macro is only written once, the output from a 
macro processor will contain the replacement text wherever a 
macro was called in the source text. Note that although a 
macro call and a subroutine call look similar when written 
in a source program, a subroutine call is implemented in the 
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object module by a short calling sequence to the subroutine, 
which only appears once. Wherever a macro call is written, 
the complete code sequence specified in the macro definition 
will he placed in the object module at the point of the 
call. 

The SDSMAC assembler supports a macro language (ie it is a 
macro assembler). A short description of defining and 
calling a macro under this assembler follows. Full details 
of the SDSMAC assembler capabilities are available in 
Section 7 of the TMS9900 Assembly Language Programmer's 
Guide. 

8.13.5.1 Macro Definition 

Macro definition is performed by the $MACRO instruction. 
All source lines following this instruction up to but 
excluding the definition terminator ($END instruction) 
constitute a macro. 

Mname $MACRO parm . 1 Macro 

MNAME is the name of the macro. PARM is the list of 
parameters (separated by commas) used by the macro. 

$MACRO causes MNAME and its attributes to be stored in the 
assembler's symbol table. A similar table, the parameter 
table, is used to hold the names of the individual 
parameters and their attributes. (Information about any 
macro variables used within a program is also stored in this 
table,) $END informs the assembler that the definition is 
complete. All the source lines between these two macro 
instructions are stored, in an encoded form, in a macro 
file. 

8.13.5.2 Macro Call 

A macro is called by writing its name in the opcode field of 
an instruction, with the actual parameters written in the 
operand field. 

When this is done, the actual parameters are linked to the 
dummy ones (those supplied at definition time) in the 
parameter table and then macro expansion takes place. The 
lines output from the macro expander are then passed 
straight to the assembler, 

For example, to define a macro (AGAIN) with dummy parameters 
AD and NOW, the following lines are required: 
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AGAIN $MACRO AD, NOW 

• 1 Macro's replacement lines 

To call this with real parameters R4, *R6 the following is 
required : 

AGAIN R4, *R6 

SDSMAC supports conditional assembly through the $IF, $ELSE 
and SENDIF macro instructions. The general form for 
conditional assembly is: 

$IF expression 

. Block B 

If the expression in the above example is true, Block A is 
included in the program; if not, Block B is included. 

A simplified form of this is: 

$ IF expression 

. Block A 

Unlike most macro processors, SDSMAC allows the programmer 
to directly access and modify the individual components of 
each entry in the parameter table. Thus 'expression' can 
be: 

P2.S = 'WORD' Is the string component of variable P2 
equal to the string WORD 

T.L = 5 Is the length component of variable T 
equal to 5 

SDSMAC also supplies a number of keywords such as SPCALL 
(parameter appears as a macro instruction operand) and SPIND 
(parameter is an indirect workspace register address) that 
enable the programmer to test a variable's attribute 
component. These keywords are used with the logical 
operators AND ( ' b ' ) ,  OR ('tl-'), Exclusive OR ( ' & & ' )  and NOT 
( # )  For example: 
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P2.A & SPCALE This expression has a noii zere value 
when the variable P2 is a parameter 
supplied in a macro instruction; esle 
the value is zero. 

8.13.6 Nested Subroutines 

A subroutine is nested when it is invoked by another 
subroutine. The only problem with nested subroutine calls 
is that of ensuring that a subroutine's return address is 
not lost or overwritten. This is particularly troublesome 
if the subroutines are called via a BL instruction (the 
return address is stored in workspace register 11). 

Conceptually the flow of control is as follows: 

Executing the second RL instruction results in the loss of 
the first return address. Exiting the inner routine causes 
the continuous execution of the code located between the BL 
and RT instructions. 

One approach to resolve this is: 

BL---------+MOV R11,RlO Save return address 

BL -. 
Y R T  ' . -1: 

MOV RlO,R11 Restore return address 
• RT 

In the above piece of code, the instructions: 

MOV RlO,Rll 
RT 

can he replaced by: 
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8.13.7 S t a c k s  

Another  way of pe r fo rming  t h i s  s a v i n g  and r e s t o r i n g  of 
r e t u r n  a d d r e s s e s  i s  by implement ing  a  s t a c k  mechanism, An 
a r e a  of memory i s  s e t  a s i d e  t o  be used a s  a  s t a c k ,  A s t a c k  
u s u a l l y  s t a r t s  a t  a  h i g h  a d d r e s s  and b u i l d s  down towards  low 
memory a s  i t e m s  a r e  added (pushed o n t o  t h e  s t a c k ) ,  

A r e g i s t e r  i s  r e s e r v e d  t o  p o i n t  t o  t h e  c u r r e n t  t o p  of s t a c k  
( i e  i t  p o i n t s  t o  t h e  l a s t  i t e m  added t o  t h e  s t a c k ) .  Th i s  
r e g i s t e r  i s  u s u a l l y  r e f e r r e d  t o  a s  t h e  s t a c k  p o i n t e r ,  A 
s t a c k  can  be r e p r e s e n t e d  g r a p h i c a l l y  by: 

1-1 Low memory (>OOOO) 

F i g u r e  8-37 S tack  R e p r e s e n t a t i o n  

v 
The f i r s t  i n s t r u c t i o n  i n  a  s u b r o u t i n e  pushes t h e  r e t u r n  
a d d r e s s  o n t o  t h e  s t a c k  and decrements  t h e  s t a c k  p o i n t e r .  
The l a s t  i n s t r u c t i o n ,  p r i o r  t o  a  r e t u r n ,  pops ( o r  removes) 
t h e  l a s t  e n t r y  from t h e  s t a c k ,  u p d a t i n g  t h e  s t a c k  p o i n t e r  i n  
t h e  p r o c e s s ,  

- Stack pointer 

SUB PUSH R 1 1  

POP R11 
RT 

PUSH and POP a r e  n o t  r ecogn ized  assembly language  
i n s t r u c t i o n s .  I f  SDSMAC i s  a v a i l a b l e ,  t h e s e  o p e r a t i o n s  can  
h e  implemented by macros, 

The r e a s o n  f o r  g i v i n g  bo th  PUSH and POP arguments  (R11) i s  
t o  make t h e  s t a c k  o p e r a t i o n s  g e n e r a l  purpose ,  t h u s  a l l o w i n g  
d a t a  o t h e r  t h a n  r e t u r n  a d d r e s s e s  t o  be s t o r e d  on t h e  s t a c k ,  
However, i f  t h e  s t a c k  i s  used  i n  t h i s  way, c a r e  must be 
t a k e n  t o  e n s u r e  t h a t  a l l  such  i t e m s  a r e  removed b e f o r e  
popping ' t h e  r e t u r n  a d d r e s s ,  

PUSH and POP may be d e f i n e d  a s  macros a s  f o l l o w s :  
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PUSH $MACRO OP Define macro PUSH 
DECT a10 Decrement stack pointer 
MOV :OP,S: ,*R10 Move data onto stack 
$END PUSH 

POP $MACRO SO Define macro POP 
MOV *R1O+,:SOeS: Move data from stack 
$END POP 

Workspace register 10 (R10) is used above as the stack 
pointer, The macro operands may be any valid operand for a 
MOV instruction, 

Before the stack can be used, the stack pointer must be 
initialized to the address of the top of the stack plus two; 
otherwise the first word in the stack will not be used, 

8.13-8 Recursion 

A nested subroutine has already been defined as a subroutine 
that is called by another subroutine, In thiS definition 
there is nothing to stop the nested subroutine from being 
the same as the calling subroutine. If this is the case, 
the subroutine is known as a recursive subroutine (a 
subroutine that calls itself) and the mechanism is known as 
recursion, Care must be taken to ensure that a recursive 
subroutine does not perform recursion endlessly, 

Recursion presents problems, For example, how is a 
subroutine's return address to be saved? Simply copying it 
into another workspace register will not work, as on the 
next recursive call the value will be overwritten by the new 
return address, Here a stack mechanism is essential. By 
pushing the return addresses onto a stack the problem is 
solved, as long as the storage space allocated to the stack 
is not exceeded, 

Suppose, in a multiple user environment, a number of 
programs need to perform the same operation. The code 
performing this can be included in each program, or it could 
be written in such a way that it is possible for the 
programs to share a single copy of the code and execute it 
(simultaneously, if necessary) as though each program had 
its own copy. Code written to allow this is known as 
re-entrant code, 

A recursive subroutine must be written in this way .as, in 
effect, it shares the code with jtself, 
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For code t o  be r e- e n t r a n t  t h e  f o l l o w i n g  two c o n d i t i o n s  must 
be  s a t i s f i e d ,  

The s u b r o u t i n e  code must n o t  modify i t s e l f .  Modifying code 
i s  a n  e x t r e m e l y  dangerous  p r a c t i c e ;  i t  i s  v e r y  d i f f i c u l t  t o  
debug and i s  a c t i v e l y  d i s c o u r a g e d ,  S t o r i n g  t h e  code i n  ROM 
e n s u r e s  t h a t  t h i s  can  n o t  be done, I f  s e l f  modify ing  code 
i s  i n c l u d e d  t h e n  t h e  program w i l l  n o t  work a s  expec ted ,  

On e n t r y  t o  t h e  s u b r o u t i n e ,  t h e  d a t a  l o c a l  t o  t h e  s u b r o u t i n e  
must  be c o r r e c t l y  i n i t i a l i z e d ,  T h i s  a l s o  i m p l i e s  t h a t  t h e  
d a t a  l o c a l  t o  p r e v i o u s  i n v o c a t i o n s  must be p r e s e r v e d ,  and 
r e s t o r e d o n  e x i t i n g  t h e  r o u t i n e ,  The s i m p l e s t  way of 
pe r fo rming  t h i s  i s  u s i n g  a  s t a c k :  

ENTRY EQU $ 
PUSH R11 
PUSH @ARC1 
PUSH @ A R G ~  

Save r e t u r n  a d d r e s s  
Save ARGl  
Save ARG2 

PUSH RO 
LI RO,... 
MOV R O , @ A R G ~  
L I  RO,. . .  
MOV R O , @ A R G ~  

POP RC) 

POP @ A R G ~  
POP @ARC1 
POP R11 
RT 

Save RO 

Rese t  A R G l  

Rese t  ARG2 

R e s t o r e  RO 

R e s t o r e  ARG2 
R e s t o r e  ARC1 
R e s t o r e  r e t u r n  a d d r e s s  

Note: The s t a c k e d  i t e m s  a r e  popped i n  r e v e r s e  o r d e r .  PUSH 
and POP a r e  macros a s  d e f i n e d  i n  s e c t i o n  8,13,7.  

8.13.10 Automatic  Workspace ~ l l o c a t i o n  

T r a n s p a r e n t  s t a c k i n g  of workspaces  can  he  ach ieved  by 
c a l l i n g  a l l  s u b r o u t i n e s  th rough  a  s p e c i a l  purpose  XOP named 
CALL, d e f i n e d  below, Re tu rn  from any s u b r o u t i n e  i s  v i a  a  
normal  RTWP i n s t r u c t i o n ,  Arguments may be passed  by 
s t a n d a r d  r e g i s t e r  c o n v e n t i o n s ,  The s t a c k  b u i l d s  down 
th rough  memory and w i l l  be N*32 b y t e s  deep ,  where N i s  t h e  
n e s t i n g  l e v e l .  
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* CALL XOP 
* This  r o u t i n e  au toma t i ca l l y  s t a c k s  workspaces down 
* through memory. An RTWP w i l l  r e t u r n  t o  t h e  c a l l e r  
* wfth the old workspace, effectively yepping the stack 
* 
CALLPC LIMI 0  Non i n t e r r u p t a b l e  

LI  R1,-6 0 f f se . t  t o  new wksp's R13 
A R13,Rl Pt  t o  new wksp's R13 
MOV R13,*R1+ Move r e t u r n  WP 
MOV R14,*R1+ Move r e t u r n  PC 
MOV R15,*R1+ Move r e t u r n  ST 
MOV Rll,R14 Get Subrout ine ' s  e n t r y  p t  
A 1  R13,-32 H i t  next  wksp 
RTWP Ca l l  sub rou t i ne  

An example of us ing  t h i s  r o u t i n e  fol lows:  

XOPWP EQU >FFOO 
TPSTCK EQU >FECO . 

AOWG >78 
DATA XOPWP 
DATA CALLPC 

AORG >80 
M A I N  LWPI TPSTCK 

DXOP CALL, 14 

Assign wksp 
Assign top of s t a c k  

X9B vector 
XOP workspace 
XOP e n t r y  po in t  

Arb i t r a ry  s t a r t  
Set  top of s t a c k  
Define XOP c a l l  

. 
CALL (aS'TJBR C a l l s  SUBR 

. 
SURR EQU $ SUB'S e n t t y  po in t  

. 
RTWP Return t o  c a l l e r  

Another way of implementing t h i s  s t a ck ing  mechanism i s  shown 
below, This  method assumes t h a t  r e g i s t e r  7 con t a in s  t h e  
add re s s  of a  BLWP v e c t o r  ( t h i s  v e c t o r  i s  b u i l t  i n  RAM a t  run 
t ime a s  t h e  workspace add re s s  f i e l d  of t he  vec to r  must be 
updated a f t e r  each c a l l ) .  A r o u t i n e  i s  invoked by i s s u i n g  a  
BLWP *R7 i n s t r u c t i o n  ( i n  t h e  code t h i s  t h e  CALL$ DATA 
word). 

CALLS EQU >417 BLWP *R7 I n s t r u c t  i o n  
RORG 

STACK BSS s tacks ize*2  Al loca te  space  f o r  s t a c k  
WP 1  BSS 32 I n i t i a l  workspace . 
CALLVEC EQU $ 
NXTWP BSS 2  
HNDLR BSS 2  

Texas Ins t ruments  

C a l l  hand l e r  vec to r  
Next WP t o  be a l l o c a t e d  
Entry p t  f o r  c a l l  hand le r  
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* Routine entry - set up call * 
LI R1, CALLVEC 
MOV Rl,R7 
LI R2,ENTRY 
LI R3,WPl-32 
MOV R3,*R1+ 
MOV R2,*R1 
w 

DATA CALL$,SUBR 
w 

ENTRY EQU $ 
MOV @7*2(R13),R7 
A1 *R7,-32 
MOV *R14+,Rll 
RT 

ASSEMBLY LANGUAGE 

handler vector 

Ref vector 
Save address of vector 
Ref handler 
Ref 1st stack WP 
Set NXTWP 
Set HNDLR 

Call SUBR (shown above) 

Call handler entry point 
Get address of CALLVEC 
Set address of next WP 
Get routine's entry 
Invoke routine 

Only minor modifications are required to either 
implementation to allow a user stack to be incorporated; 
this would also allow a simple check to be made to determine 
if stack overflow has occurred (stack overflow checking is 
not performed in either mechanism above), For the CALL$ 
version this is shown below. 

In the initialization loop: 

ENTRY now becomes: 

ENTRY EQIJ $ 
MOV @7*2(~13),~7 
MOV @8*2(~13),~8 
A1 *R7,-32 
C R8, *R7 
JH error 
MOV *R14+,Rll 
RT 

Set user stack start addr 

Call handler entry point 
Get address of CALLVEC 
Get address of user stack 
Set address of next WP 
Overflow? 
Y - error 
Get routine's entry 
Invoke routine 

Pictorially this can be shown: 

High Memory (>F FFF) 

Low Memory (>0000) 

Figure 8-38 A Stack/Workspace Allocation Implementation 
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Workspace a l l o c a t i o n  s t a r t s  from h igh  memory and b u i l d s  down 
towards low memory; NXTWP c o n t a i n s  t h e  a d d r e s s  of t h e  next  
workspace t o  be a l l o c a t e d .  The u s e r  stack starts a t  l o w  
memory and b u i l d s  up towards h igh  memory; R8 c o n t a i n s  t h e  
a d d r e s s  of t h e  next  word t o  be used i n  t h e  s t a c k .  I n  t h e  
a l l o c a t i o n  r o u t i n e  s t a c k  overf low i s  d e t e c t e d  when t h e  
c o n t e n t  of R8 i s  l o g i c a l l y  g r e a t e r  than  t h e  c o n t e n t  of 
NXTWP. However, s t a c k  overf low can s t i l l  occur  and so  t h e  
code t h a t  performs t h e  'push' o p e r a t i o n  must a l s o  check f o r  
s t a c k  overf low ( i f  no check i s  made then  a l l  workspace 
r e g i s t e r  s e t s  could become c o r r u p t e d ) .  

A f i n a l  improvement on t h e  a l l o c a t i o n  r o u t i n e  (shown below) 
removes t h e  n e c e s s i t y  f o r  t h i s  a d d i t i o n a l  checking.  With 
t h i s  t h e  f i r s t  word of t h e  r o u t i n e  t o  be ' c a l l e d '  c o n t a i n s  a  
count of t h e  number of words t h a t  a r e  s t a c k e d  i n  t h e  
r o u t i n e .  ENTRY now becomes: 

ENTRY EQU 
MOV 
MOV 
A 1  
MOV 
MOV 
A 
C 
J H E  
RT 

$ 
@7*2(R13),R7 
@8*2(R13),R8 
*R7,-32 
*R14+,R11 
* R l  l+,R6 
R8 ,R6 
R6, *R7 
e r r o r  

C a l l  h a n d l e r  e n t r y  p o i n t  
Get a d d r e s s  of CAELMEC 
Get a d d r e s s  of u s e r  s t a c k  
Set  a d d r e s s  of next  WP 
Get r o u t i n e ' s  e n t r y  
Get ' s t a c k  coun t '  
Get f i n a l  s t a c k  a d d r e s s  
Overflow? 
Y - e r r o r  
N - Invoke r o u t i n e  

The ' c a l l e d"  r o u t i n e  SUBR becomes: 

SUBR EQU $ SUB'S e n t r y  p o i n t  
WORD s t a c k  count Words t o  be s t a c k e d  

RTWP Return t o  c a l l e r  

'PUSH r o u t i n e '  becomes: 

MOV i t  em, *R8+ Stack <item> 

'POP r o u t i n e '  i s :  

DECT R8 Back up s t a c k  p t r  
MOV *R8,item Stacked o b j e c t  t o  <item> 

This  f i n a l  v e r s i o n  a l l o w s  t h e  c a l l  h a n d l e r  (CALL$) t o  be 
~ s e d  with a ~ n n a q w  L = L u L ~ i ~ e  s u b r ~ u t i n e ,  On entry to t h e  r e c u r s i v e  

s u b r o u t i n e  i t  i s  no t  necessa ry  t o  save t h e  r e t u r n  a d d r e s s  o r  
any of t h e  r e g i s t e r s  a s  t h e s e  have a l r e a d y  been saved i n  t h e  
p rev ious  workspace; i t  i s  on ly  necessa ry  t o  load t h e  
r e l e v a n t  l o c a l  d a t a  (named A R G l  t o  ARGn i n  t h e  re- entrancy 
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s e c t i o n ) .  Note: Any i t e m s  t h a t  have n o t  been e x p l i c i t l y  
popped from t h e  s t a c k  w i l l  a u t o m a t i c a l l y  be l o s t  when t h e  
RTWP i n s t r u c t i o n  i s  e x e c u t e d ,  

8.13.11 Jump Table  

Suppose i t  i s  n e c e s s a r y  t o  branch  t o  a  l a b e l  ( L i )  depending  
on t h e  v a l u e  of a  key ( i ) ;  i f  i=1, t h e n  11, i f  i = 2  t h e n  L2, 
e t c .  Assume t h a t  RO c o n t a i n s  t h e  key,  T h i s  can be w r i t t e n  
a s :  

C I  R0, l  
JEQ L1 
C I  R0,2 

JEQ LN 
JGT OVER 

UNDER EQU $ 

OVER EQU S 

L1 EQT! $ 

Under range  

Over range  

KEY=l 

A more e f f i c i e n t  method would be t o  r e p l a c e  each 

C I  R O , i  w i t h a  DEC RO 

T h i s  s a v e s  one word f o r  each  comparison,  

P r o b a b l y  t h e  b e s t  method of implementing t h i s  would be t o  
c r e a t e  a  t a b l e  of a d d r e s s e s ,  i n  a s c e n d i n g  key o r d e r ,  of t h e  
l a b e l s  and t h e n  u s i n g  t h e  i n d e x  mode of a d d r e s s i n g  on t h e  
key  a s  f o l l o w s :  

TABLE DATA Ll,LZ,. , , , ,LN Tab le  of a d d r e s s e s  

A R0,RO KEY->word o f f s e t  
JLE UNDER KEY<=O? 
CI R0,2*N 
JGT OVER KEY>N? 
B @TABLE-2(RO) Keys s t a r t  from 1 n o t  0  

T h i s  assumes t h a t  a l l  t h e  keys  w i t h i n  t h e  range  1  t o  N a r e  
used .  I f ,  f o r  example, t h e  key range  is  1 t o  40 and keys  2 ,  
14  and 29 a r e  n o t  u s e d ,  t h e  a d d r e s s  t a b l e  (TABLE above)  must 
s t i l l  c o n t a i n  e n t r i e s  f o r  t h e s e  t h r e e  keys ;  i t  i s  n e c e s s a r y  
t o  s u p p l y  an 'unused key l a b e l ' .  

Texas I n s t r u m e n t s  8-82 October  1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

I f  t h e r e  a r e  l a r g e  gaps  of unused keys  then a large amount 
of  e x t r a  memory could  be used  u n n e c e s s a r i l y ,  Suppose you 
a r e  on ly  i n t e r e s t e d  i n  d e t e r m i n i n g  i f  a  'key' i s ;  a  space ,  a 
csmna, a double quo te ,  a  s i n g l e  q u o t e ,  a  semi- colon,  a  f u l l  
s t o p  o r  a  q u e s t i o n  mark, These c h a r a c t e r s  have t h e  
f o l l o w i n g  ASCII codes ;  >20, >2C, >22, >27, >3B, >2E and 
>3F, With t h e  above method t h i s  would r e q u i r e  a  t a b l e  of 32 
e n t r i e s  and t h e  key would have t o  be mod i f i ed  t o  b r i n g  i t  
w i t h i n  t h e  range  1 t o  20) ,  

I n  t h i s  s i t u a t i o n  t h e  f o l l o w i n g  jump r o u t i n e  can  p r o v i d e  
c o n s i d e r a b l e  memory s a v i n g s ,  e s p e c i a l l y  i f  t h i s  t y p e  of 
check ing  h a s  t o  be performed i n  a  number of d i f f e r e n t  
p l a c e s ,  Note: T h i s  t i m e  t h e  t a b l e  i s  o r g a n i s e d  by f r equency  
w i t h  t h e  most f r e q u e n t l y  used key a s  t h e  f i r s t  e n t r y  i n  t h e  
t a b l e .  (Assume t h a t  t h e  h i g h  b y t e  of Rx c o n t a i n s  t h e  key.) 

BL ~JTJMPRX 
TABLE BYTE T A B L E- ~ 1  / 2, <key l> 

BYTE TABLE-L2 / 2,  <key 2) 

BYTE TABLE-Ln/2,<keyn> 
DATA 0 

NOTFND EQU $ Retu rn  h e r e  i f  s p e c i f i e d  key n o t  found 

Here t h e  L i  a r e  a r r a n g e d  s o  t h a t  t hey  l i e  w i t h i n  a  r ange  of 
+I27 and -128 words from TABLE, Each e n t r y  inTABLE 
c o n s i s t s  of a  s i g n e d  word d i sp lacemen t  (from TABLE t o  t h e  
c o r r e s p o n d i n g  l a b e l  - L i )  and a  <key i>  b y t e  opcode. The 
DATA 0 word i n d i c a t e s  t h a t  t h e r e  a r e  no more e n t r i e s  i n  
TABLE, 

A f t e r  e x e c u t i n g  t h e  BL i n s t r u c t i o n  t h e  r e t u r n  a d d r e s s  ( i e  
t h e  a d d r e s s  of TABLE) i s  s t o r e d  i n  R 1 1 ,  

JUMPRx compares t h e  key t o  t h e  n e x t  <key i>  e n t r y  i n  TABLE. 
I f  t h e y  a r e  t h e  same t h e n  t h e  d i sp lacemen t  f i e l d  i s  'added'  
t o  t h e  a d d r e s s  of TABLE and a  branch  i s  t h e n  made t o  t h i s  
a d d r e s s ,  Otherwise  t h e  p o i n t e r  i n t o  TABLE i s  inc remen ted  t o  
t h e  n e x t  <key i> ,  I f  t h e  v a l u e  of t h i s  e n t r y  i s  z e r o  t h e n  
t h e  s p e c i f i e d  key i s  n o t  i n  t h e  t a b l e  and a  r e t u r n  i s  made 
t o  t h e  i n s t r u c t i o n  immedia te ly  f o l l o w i n g  t h e  DATA 0 word, 

The a c t u a l  working of t h e  JUMPRx r o u t i n e  i s  shown below, i n  
t h e  b r i e f  d e s c i p t i o n  above t h e  d i sp lacemen t  f i e l d  i s  n o t  
s imply  added t o  TABLE a d d r e s s  (hence  t h e  'added') ,  The 
d isp lace .ment  f i e l d  i s  i n  words and needs  t o  be e x p r e s s e d  i n  
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Bytes; simply Osub l ing  it is not s u f f i c i e n t  a s  i t  i s  a  
s i g n e d  q u a n t i t y  ( i t  i s  n e c e s s a r y  t o  p r e s e r v e  t h e  s i g n ) .  
F u r t h e r ,  a  MOVB i n s t r u c t i o n  i s  used t o  copy t h e  d i sp lacemen t  
from TABLE i n t o  a  r e g i s t e r ;  t h i s  a u t o m a t i c a l l y  c a u s e s  t h e  
d i s p l a c e m e n t  t o  be s t o r e d  i n  t h e  r e g i s t e r ' s  h igh  b y t e  and i t  
needs  t o  be i n  t h e  low b y t e  f o r  t h e  add i n s t r u c t i o n  t o  work 
c o r r e c t l y .  I n  t h e  code below, t h i s  i s  performed by t h e  
SRA R4,7 i n s t r u c t i o n  ( an  a r i t h m e t i c  s h i f t  i s  used s o  t h a t  
t h e  s i g n  b i t  i s  p ropoga ted ) .  

JUMPRx EQU 
MOV * CLR 

JUMP MOVB 
JEQ 
CB 
JNE 
SRA 
A 
R 

JUMPNO I N C  
RT 

$ 
R l l  ,R3 Save r e t u r n  a d d r e s s  
R4 Needed f o r  80 and 81 p r o c e s s o r s  
* R l  l+,R4 Get t h e  c u r r e n t  d i sp lacemen t  
JUMPNO I f  0  t h e n  n o t  found 
Rx,*R11+ KEY = <key i>?  
JUMP No - back f o r  n e x t  <keyi> 
R4,7 Yes - Disp  t o  low b y t e  and *2 
R3 ,R4 Add TABLE a d d r e s s  t o  o f f s e t  
*R4 Goto L i  
R11 Not found - s k i p  ove r  2nd b y t e  

' E r r o r  r e t u r n '  

Although t h e  TMS9980 and t h e  TMS9981 m i c r o p r o c e s s o r s  f o r c e  
a l l  i n s t r u c t i o n  e x e c u t i o n s  t o  be from a  word boundary i t  i s  
p o s s i b l e  f o r  t h e  c o n t e n t s  of t h e  program c o u n t e r  (PC) t o  be 
odd. Normally t h i s  p r e s e n t s  no problems. However, i f  t h e  
PC i s  used t o  i n d e x  i n t o  a  t a b l e  t h e n  t h e  wrong b y t e  i n  t h i s  
t a b l e  could  be a c c e s s e d .  

T h i s  can ,  i n  f a c t ,  happen w i t h  t h e  JUMPRx r o u t i n e  above a s  
e x e c u t i n g  t h e  BL i n s t r u c t i o n  c a u s e s  t h e  incremented  PC ( t h e  
a d d r e s s  of TABLE) t o  be s t o r e d  i n  R11. The problem r e v o l v e s  
a round  t h e  c o n t e n t s  of R4 b e f o r e  t h e  SRA i n s t r u c t i o n  i s  
performed.  I f  h i t  8  o f  t h i s  r e g i s t e r  i s  a  '1' t h e n  R11 w i l l  
c o n t a i n  a n  odd a d d r e s s  when t h i s  r o u t i n e  i s  c a l l e d  t h e  n e x t  
t i m e  (assuming t h i s  b i t  i s  n o t  c l e a r e d  i n  t h e  meantime). To 
g u a r a n t e e  t h a t  JUMPRx w i l l  work c o r r e c t l y  t h e  CLR R4 
i n s t r u c t i o n  i s  needed. (Note: T h i s  i s  n o t  r e a l l y  n e c e s s a r y  
f o r  t h e  TMS9900 m i c r o p r o c e s s o r  a s  b i t  15  of  t h e  PC i s  neve r  
used  n o r  saved , )  

8.13.12 M i s c e l l a n e o u s  Techniques 

A number of m i s c e l l a n e o u s  " r i c k s b n d  t e c h n i q u e s  t h a t  may 
p rove  u s e f u l  t o  t h e  assembly  language  programmer a r e  l i s t e d  
below. 

8.13.12.1 Swapping R e g i s t e r  Values  

O f t e n  when w r i t i n g  a  program c o n s i s t i n g  of a  number of 
r o u t i n e s  t h e  r e q u i r e d  v a l u e  i s  a l r e a d y  s t o r e d  i n  a  r e g i s t e r ,  

Texas I n s t r u m e n t s  8-84 October  1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

but not in the right register for the routine. Usually, 
this problem is overcome by using a spare register to swap 
the contents of the two registers: 

MOV Rx,tenp Save Rx contents into TEMP 
MOV Ry,Rx Required contents to Rx 
MOV temp,Ry Original contents of Rx to Ry 
'call routine' 

However, this is not always possible (all the registers are 
in use and there is no 'free RAM' available). Here, the 
following piece of code can be used: 

XOR Rx,Ry Ry contains bit-wise difference 
XOR Ry,Rx Set Rx to original contents of Ry 
XOR Rx,Ry Set Ry to original contents of Rx 
'call routine' 

8.13.12.2 Error Return 

OccasPsnalPy P t  is necessary to return some knfsr~ation f r ~ m  
a called routine to inform the calling routine that 
something 'unexpected' happened and that some specific 
action is necessary (ie an error occuried). This sort of 
information can be returned in a number of different ways: 
by setting a particular register to a specific value; by 
setting (or resetting) a certain bit in the status register 
(ST); by branching directly to an error routine; etc. 

Register setting. The most common error indicators used 
are: 

CLR Ry or SET0 Ry Set error flag . . 
MOV Ry,Ry INC Ry Error flag set? 
JEQ error JEQ error Y - error routine 

Status bit setting. With XOP and BLWP instructions this can 
be performed by anding workspace register 15 (the old ST) 
with >F (this clears all the status bits except the 
interrupt mask). The required status bit can then be set to 
'1' using an OR1 mask instruction (the A1 mask instruction 
can also be used); 'mask' is >ZOO0 (for EQ bit), >I000 (for 
C bit), etc. On return to the calling routine these status 
bits are interrogated using the appropriate jump 
instructions; JEQ or JNE for the EQ bit; JOC or JNC for the 
C bit; etc. 

AND1 R15 ,>F XOP routine - clear status bits . 
OR1 R15,>1000 Error - set Carry bit . 
RTWP Return to calling routine 
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The AND1 i n s t r u c t i o n  cculd be r e p l a c e d  by: 

SB R15,R15 C l e a r  R15's h i g h  Byte 

The c a l l i n g  sequence  is:  

XOP e * .  

J O C  e r r o r  
C a l l i n g  r o u t i n e  - i s s u e  XOP 
C b i t  s e t ?  Y - e r r o r  

For  BL i n s t r u c t  i o n s  : 

SET0 temp E r r o r  f l a g  = no 

CLR temp E r r o r  - e r r o r  f l a g  = y e s  

MOV temp,temp S e t  s t a t u s  b i t s  i n  ST 
RT Re tu rn  t o  c a l l i n g  r o u t i n e  

A v a r i a t i o n  on t h e s e  i s  f o r  t h e  word immedia te ly  f o l l o w i n g  
t h e  c a l l  t o  c o n t a i n  a  jump t o  a n  e r r o r  r e t u r n ,  I f  an  e r r o r  
o c c u r s  i n  t h e  c a l l e d  r o u t i n e  t h e n  a  r e t u r n  i s  made t o  t h e  
JMP i n s t r u c t i o n ,  A normal r e t u r n  t o  t h e  c a l l i n g  r o u t i n e  
c a u s e s  t h e  r e t u r n  a d d r e s s  t o  be incremented  p a s t  t h e  JMP 
i n s t r u c t i o n ,  

' e r r o r  t e s t  ' C a l l e d  r o u t i n e  - E r r o r ?  
JEQ e r r r t n  Y - t o  e r r o r  r e t u r n  

INCT R14 
e r r r t n  RTWP 

The c a l l i n g  sequence  is :  

BLWP e r n . .  

JMP e r r o r  

Sk ip  o v e r  e r r o r  r e t u r n  
Re tu rn  t o  c a l l i n g  r o u t i n e  

C a l l i n g  r o u t i n e  - i s s u e  BLWP 
E r r o r  r e t u r n  
Normal r e t u r n  

Suppose t h e  r o u t i n e  t o  be c a l l e d  c o n v e r t e d  d a t a  i n p u t  from a  
t e r m i n a l  ( i e  from ASCII) t o  b i n a r y ,  Then any of t h e s e  
mechanisms c o u l d  be used t o  in fo rm t h e  c a l l i n g  program t h a t  
t h e  i n p u t  d a t a  was no t  a  dec ima l  number b u t  a  hexadecimal  
number, F u r t h e r ,  t h e s e  mechanisms can  be combined t o  a l l o w  
m u l t i p l e  r e t u r n s ,  f o r  example: 

BLWP e e  a 

JMP hexno 
JEQ z e r o  

Convert  ASCII t o  b i n a r y  
Hex number r e t u r n  
Zero ' r e t u r n '  
Normal r e t u r n  

8 ,13 ,12 ,3  Buf fe red  I /o  

I n  a  m i c r o p r o c e s s o r  a p p l i c a t i o n  i t  i s  o f t e n  n e c e s s a r y  t o  
o u t p u t  i n f o r m a t i o n  t o  a  t e r m i n a l .  The most e f f i c i e n t  way of 
do ing  t h i s  i s  n o t  a  b y t e  a t  a  t ime bu t  a s  a  s t r i n g  of 

Texas I n s t r u m e n t s  8-86 October  1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

bytes. An area of memory is set as ide  as an output buf fex, 
and bytes are written into this buffer until a line is 
complete. A terminating character is then added to the end 
of the line. The output routine is invoked and printing 
continues until the termination character is encountered, 

Note: Typically, it is not possible to mix byte and word 
operations on the buffer; it is all right starting off 
writing words to the buffer and occasionally writing two 
bytes together to it. The problem ocurrs when you start off 
with bytes and want to write a word to it. If the buffer 
pointer contains an odd address then performing a word 
operation will cause the last byte entered to be 
overwritten. It is often very difficult to guarantee that 
when you want to write a word to the buffer that the buffer 
pointer contains an even address. 

RORG 
OUTBUF BSS 80 Allocate output buffer . 

LI Rx,OUTBUF Ref the output buffer 

A byte is written to the buffer: 

MOVB @char,*~x+ Output 'char' 
or MOVB Ry,*Rx+ Output high byte of Ry 

A word can be written to the buffer: 

MOVB Ry,*Rx+ Output high byte of Ry 
SWPR Ry Swap bytes over in Ry 
MOVB Ry,*Rx+ Output new high byte of Ry 

When the line is complete the terminator is added: 

SB *Rx,*Rx Add termination char (null) 

In the code above the termination character is a null byte 
(a byte containing 0 ) .  This is used to simplify the actual 
terminal output routine, instead of comparing each character 
with the terminator all that has to be done is to take the 
next byte from buffer and move it into a register. Doing 
this causes the processor to set/reset its status bits 
according to the value of the byte moved; if it is zero then 
the EQ status bit is automatically set. 

OUTPUT EQU $ Output routine entry point 
LI Rx,OUTBUF Ref the output buffer 

OUTPl MOVB *Rx+,Ry Get next char to be output 
JEQ OUTND Null? Y - finished 

N - output this character . 
JMP OUTPl Back for the next character 

OUTND return 
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With most t e r m i n a l s  i t  i s  a l s o  n e c e s s a r y  t o  add t h e  c a r r i a g e  
r e t u r n  and l i n e f e e d  c h a r a c t e r s  t o  t h e  b u f f e r  b e f o r e  s t o r i n g  
t h e  t e r m i n a t i o n  c h a r a c t e r .  The a c t u a l  code r e q u i r e d  t o  
o u t p u t  a c h a r a c t e r  t o  a  t e r m i n a l  ( a  KSR743) i s  i n c l u d e d  
l a t e r .  

8.13.12.4 Increment  R e g i s t e r  by 4  

The TMS9900 c o n t a i n s  a  number of i n s t r u c t f o n s  t h a t  a l l o w  
r e g i s t e r s  t o  be incremented .  I N C  i n c r e m e n t s  a  r e g i s t e r  by 
one  and INCT i n c r e m e n t s  a  r e g i s t e r  by 2. For inc remen t s  
g r e a t e r  t h a n  t h e s e  t h e  A (add)  and A 1  (add  immediate v a l u e )  
i n s t r u c t i o n s  have t o  be used. However, t h e  C (compare)  
i n s t r u c t i o n  can  be used t o  inc remen t  a  r e g i s t e r  by f o u r ,  and 
i t  o n l y  t a k e s  up one word. The A 1  r e q u i r e s  2 words. The A 
o n l y  t a k e s  one word, b u t  t h e  s o u r c e  r e g i s t e r  must have 
a l r e a d y  been loaded  w i t h  t h e  v a l u e  f o u r .  The compare 
i n s t r u c t i o n  i s  used a s  f o l l o w s :  

8.13.12.5 Non D e s t r u c t i v e  Memory S i z i n g  

I n  t h i s  example a  s imple  memory check  i s  a l s o  per formed;  i t  
o n l y  checks  t o  s e e  i f  each  b i t  i n  t h e  word can be s e t  t o  a  
'1' and a  '0'. ( A  f u l l  memory check ing  a l g o r i t h m  would be 
e x t r e m e l y  complex and cou ld  l i t e r a l l y  t a k e  days t o  run.  For  
a  p r a c t i c a l  sys tem,  some compromise i s  o b v i o u s l y  
n e c e s s a r y . )  

L I  R 2 , s t a r t  
L I  R5,end 

NEXTWD C R2 ,R5 
JL  done 
MOV *R2,R3 
I N V  R3 
MOV R3,*R2 
C *R2, R 3  
JNE nomatch 
I N V  *R2 
DECT R2 
JMP NEXTWD 

done EQU $ 
nomatch INCT R2 

Ref s t a r t  a d d r e s s  ( h i g h  memory) 
Ref end a d d r e s s  ( low memory) 
F i n i s h e d ?  
Y 
N - s a v e  o r i g i n a l  c o n t e n t s  
I n v e r t  a l l  t h e  b i t s  i n  copy 
Wr i t e  back t o  t e s t  a d d r e s s  
Same? 
N - end of RAM found 
Y - r e s t o r e  o r i g i n a l  c o n t e n t s  
Ref n e x t  word t o  be t e s t e d  
Back f o r  t h e  n e x t  word 

Back up t o  l a s t  'good' word 

Note: Memory a u t o s i z i n g  o p e r a t i o n s  shou ld  n o t  be performed 
on  a n  a r e a  of memory t h a t  c o n t a i n s  memory mapped d e v i c e s  a s  
t h i s  cou ld  c a u s e  t h e  d e v i c e s  t o  become c o r r u p t e d .  

8.13.12.6 Simple Clock u s i n g  t h e  9901 

The 9901 Programmable Systems I n t e r f a c e  i s  a  CRU-driven 
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device t h a t  is used t o  regulate (enablz or disable) inccming 
interrupt signals without interfering with the 9900 
microprocessor, It is also contains an interval timer that 
can be programmed to generate level 3 interrupts when the 
interval p e r i o d  has e l a p s e d ,  T h i s  devfce car; be in one of 
two modes (clock mode or interrupt mode), The mode is 
selected by writing either a '0' (interrupt mode) or a '1' 
(clock mode) to the 9901's control bit (bit 0 in the 9901's 
CRU address space), 

Clock mode allows the user to program the interval timer 
with a 14 bit value; a copy of this value is decremented 
every 64 system clock cycles (for a system clock frequency 
of 3MHz this means a decrement every 21,3us), The value 
1875 (in the code below) corresponds to an interval of 
40ms. 

Interrupt mode allows the user to enable or disable a 
particular interrupt level, An interrupt level is enabled 
by writing a '1' to the appropriate mask bit (mask bit 5 
corresponds to interrupt level 5) and disabled by writing a 
'0' to the mask bit. 

The initialization code below sets the 9901's CRU base 
address to BASE, selects clock mode and then loads the 
interval timer for a 40ms delay. (The LDCR instruction 
writes 15 bits to the 9901; the first bit causes clock mode 
to be selected as it is a '1' , the other 14 bits contain the 
required delay,) It is now necessary to enable interrupt 
level 3, otherwise no interrupt will be allowed through to 
the 9900 when the specified interval delay has expired, 
Level 3 interrupts are enabled by selecting interrupt mode 
(SBZ 0) and writing a '1' to the mask bit 3 (SBO 3). Now 
the 9901 will pass any level 3 interrupts through to the 
9900, however the 9900 will not recognise any interrupts 
until the status register's interrupt mask is set to a 
sufficiently low value. This is performed by the LIMI 3 
instruction, (Note: A DORG directive is used to allocate 
memory for the workspaces, starting at address FREE, DORG 
is similar to the AORG directive except that no code is 
actually produced for the DORG section, however, all 
references to a DORG'd label are resolved,) 

DORG free 
WP 1 BSS 32 Define RESET interrupt's WP 
CLKWP BSS 32 Define clock interrupt's WP 
SPURWP BSS 32 Define spurious interrupt WP 

AORG 0 
DATA WP 1 Define RESET (level 0) vector 
DATA START 
DATA SPURWP,SPUR Level 1 not used 
DATA SPURWP, SPUR Level 2 not used 
DATA CLKWP Define level 3 vector 
DATA CLOCK 
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SPUR EQU $ Spur ious  i n t e r r u p t  h a n d l e r  

. 
START EQU $ I n i t i a l  e n t r y  p o i n t  

* S e t  c u r r e n t  t ime - z e r o i s e  a l l  c l o c k  v a l u e s  * 
L I  R2,CLKWP Ref c l o c k ' s  WP 
CLR *R2+ C l e a r  c l o c k  h a n d l e r ' s  RO 
CLR *R2+ C l e a r  c l o c k  h a n d l e r ' s  R1 
CLR *R2+ C l e a r  c l o c k  h a n d l e r ' s  R2 
CLR *R2 C l e a r  c l o c k  h a n d l e r ' s  R3 * 

* I n i t i a l i s e  t h e  9901 * 
LI  R12,base S e t  9901 CRU s / w  base  a d d r  
L I  R1,1875*2+1 40ms d e l a y  + c l o c k  mode 
LDCR R1,15 S e t  9901 i n t e r v a l  t i m e r  
SBZ 0  S e l e c t  i n t e r r u p t  mode 
SBO 3 Enable l e v e l  3 i n t e r r u p t  
LIMI 3 S e t  i n t e r r u p t  mask t o  3 

The c l o c k  i n t e r r u p t  h a n d l e r  is:  

CLOCK EQU 
L I  
SRZ 
SBO 
C I  
JHE 
I N C  
RTWP 

CLKl CLR 
I N C  
C I  
JLT 
CLR 
I N C  
C I  
JLT 
CLR 
I N C  
C I  
JLT 
CLR 

CLK2 RTWP 

$ 
R12 , b a s e  
0 
3 
R0,>24 
CLK 1 
RO 

S e t  9901 CRU s / w  base  a d d r  
S e l e c t  i n t e r r u p t  mode 
Rese t  l e v e l  3 i n t e r r u p t  
24th  t i c ?  
Y - 1 second e l a p s e d  
N - i nc remen t  t i c  count  
Return  
Rese t  t i c  count  
Increment  second count  
60 s e c s  e l a p s e d ?  
N - r e t u r n  
Y - r e s e t  second count  
Increment  minute  count  
60 mins e l a p s e d ?  
N - r e t u r n  
Y - r e s e t  minute  count  
Increment  hour  count  
24 h o u r s  e l a p s e d ?  
N - r e t u r n  
Y - r e s e t  hour  count  
Return  

I n  t h e  c l o c k  i n t e r r u p t  r o u t i n e  above t h e  i n t e r r u p t  s i g n a l  i s  
r e s e t  by s e l e c t i n g  i n t e r r u p t  mode and r e- enab l ing  t h e  l e v e l  
3 mask b i t .  

The above r o u t i n e  can  be m o d i f i e d ,  v e r y  s imply ,  t o  d r i v e  a  
c l o c k  d i s p l a y  ( a  c i r c u i t  f o r  t h i s  i s  d e s c r i b e d  i n  t h e  Time 
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of nay Clock A p p l i c a t i o n  S h e e t ) .  

8.13.12.7 Simple 1 / 0  Rou t ines  u s i n g  t h e  9902 

The 9902 i s  a  CRU-driven asynchronous  communications 
c o n t r o l l e r .  It a l l o w s  t h e  u s e r  t o  r e c e i v e  and t r a n s m i t  
asynchronous  s e r i a l  d a t a  o v e r  a  wide range  of baud r a t e s .  

The r e c e i v e  r o u t i n e  r e a d s  a  c h a r a c t e r  from t h e  9902 r e c e i v e  
b u f f e r  r e g i s t e r  (CRU b i t s  0  t o  7  i n  t h e  9902's CRU r ead  
a d d r e s s  s p a c e )  i n t o  t h e  h i g h  b y t e  of r e g i s t e r  0. Data i s  
p r e s e n t  when t h e  r ead  CRU b i t  21 (RBRL - Receive  B u f f e r  
R e g i s t e r  Loaded) i s  s e t  t o  '1'. I f  d a t a  i s  t h e r e  t h e n  t h e  
c h a r a c t e r  i s  r e a d  i n t o  t h e  r e g i s t e r  ( o n l y  7  b i t s  a r e  
a c t u a l l y  r e a d ) ,  t h e  RBRL b i t  i s  r e s e t  by a  w r i t e  t o  CRU b i t  
18 (RIENB) and t h e  r e t u r n  a d d r e s s  i s  inc remen t  t o  s k i p  ove r  
t h e  'no c h a r a c t e r  r e t u r n ' .  

GETCH L I  R12,base S e t  the CRU b a s e  a d d r e s s  
TB 21 C h a r a c t e r  r eady  - RBRL s e t ?  
JNE GETCh N - r e t u r n  
CLR RO C l e a r  r e c e i v i n g  r e g i s t e r  
STCR R0,7 Read c h a r a c t e r  ( o n l y  7  b i t s )  
SBZ 18 Rese t  RBRL 
INCT R 1 1  Skip  ove r  'no c h a r  r e t u r n '  

GETCl RT 

The c a l l i n g  sequence is:  

BL @GETCH Get n e x t  c h a r a c t e r  i n p u t  
JMP no c h a r  No c h a r a c t e r  r e t u r n  a d d r e s s  . C h a r a c t e r  r e t u r n  a d d r e s s  

The t r a n s m i t  r o u t i n e  assumes t h a t  t h e  c h a r a c t e r  t o  be 
t r a n s m i t t e d  i s  s t o r e d  i n  RO ( t h i s  c h a r a c t e r  i s  masked down 
t o  7  b i t s ) .  When t h e  t e r m i n a l  i s  r eady  ( b i t  27, Data S e t  
Ready - DSR - i s  s e t )  a  Reques t  To Send i s  i s s u e d  ( s e t s  b i t  
16 - RTS). Before  t h e  c h a r a c t e r  can  be s e n t  t h e  Transmi t  
B u f f e r  R e g i s t e r  Empty f l a g  ( b i t  22 - XBRE) must be s e t .  
When t h i s  o c c u r s  t h e  c h a r a c t e r  i s  passed  t o  t h e  9902. 
(Note:  Although t h e  c h a r a c t e r  h a s  been masked t o  7 b i t s ,  8  
b i t s  a r e  a c t u a l l y  passed  a c r o s s .  I n  t h e  9902, t h e  c h a r a c t e r  
i s  i n i t i a l l y  loaded  i n t o  t h e  Transmi t  B u f f e r  R e g i s t e r  and i s  
n o t  s e n t  u n t i l  t h e  most s i g n i f i c a n t  b i t  of t h i s  r e g i s t e r  i s  
w r i t t e n  t o .  I f  o n l y  7  b i t s  a r e  passed  a c r o s s  i t  i s  
n e c e s s a r y  t o  i n c l u d e  e i t h e r  a  SBZ 7  o r  a  SBO 7  
i n s t r u c t i o n ) .  The RTS f l a g  i s  t h e n  r e s e t .  
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OUTCH LI R12,base 
A N D 1  R0,>7F00 

OUTCl TB 27 
J N E  OUTCl 
SBO 16 

OUTC2 TB 22 
JNE OUTC2 
LDCR R0,8 
SBZ 16 
RT 

S e t  t h e  CRU b a s e  a d d r e s s  
Mask t o  7  b i t s  
DSR ready?  
N - w a i t  u n t i l  i t  i s  
S e t  RTS 
XBRE empty? 
N - w a i t  u n t i l  i t  i s  
Y - send c h a r a c t e r  
Rese t  RTS 

Note: I f  t h e  t e r m i n a l  i s  a  s low p r i n t e r  (below 1200 baud) 
t h e n  whenever a  c a r r i a g e  r e t u r n  c h a r a c t e r  i s  s e n t  a  d e l a y  of 
a round 200ms i s  needed t o  a l l o w  t h e  p r i n t  head t o  r e t u r n  t o  
t h e  l e f t  hand margin,  

B e f o r e  t h e  9902 c a n  be used i t  must f i r s t  be i n i t i a l i z e d ,  
For t h i s  t h e  f o l l o w i n g  sequence  must be used:  

o  Wr i t e  t o  b i t  3 1  (RESET), Th i s  i n i t i a l i z e s  t h e  
t r a n s m i t t e r  and r e c e i v e r ,  and s e t s  a l l  t h e  load  
c o n t r o l  f l a g s ,  

o  A f t e r  a  r e s e t  t h e  f i r s t  8 d a t a  b i t s  w r i t t e n  t o  
t h e  9902 a r e  used t o  s e t  up t h e  C o n t r o l  
R e g i s t e r ,  T h i s  s e l e c t s  c h a r a c t e r  l e n g t h ,  
p a r i t y ,  t h e  number of s t o p  b i t s  t o  be g e n e r a t e d ,  
and t h e  c l o c k  p r e d i v i d e r ,  

o  I f  t h e  i n t e r v a l  t i m e r  i s  no t  r e q u i r e d  t h e n  i t  i s  
n e c e s s a r y  t o  r e s e t  t h e  Load I n t e r v a l  R e g i s t e r  
f l a g  ( b i t  1 3  - LDIR). Otherwise  t h e  nex t  8  d a t a  
b i t s  w r i t t e n  t o  t h e  9902 a r e  used  t o  s p e c i f y  t h e  
i n t e r v a l  d e l a y ,  

o  The n e x t  12 d a t a  b i t s  s e n t  t o  t h e  9902 a r e  used 
t o  s e l e c t  t h e  r e c e i v e  d a t a  r a t e .  I f  t h e  Load 
Transmi t  ,Data Rate  R e g i s t e r  f l a g  ( b i t  1 1  - LXDR) 
h a s  n o t  been e x p l i c i t l y  r e s e t  t h e n  t h e s e  12 b i t s  
w i l l  a l s o  be used  t o  s e l e c t  t h e  t r a n s m i t  d a t a  
r a t e ,  

I n  t h e  code below t h e  f i r s t  LDCR i n s t r u c t i o n  l o a d s  t h e  
C o n t r o l  R e g i s t e r  w i t h  >62; t h i s  means t h a t  2  s t o p  b i t s  a r e  
g e n e r a t e d  and t h a t  each  c h a r a c t e r  i s  7 b i t s  w i t h  even 
p a r i t y .  (As a  m u l t i p l e  b i t  CRU i n s t r u c t i o n  of l e s s  t h a n  9 
b i t s  i s  i n v o l v e d  i t  i s  n e c e s s a r y  t o  s t o r e  t h e  >62 b y t e  i n  
R l ' s  h i g h  by te . )  The second LDCR i n s t r u c t i o n  c a u s e s  t h e  
r e c e i v e  and t r a n s m i t  d a t a  r a t e  r e g i s t e r s  t o  be s e t  t o  RATE, 
The a c t u a l  v a l u e  of RATE depends on t h e  system c l o c k  
f r e q u e n c y ;  f o r  a  3MHz sys tem c l o c k  a  v a l u e  of >638 
c o r r e s p o n d s  t o  110 baud,  >4DO t o  300 baud,  and >1AO t o  1200 
baud. ( F u l l  d e t a i l s  a r e  i n  s e c t i o n s  2 , 1 , 2 , 3  and 2 ,1 ,2 ,4  of 
t h e  TMS9902 Asynchronous Communications C o n t r o l l e r  Data 
Manual. ) 
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LI R12,base S e t  t h e  9902 CRU b a s e  a d d r e s s  
SBO 31 Rese t  t h e  9902 (RESET) 
L I  R1,>6200 
LDCR R1,8 I n i t i a l i s e  t h e  c o n t r o l  r e g  
SBZ 13 No i n t e r v a l  r e g  ( E D I R )  
LDCR r a t e , l 2  I n i t  REC~XMIT d a t a  r a t e  

8 ,13 ,12 ,8  Automatic Baud R a t e  D e t e r m i n a t i o n  

The r e c e i v e  l i n e  (RIN, b i t  15  on t h e  9902) of a  t e r m i n a l  t o  
EIA p o r t  communication c a b l e  i s  u s u a l l y  i n  t h e  SPACE 
c o n d i t i o n  ( i t  i s  h e l d  a t  l o g i c  l e v e l  '1 ' )  when n o t h i n g  i s  
b e i n g  r e c e i v e d ,  When a  key i s  p r e s s e d  on t h e  t e r m i n a l ,  t h e  
t e r m i n a l  p u t s  t h e  RI N l i n e  i n t o  t h e  MARK c o n d i t i o n  ( p u l l s  
t h e  l i n e  down t o  l o g i c  l e v e l  '0') by g e n e r a t i n g  a  s t a r t  
b i t ,  T h i s  s t a r t  b i t  i s  fo l lowed  by 7 d a t a  b i t s  ( t h e  l e a s t  
s i g n i f i c a n t  b i t  f i r s t )  and a  p a r i t y  b i t ,  A t  l e a s t  1 s t o p  
B f t  i s  t h e n  g e n e r a t e d  t o  p u t  t h e  l i n e  back i n t o  t h e  SPACE 
c o n d i t i o n ,  

MARK SPACE 

w- 7.BIT CHARACTER 

TIME 
4 

F i g u r e  8-39 TMS9902 C h a r a c t e r  Timing 

The 9902's R I N  p i n  can  he  i n t e r r o g a t e d  t o  de te rmine  when t h e  
l i n e  goes  i n t o  t h e  mark c o n d i t i o n  (when a  s t a r t  b i t  i s  
r e c e i v e d ) ,  I f  t h e  l e a s t  s i g n i f i c a n t  b i t  of t h e  c h a r a c t e r  
b e i n g  r e c e i v e d  i s  a  '1' ( e g  t h e  c h a r a c t e r  'A'), t h e n  t h e  
l e n g t h  of t ime t a k e n  f o r  t h e  R I N  p i n  t o  go from t h e  mark 
c o n d i t i o n  back t o  t h e  s p a c e  c o n d i t i o n  can  be c a l c u l a t e d .  
From t h i s ,  t h e  r a t e  a t  which b i t s  a r e  b e i n g  r e c e i v e d  ( t h e  
r e c e i v e  baud r a t e )  can  be de te rmined ,  T h i s  baud r a t e  i s  
t h e n  used t o  i n i t i a l i z e  t h e  r e c e i v e  and t r a n s m i t  d a t a  r a t e  
r e g i s t e r s .  

The code below o p e r a t e s  by c o u n t i n g  t h e  number of t i m e s  t h e  
R I N  p i n  i s  i n t e r r o g a t e d  w h i l e  w a i t i n g  f o r  i t  t o  be p u l l e d  up 
from t h e  mark c o n d i t i o n  t o  t h e  space  c o n d i t i o n ,  T h i s  coun t  
( s t o r e d  i n  R3) i s  t h e n  compared a g a i n s t  a  t a b l e  of 'maximum 
t i m e s  around t h e  i n t e r r o g a t i o n  loop  f o r  a  g i v e n  baud r a t e ' .  
The corresp~nding baud ra te  is then l o a d e d  i n t o  the receive 
and t r a n s m i t  d a t a  r a t e  r e g i s t e r s ,  
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* I n i t i a l i z e  t h e  9902 * 
L I  R12,base S e t  t h e  9902 CRU b a s e  a d d r e s s  
SBO 31 Rese t  t h e  9902 (RESET) 
L I  R1,>6200 
LDCR R1,8 I n i t i a l i s e  t h e  c o n t r o l  r eg  
SBZ 13 No i n t e r v a l  r e g  (LDIR) 
CLR R3 C l e a r  loop  coun t  * 

* Wait f o r  t h e  s t a r t  b i t  * 
SBAUD TB 15 Space c o n d i t i o n ?  

JEQ SBATJD Y - t e s t  R I N  p i n  a g a i n  * 
* I n  t h e  mark c o n d i t i o n  - w a i t  u n t i l  R I N  goes  back 
* t o  t h e  space  c o n d i t i o n  * 
SBAUDl I N C  R3 Update loop  count  

TB 15 Space c o n d i t i o n ?  
JNE SBAUDl N - r e t r y  t h e  R I N  p i n  * 

* Back i n  t h e  s p a c e  c o n d i t i o n  - f i n d  baud r a t e  * 
L I  R4,BAUDTR-2 Ref max v a l u e  t a b l e  

SBAUD2 INCT R4 Try nex t  e n t r y  
C R3,*R4+ Loop count  <= t a b l e  e n t r y ?  
J H  SBAUD2 N - h i g h e r ,  back f o r  n e x t  * 

* Baud r a t e  found - set  r e c e i v e  and t r a n s m i t  d a t a  
* r e g i s t e r s ,  w a i t  u n t i l  c h a r a c t e r  r e c e i v e d ,  and 
* throw t h e  c h a r a c t e r  away * 

LDCR *R4,12 Y - s e t  r e c / x m i t  baud r a t e  r e g s  
SBAUD3 TI3 21 RBRL s e t ?  

JNE SBAUD3 N - c h a r a c t e r  n o t  comple te  
SBZ 18 Rese t  RBRL 

The 'baud r a t e '  t a b l e  (BAUDTB) below works f o r  a 3Mhz system 
c l o c k  ( e g  f o r  a TM990 / l o 0  o r  / I 0 1  CPU b o a r d ) .  Each e n t r y  
i n  t h e  t a b l e  c o n s i s t s  of two f i e l d s ;  a loop  count  ( i n  t h e  
d e s c r i p t i o n  above t h i s  f i e l d  was r e f e r r e d  t o  a s  t h e  'maximum 
t i m e s  around t h e  i n t e r r o g a t i o n  loop  f o r  a g i v e n  baud r a t e ' )  
and  t h e  baud r a t e  c o r r e s p o n d i n g  t o  t h i s  va lue .  

BAUDTB DATA >0007,>001A 19200 baud 
DATA >000E,>0034 96QO baud 
DATA >001D,>0068 4800 baud 
DATA >003R,>OODO 2400 baud 
DATA >0075,>01AO 1200 baud 
DATA >00EA,>0340 600 baud 
DATA >0246,>04DO 300 baud 
DATA >7FFF,>0638 110 baud 

Note: For  p r o c e s s o r s  o t h e r  t h a n  t h e  TMS9900 i t  may be 
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necessary to adjust the loop count entries (eg for a TMS9995 
mieroproeessor using internal RAM), 

8,13.12,9 Packed Data 

In a number of instances a binary variable is required; such 
a variable only has two possible values (eg the state of a 
switch, either on or off) and can be stored in a single 
hit. Unfortunately the assembler does not support a bit 
structure (it only recognises the word, byte and text 
structures) and storing one bit's worth of information in a 
word (or even a byte) can be rather wasteful, especially if 
a number of these binary variables are required, 

Packing a number of these binary variables into a word 
solves the memory wastage problem, however, it does make it 
a little more complicated to access the individual 
variables; you can not do a straight value comparison nor a 
'MOV var,var8 instruction to set the status register's 
status bits. 

An individual binary variable can be set using the SOC 
instruction (Set Ones Corresponding), reset using the SZC 
instruction (Set Zeros Corresponding), toggled (change it's 
state from '1' to '0' or from '0' to ' 1  using the XOR 
(Exclusive OR) instruction, and tested using the COC 
(Compare Ones Corresponding) and/or the CZC (compare Zeros 
Corresponding) instructions, (Note: The AND1 logical 
instruction can be used to isolate a particular binary 
variable, which can then be tested using the compare or move 
instruction,) 

The SOC instruction sets the bits in the destination operand 
to a ' 1  that correspond to a '1' in the source operand, 
All other bits in the destination operand are unchanged, 
Example: Set the binary variable in bit position 10 of a 
packed word: 

LI Rx,>0020 Bit 10 = '1' (rest = '0') 
SOC RX, @PACKED Set bit in PACKED 

or MASK DATA >0020 Bit 10 = '1' (rest = '0') 

SOC @MASK,@PACKED Set bit in PACKED 

Note: This can also be performed by: 

MOV @PACKED,RX Copy PACKED into register 
OR1 Rx,>0020 Set the bit 
MOV RX,@PACKED Copy updated word to PACKED 

The SZC instruction resets the bits in the destination 
operand to a '0' that correspond to a '1' in the source 
operand. All other bits in the destination operand are 
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unchanged, Example: Reset t h e  b i n a r y  v a r i a b l e  in b i t  
p o s i t i o n  10  o f  a  packed word: 

L I  Rx,>0020 B i t  10  = ' I '  ( r e s t  = ' 0 ' )  
SZC RX,@PACKED Rese t  b i t  i n  PACKED 

o r  MASK DATA >0020 B i t  10  = '1' ( r e s t  = ' 0 ' )  

SZC @MASK,@PACKED Rese t  b i t  i n  PACKED 

Note: T h i s  can  a l s o  be performed by: 

MOV @PACKED,RX Copy PACKED i n t o  r e g i s t e r  
A N D 1  Rx,>FFDF Rese t  t h e  b i t  
MOV RX,@PACKED Copy updated  word t o  PACKED 

The XOR i n s t r u c t i o n  per forms a  b i t  by b i t  e x c l u s i v e  o r  of 
t h e  two ope rands ,  and s t o r e s  t h e  r e s u l t  i n  t h e  d e s t i n a t i o n  
( s e c o n d )  ope rand ,  A b i t- w i s e  e x c l u s i v e  o r  o p e r a t i o n  s e t s  
t h e  r e s u l t  b i t  t o  a '1' i f  t h e  s o u r c e  and d e s t i n a t i o n  b i t s  
a r e  d i f f e r e n t ,  o t h e r w i s e  t h e  r e s u l t  b i t  i s  r e s e t  t o  ' O ' ,  

MASK DATA >0020 B i t  10 = '1' ( r e s t  = ' 0 ' )  

MOV @PACRE~,RX Copy packed d a t a  i n t o  Rx 
XOR @MASK,Rx Toggle b i t  i n  PACKED 
MOV RX,@PACKED R e s t o r e  updated  d a t a  

The COC i n s t r u c t i o n  sets t h e  EQ s t a t u s  b i t  t o  '1' i f  a l l  t h e  
b i t s  i n  t h e  d e s t i n a t i o n  operand t h a t  co r re spond  t o  a  '1' i n  
t h e  s o u r c e  operand a r e  '1's. 

MASK DATA >0020 B i t  10 = '1' ( r e s t  = ' 0 ' )  

MOV @PACKED,RX Copy packed d a t a  i n t o  Rx 
coc @MASK,RX R i t  10  s e t  t o  ' l ' ?  
JNE NOT1 N - g o t o  NOT1 

Y - drop  through t o  h e r e  

NOT1 EQU $ R i t  10 was n o t  s e t  t o  '1' 

The CZC i n s t r u c t i o n  s e t s  t h e  EQ s t a t u s  b i t  t o  '1' i f  a l l  t h e  
b i t s  i n  t h e  d e s t i n a t i o n  operand t h a t  co r re spond  t o  a  '1' i n  
t h e  s o u r c e  operand a r e  '0 's .  

MASK DATA >FFDF B i t  10 = '0' ( r e s t  = '1') 
* 
MOV @PACKED,RX Copy packed d a t a  i n t o  Rx 
C Z C  @MASK,RX B i t  10 r e s e t  t o  'O'? 
J N E  NOT0 N - g o t o  NOT0 

Y - drop  through t o  h e r e  

Texas I n s t r u m e n t s  
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8.14 REFERENCE SECTION 

8.14.1 Instruction Formats 

Format no. Bit Positions 
and use 0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

1 ARITHMETIC 

2 JUMP 

3 LOGICAL 

4 CRTJ 

5 SHIFT 

6 PROGRAM 

7 CONTROT, 

8 IMMEDIATE 

10 DOUBLE WORn 
OPERATIONS 

(99000 Only) 

1--1--1--1--1--1--1-- I - - I I - I - - I - - I - - I~-1--~--~-~ 
I OPCODE IB 1 Td I D I Ts I S 
l - - l - - l - - l - - l - - l - - l - - l - l f - ~ l ~ ~ I I - I ~ ~ I - ~ I - - ~ ~ - ~ ~ ~  
I OPCODE I SIGNED 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - 1 - ~ 1 - ~ 1 - - 1 - - I - - I - - ~ - - ~ - -  
1 OPCODE 1 D I Ts I S 
1--1--1--1-- 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - I - - 1 - - I - - I - -  
I OPCODE 1 C I Ts I S 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I I - 1 - - 1 - - m - - l - - 1 - -  
I OPCODE I C I W 
l - - l - - l - - l - - l - - l - - l - - l - - I I - l l - ~ t - I I - I - I I - - ~ - - ~ - -  
1 OPCODE I Ts I S 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - ~ - - I - - I - - ~ - - 1 - - 1 - - ~ - - ~ - -  

I OPCODE 1 NU 
l - - l - - l - - l - - l - - l - - l - - l l l l - l I - - M - - l - - l - -  
I OPCODE lNU1 W 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - ~ 1 - - I - - ~ - - ~ - - ~ - - ~ - - ~ - - ~ - -  

1 Immediate value 1 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - I - - I - - 1 - - I - - I - - ~ - - ~ - - ~  
I OPCODE I D I T s I  . S  I 
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - 1 - - I I - I I - I I - I - - I - - l - - l - - l  
1 OPCODE I 
1--1--1--1--1--1--1--1I-1--1--11-1--I-II--~--~--~ 
I Code I Td I D I Ts I S I 
1--1--1--1--1--1--1--1--1-~1--1--I--I--I--~--~--~ 

Note: For AMISM Code='0100' 
For SLAM / SRAM Code='OlOO';Td='OO';n is shift count 
For TMR/TCMB/TSMB Code='O000';Td='OO';D is bit number 

OPCODE - Assembly language mnemonic 
R - Byte indicator (1 = hyte, 0 = word) 
Td/Ts - ~estination/~ource address mode 
D/S - ~estination/Source address 
C - Shift or CRU transfer count 
W - Workspace register number 
NU - Not used 
SIGNED - Signed displacement of -128 to +127 words 
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Td/Ts F i e l d  

Code Mode E f f e c t i v e  a d d r e s s  

00  Workspace r e g i s t e r  Rx WP+2*[S o r  D ]  
01  I n d i r e c t  *Rx (WP+2*[S o r  D l )  
10 Indexed  (S o r  D+O)  label(^^) (WP+2*[S o r  D])+(PC+2) 
1 0  Symbolic  (S o r  D=O) @Labe l  (PC+2) 
1 1  I n d i r e c t  w i t h  Auto *RX+ (WP+2*[S o r  Dl); Increment  

i n c r e m e n t  e f f .  a d d r e s s  by 1 - b y t e ;  
2  - word; 4  - d o u b l e  word 

An e x t r a  word i s  r e q u i r e d  f o r  each  ope rand  code of 2.  

8.14.2 S t a t u s  R e g i s t e r  

0  1 2  3 4 5 6 7 8  9  1 0 1 1 1 2  15 ----------------------------------------------- 
IL>IA>I= I C  10 1P I X  IPRlM I JOEJEMI I n t o  mask I 

L o g i c a l  g r e a t e r  t h a n  
A r i t h m e t i c  g r e a t e r  t h a n  
Equal/TR i n d i c a t o r  
Ca r ry  from most s i g n i f i c a n  h i t  
Overf low 
P a r i t y  
So f tware  implemented XOP i n  p r o g r e s s  
P r i v i l e g e  mode (99000)  
Map s e l e c t  (9989 and 99000) 
Overf low e n a b l e  (9995,  9989 and 99000) 
Emulate  XOP e n a b l e  (99000) 

I n t e r r u p t  mask: F - A l l  i n t e r r u p t s  e n a b l e d  
0 - Only i n t e r r u p t  l e v e l  0  e n a b l e d  

8.14.3 I n t e r r u p t s  

I------------------------ I 
V e c t o r  a d d r e s s  I Workspace P o i n t e r  (WP) I 

I------------------------ I 
V e c t o r  add re s s+2  I E n t r y  p o i n t  (PC) 

I------------------------ 
I 
I 

Note:  1) I n t e r r u p t  v e c t o r s  0-15 from 0 TO >3C 
( o n l y  l e v e l s  0  - 4 f o r  9980A, 9981 and 9995) 

2) XOP v e c t o r s  f rom >40 t o  >7C 
3 )  LOAD v e c t o r  a t  >FFFC 
4 )  I n t e r r u p t  0  i s  t h e  RESET i n t e r r u p t  
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R12 - Base address for CRU operations 
bits 3 - 14 used (all but 9995 and 99000) 
bits !I - 14 used (9995 and 99000) 

Transfers < 9 bits - high byte used 
Transfers > 9 bits - low byte used 

Parallel CRU (99000 only) - CRU base address -ve 
l----------l--------I----------------------- 1 
1 Transfer 1 Count 1 Effect on R12 1 

I - I 

I 0010 1 Not altered 
1 Byte 1--------1----------------------- 1 
1 I 0011 1 Post incremented by 2 1 
!----------!--------I----------------------- 1 
1 I 1010 I Not altered I 
I Word 1--------1----------------------- 1 
I 1 1011 I Post incremented by 2 1 
i---=====--l--------'-------------------------i 

8.14.5 Register Restrictions 

Memory 
addr Register Usage 

1 - - - - - - - I - - - - - - - - - Shift count 
WP+>OO I RO 1 ? MPYS and DIVS 

1 --------- 
I MPYS and DIVS 
I I 
1 1 
I Index 
I capability 
I 1 

Data or 1 
Addresses I BL - Return address 

I I XOP - ,  Operand's ef f . address 
1 I 
I I CRU base address 
I 1 
1 I Saved WP 
I I 
I 1 Saved PC 

I 1 I 1 
WP+>lR ( R15 I 9 Saved ST 

MPY and DIV use two consecutive registers, the first is 
supplied as the source operand. If R15 used then the word 
following R15 is used as the second register. 
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8.14.6 Assembly Language Instructions 

Symbols Used 

G,Gl,G2 - General memory addresses 
R - Workspace register address 
S - Symbolic memory address 
E - Expression (all symbols previously defined) 
I - Immediate value 
T - Term (range 0 - 15) 

( ) - Contents of the address within parenthesis 
-> - 'Replaces' 
: - 'Is compared to,' 
C - Count (0 - 15) 
* - Result is compared to zero 

Additional symbols for 9989, 9995 and 99000 

R* - Register pair R1 and R2 
Gl,G1+2 - General memory address double word 

Instruction 

AB S OLUTE VALUE 
ADD BYTES 
ADD IMMEDIATE 
ADD WORDS 
AND IMMEDIATE 
BRANCH 
BRANCH AND LINK 

BRANCH AND LOAD WP 

Format Status 
Type Bits 

Opcode Affected 

CLEAR 04CO 6 
CLOCK OFF 03C0 7 
CLOCK ON 03A0 7 
COMPARE BYTES 9000 1 0-2,5 
COMPARE IMMEDIATE 0280 8 0 -- 2 
COMPARE WORDS 8000 1 0 -- 2 
COMPARE ONES CORRES. 2000 3 2 

COMPARE ZEROS CORRES. 2400 3 2 

DECREMENT BY ONE 0600 6 *O -- 4 
DECREMENT BY TWO 0640 6 *O -- 4 

Format 

ABS G 
AR G1 ,G2 
A1 R,I 
A G1 ,G2 
AND1 R,I 
B G 
BL G 

BLWP G 

CLR G 
CKOF 
CKON 
CB Gl,G2 
CI R,I 
C GI, G2 
COC C,,R 

CZC G,R 

DEC G 
DECT G 

Effect 

ABSOLUTE( G ) - > (  G) 
(Gl)+(G2)->(G2) 
(R)+I->(R) 
(Gl)+(G2)->(G2) 
(R) AND I->(R) 
G->( PC) 
G->(PC) 
(PC)->(R11) 
(G)->(WP) 
(G+2)->(PC) 
(Old WP)->(R13) 
(Old PC)->(R14) 
(Old ST)->(RlS) 
0->(GI 
External 
External 
(GI) : (G2) 
(R) :I 
(Gl) : (G2) 
ST2=AND of RBITS 
corres. to GBITS=P 
ST2=NAND of RRITS 
corres. to GBITS=l 
(G)-1->(G) 
(G)-2->( G) 
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I n s t r u c t i o n  

F o r m a t  
T y p e  

O p c o d e  

D I V I D E  3CC)(! 9 

E X E C U T E  I N S T R T J C T I O N  0480 6 
EXTENDED O P E R A T I O N  2COO 9 

E X C L U S I V E  OR 
I TILE 
I N C R E M E N T  BY ONE 
I N C R E M E N T  BY TWO 
I N V E R T  B I T S  
J U M P  ( U N C O N D I T I O N A L )  
J U M P  I F  CARRY 
JUMP I F  EQUAL 
J U M P  I F  GREATER THAN 
J U M P  I F  H I G H  OR EQUAL 

J U M P  I F  L E S S  THAN 

J U M P  I F  L O G I C A L  H I G H  

J U M P  I F  L O G I C A L  LOW 

J U M P  I F  LOW OR EQUAL 

J U M P  I F  NO CARRY 
J U M P  I F  NO OVERFLOW 
J U M P  I F  NOT EQUAL 
J U M P  I F  ODD P A R I T Y  
LOAD CRTJ 
LOAD I M M E D I A T E  
LOAD I N T E R R U P T  MASK 
LOAD ROM AND E X E C U T E  
MOVE BYTE 
MOVE FIORD 
M U L T I P L Y  

N E G A T E  
OR I M M E D I A T E  
R E S E T  I /o 
R E T U R N  WORKSPACE 
P O I N T E R  

T e x a s  I n s t r u m e n t s  

S t a t u s  
B i t s  F o r m a t  

A f f e c t e d  

4 BTV G , R  

X G 
6 XOP G, T 

XOR G , R  
I D L E  
I N C  G 
I N C T  G 
I N V  G 
J M P  S 
J O C  S 
3EQ S 
J G T  S 
J H E  S 

J L T  S 

J H  S 

J L  S 

J L E  S 

J N C  S 
J N O  S 
J N E  S 
J O P  S 
LDCR G , T  
L I  R , I  
L I M I  I 
L R E X  
MOVB G l , G 2  
MOV G l , G 2  
MPY G , R  

NEC, G 
O R 1  R ,  I 
R S E T  
RTWP 

E f f e c t  

I N T  ( R ) / ( G ) - > ( R )  
REM ( R ) / ( G ) - > ( R + l )  
E x e c u t e  i n s t r  a t  G 
( > 4 0 + 4 * T ) - > ( W P )  
( > 4 2 + 4 * T ) - > ( P C )  
E f f  add of G - > ( R 1 1 )  
( O l d  W P ) - > ( R 1 3 )  
( O l d  P C ) - > ( R 1 4 )  
( O l d  S T ) - > ( R 1 5 )  
1 - > S T 6  
( G )  XOR ( R ) - > ( R )  
I D L E ;  E x t e r n a l  
( G ) + l - > ( G )  
( G ) + 2 - > ( G )  
IS COMP(G)->(GI 
s - > ( P C )  
S- > ( P C )  I F  S T 3 = 1  
%)(PC) I F  ST2=1 
S- > ( P C )  I F  ST1=1 
S- > ( P C )  I F  ST0=1 
OR S T 2 = 1  
S- > ( P C )  I F  S T l = O  
AND S T 2 = 0  
S- > ( P C )  I F  S T 0 = 1  
AND S T 2 = 0  
S- > ( P C )  I F  STO=O 
AND S T 2 = 0  
S- > ( P C )  I F  STO=O 
OR S T 2 = 1  
S- > ( P C )  I F  S T 3 = 0  
S- > ( P C )  I F  S T 4 = 0  
S- > ( P C )  I F  S T 2 = 0  
S- > ( P C )  I F  S T 5 = 1  
T b i t s  ( G )  -> CRU 
I - > ( R )  
I->( I n t  . m a s k )  
E x t e r n a l  
( G I ) - > ( G 2 )  
( G I ) - > ( C 2 )  
MSW( ( G ) * ( R ) ) - > ( R )  
L S W ( ( G ) * ( R ) ) - > ( R + l )  
- ( G I - > ( G I  
( R )  OR I - > ( R )  
E x t e r n a l  
( R 1 3 ) - > ( W P )  
( R 1 4 ) - > ( P C )  
( R 1 5 ) - > (  S T )  
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Format Status 
Type Bits Format Effect 

Opcode Affected Instruction 

SET BIT TO ONE 
SET BIT TO ZERO 
SET TO ONES 
SET ONES CORRES, BYTE 
SET ONES CORRES. WORD 
SHIFT LEFT ARITH, # 

lD0O 
lEOO 
0700 
FOOO 
EOOO 
OAOO 

SBO E 
SBZ E 
SET0 G 
SOCB G1 ,G2 
SOC Gl,G2 
SLA R,C 

1->(E+(R12)) 
0->(E+(R12)) 
>FFFF-> ( G) 
(Gl) OR (62) ->(G2) 
(GI) OR (G2) ->(G2) 
Shift left C bits 
and '0' fill 
Shift right C bits 
and MSR fill 
Shift right C bits 
and LSR into MSR 
Shift right C bits 
and '0' fill 
T CRU bits ->(G) 
(ST)->(R) 
(WP)->(R) 
(G2)-(GI)->(G2) 
(G2)-(GI)->(G2) 
Interchange bits 0-7 
with bits 8-15 of G 
(INv(G1)) AND (62) 
->(G2) 
(INV(G1)) AND (G2) 
->(G2) 
(R12)+E->ST2 

SHIFT RIGHT ARITH. # SRA R,C 

SHIFT RIGHT CIRCULAR # OBOO SRC R,C 

SHIFT RIGHT LOGICAL # SRL R,C 

STORE CRU 
STORE STATUS REGISTER 
STORE WORKSPACE POINTER 
SUBTRACT BYTE 
SUBTRACT WORD 
SWAP BYTES 

STCR G,T 
STST R 
STWP R 
SB Gl,G2 
S Gl ,G2 
SWPB G 

SET ZEROES 
CORRESPONDING BYTE 
SET ZEROES 
CORRESPONDING WORD 
TEST BIT 

SZCB 61 ,G2 

SZC G1 ,G2 

# If C=O then count taken from bits 12 - 15 of RO, 
If this is zero then C=16. 

Additional Instructions for 9995 and 9989 

Format Status 
Type Bits Format Effect 

Opcode Affected Instruction 

LOAD ST FROM REGISTER 0080 8 0 -  15 LST R (R)->ST 
LOAD WP FROM REGISTER 0090 8 LWP R (R)->WP 
SIGNED DIVIDE 0180 6 *O-2,4 ~ I V S  G INT(R*)/(G)->(Ro) 

REM(R*)/(G)->(RI) 
SIGNED MULTIPLY OlCO 6 * O - - 2  MPYS G MSW((R*)*(G))->(RO) 

LSW((R*)*(G))->(Rl) 
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Additional Instructions for 99000 Family 

Format Status 
Type Bits Format Effect 

Opcode Affected Instruction 

ADD DOUBLE (Gl,G1+2)+(G2,G2+2) 
--> (G2, G2+2) 
(G) -> (PC) 
(W)-2 -> (W) 
(PC)+4 -> ((W)) 
I -> (PC) 
(R)->ST 
(R)->WP 
Shift (GI ,G1+2) left 
C bits; '0' fill 
Shift (GI ,G1+2) right 
C bits; MSB fill 
INT(R*)/ (G)->(RO) 
REM(R*)/ (G)->(R~) 
MSW((R*)*(G))->(Ro) 
(G2,~2+2)-(Gl,G1+2) 
---> (G2, G2+2) 
(~l+Tbit) -> ST2 
(Gl+Tbit) -> ST2 
0 --> (Gl+DISP) 
(Gl+Tbit) -> ST2 
1 --> (Gl+DISP) 

BRANCH INDIRECT 
BRANCH AND PUSH STACK 
POINTER 

BIND G 
RLSK R,I 

LOAD ST FROM REGISTER 
LOAD WP FROM REGISTER 
SHIFT LEFT ARITHMETIC 
nOURLE # 
SHIFT RIGHT ARITHMETIC 
DOUBLE # 
SIGNED DPVf BE 

LST R 
LWP R 
SLAM Gl ,C 

OOlC SRAM G1 ,C 

DIVS G 

SIGNED MJJLTIPLY 
SUBTRACT DOUBLE 

MPYS G 
SM Gl,G2 

TEST MEMORY BIT 
TEST AND CLEAR MEMORY 
BIT 
TEST AND SET MEMORY 
BIT 

TMB G1,T 
TCMB G1,T 

OCOB TSMB G1,T 

# If C=O then count is taken from bits 4 - 7 of Roe 

8,12.7 Pseudo-Instructions 

Instruction Format Effect 

NO OPERATION NOP 
RETURN RT 

JMP $+2 
B *R11 

TRANSFER VECTOR for a 'BLWP @label8 (SDSMAC only) 
label XVEC wpadd,pcadd label DATA wpadd 

DATA pcadd 
WPNT wpadd 
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8.14,8 Assembler Directives 

( ) - The item in parenthesis is optional 
(,x) - Any number of 'xis (each preceded by a comma) 

All directives (except OPTION) may be preceded by a label 
and followed by a comment, Strings are enclosed in single 
quotes, 

ABSOLUTE ORIGIN - AORG exp - absolute value 
Defines an absolute code block and loads the location 
counter with EXP, 

RELOCATABLE ORIGIN - RORG {exp) 
Defines a relocatable code block and loads the location 
counter with EXP; if EXP not present then uses: 

o Current length of program segment for absolute code 
o Length of data segment for data relocatable code 
o Length of common segment for common relocatable code 

DUMMY ORIGIN - DORC exp 
Defines a dummy code block (no code is generated but it 
allows a module to access symbols defined in another module) 
and loads the location counter with EXP, 

DATA SEGMENT - DSEG 
Defines a data relocatable block and loads the location 
counter with: 

o Max location counter from data relocatable code 
o Zero 

DATA SEGMENT END - DEND 
Terminates a DSEG and defines a program relocatable block, 
Loads the location counter with: 

o Max location counter from program relocatable code 
o Zero 

COMMON SEGMENT - CSEG (string) 
Defines begining (or continuation) of named common 
relocatable code block and loads the location counter with; 

o Zero if named common block previouly unused 
o Max location counter from already used named common 

relocatable code 
If STRING (6 characters) not present then refers to blank 
common segment, 

COMMON SEGMENT END - CEND 
Terminates a CSEG and defines a program relocatable code 
block. The location counter is loaded as for DEND, 

PROGRAM SEGMENT - PSEG 
Defines a program relocatable code block and loads the 
location counter with: 

o Max location counter for program relocatable code 
o Zero 
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PROGRAM SEGMENT END - PEND 
Terminates a PSEG and defines a program relocatable code 
block, The location counter is loaded as for DEND, 

BLOCK STARTING WITH SYMBOL - BSS exp 
Reserves EXP consecutive bytes. If a label present it is 
assigned the address of the first byte of the block, 

BLOCK ENDING WITH SYMBOL - BES exp 
Reserves EXP consecutive bytes, If a label present it is 
assigned the address of the first byte immediately following 
the block, 

INITIALIZE BYTE - BYTE exp ( ,exp) 
Reserves successive bytes of memory and initializes them to 
their respective values sf EXP, 

INITIALIZE WORD - WORD exp (,exp) 
Reserves successive words of memory and initializes them to 
their respective values of EXP, 

INITIALIZE TEXT - TEXT (-) string 
Reserves successive bytes of memory and initializes them to 
the appropriate character in STRING (max 52 characters) if 
minus sign present then the last character in STRING is 
negated, 

WORD BOUNDARY ALIGN - EVEN 
Aligns the location counter to a word boundary if it 
contains an odd value, otherwise it is unchanged, 

DEFINE ASSEMBLY TIME CONSTANTS - label EQU exp 
Assigns the value of EXP to LABEL, 

EXTERNAL DEFINITION - DEF symbol (,symbol) 
Allows other programs to access a program's SYMBOLS, 

EXTERNAL REFERENCE - REF symbol (,symbol) 
Provides access to SYMBOLS defined in other programs. 

SECONDARY EXTERNAL REFERENCE - SREF symbol ( , symbol) 
Provides access to SYMBOLS defined in other programs. 

FORCE LOAD - LOAD symbol ( ,symbol) 
Causes a special object tag to be generated for the Link 
Editor (effect INCLUDE SYMBOL), Used with SREF. 

DEFINE EXTENDED OPERATION - DXOP sym,num 
Defines SYM to be an XOP; NUM is the XOP number, 

PROGRAM END - END (symbol) 
Terminates the assembly (everything following is ignored). 
If SYMBOL present it is the program's entry point. 
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OUTPUT OPTIONS - OPTION key (,key) 
Specifies the output and listing options to the assembler, 
KEY can he: 

XREF - Print cross reference table, 
OBJ - Print listing of the object code. 
SYMT - Print symbol table, 
NOLIST - Suppress listing (SDSMAC) 
TUNLIST - Text statement unlist (SDSMAC) 
DUNLIST - Data statement unlist (SDSMAC) 
BIJNLIST - Byte statement unlist (SDSMAC) 
MUNLIST - Macro expansion unlist (SDSMAC) 

PROGRAM IDENTIFIER - IDT string 
Assigns a name (first 8 characters of STRING - enclosed in 
single quotes) to the program. Must precede everything that 
produces object code , 

PAGE TITLE - TITL string 
STRING (max 50 characters) supplies heading for the 
assembler listing, (If TITL not first source statement then 
no heading on first page of listing). 

LIST SOURCE - LIST 
Restores printing of the source listing after an 13NL. The 
directive is not printed in the listing, 

NO SOURCE LISTING - UNL 
Inhibits the printing of the source listing, The directive 
is not printed in the listing* 

PAGE EJECT - PAGE 
Causes the assembler to continue the source listing on a new 
page. The directive is not printed in the listing, 

WORKSPACE POINTER - WPNT label SDSMAC only 
Defines the current workspace (referenced by LABEL) to the 
assembler but produces no object code. 

COPY SOURCE FILES - COPY file SDSMAC only 
Causes input to the assembler to be taken from FILE, On end 
of file, input is resumed from the original file. 

DEFINE OPERATION - DFOP sym,op SDSMAC only 
Defines a synonym (SYM) for an operation (OP), OP may be a 
mnemonic, a macro name, or the SYM of a previous DFOP or 
DXOP directive, 
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8 . 1 4 , 9  Object Record Format and Code 

1 Byte 4 Bytes 6 / 8  Bytes (when r e q u i r e d )  
l------.l-------------l-.-----------.------.---- 

I I 
1 Tag 1 1ST F i e l d  I 2ND F i e l d  I 
I----.--I--.-----.--.-I~--------------.- 1 

TAG 1st FIELD 2nd FIELD MEANING 

Length of a l l  
r e l o c a t a b l e  code 
Address 
Address 
Locat ion of l a s t  
appearance  of 
symbol 
Locat ion of l a s t  
appearance  of 
symbol 
Locat  i o n  

Locat ion 

Checksum f o r  
c u r r e n t  r ecord  
Any va lue  
Load address  
Load address  
Data 
Data 
Load b i a s  

Not used 

Texas Ins t ruments  

8 c h a r  
Program I D  
Not used 
Not used 
6 c h a r  
symbol 

6 c h a r  
symbol 

6  c h a r  
symbo k 
6  c h a r  
symbol 
Not used 

Not used 
Not used 
Not used 
Not used 
Not used 
Not used 

Not used 

Program s t a r t  

Absolute e n t r y  p o i n t  
R e l o c a t a b l e  e n t r y  p o i n t  
E x t e r n a l  r e f e r e n c e  l a s t  
used i n  r e l o c a t a b l e  code 

E x t e r n a l  r e f e r e n c e  l a s t  
used i n  a b s o l u t e  code 

R e l o c a t a b l e  e x t e r n a l  
d e f i n i t i o n  
Absolute e x t e r n a l  
d e f i n i t i o n  
Checksum 

Ignore  checksum va lue  
Absolute load \ address  
R e l o c a t a b l e  load address  
Absolute d a t a  
R e l o c a t a b l e  d a t a  . 
Load b i a s  o r  o f f s e t  
I l l e g a l  
End of record  
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8.14.10 I n s t r u c t i o n  E x e c u t i o n  Times 

I-------------------l------1-----III-I--I-11-----~--------- I 
I I n s t r u c t i o n  I C lock  I Memory I Add. Mod Tab le  I 
I I C y c l e s  I Access  I Sou rce  I Dest  I 
I-------------------~------I----I--.--o--~-.-~-o--~--.---- I 
I A 1 14 1 4 1 A  I A I  
I AB 1 14 1 4 1 B  I B I  
I ARS Msb=O 1 12 1 2 1 A  I - I 
1 ~ s b = l  1 14 1 3 1 A  I - I 
I A 1  1 14 1 4 1 -  1 - 1  
I A N D 1  1 14 1 4 1 -  1 - 1  
1 B I 8 1 2 1 A  1 - 1  
I BL 1 12 1 3 1 A  1 - 1  
I BLWP 1 26 1 6 1 A  1 - 1  
1 C 1 14 I 3 1 A  1 A I  
I CR 1 14 1 3 1 B  I B I  
I c1 1 14 1 3 1 -  1 - 1  
I CKOF 1 12 1 1 1 -  1 - 1  
1 CKON 1 12 1 1 1 -  1 - 1  
I CLR 1 10 1 3 1 - 4  1 - 1  
I COC 1 14 1 3 1 A  1 - 1  
1 czc 1 14 1 3 1 A  I - 1 
1 DEC 1 10 1 3 1 A  1 - 1  
I DECT I 10 1 3 1 A  1 - 1  
I D I V  ST4 S e t  1 16 1 3 1 A  1 - 1  
( ST4 Reset a 1 92-124 1 6 1 A  1 - 1  
1 IDLE 1 12 1 1 1 -  1 - 1  
1 I N C  1 10 1 3 1 A I - I 
I INCT 1 10 1 3 1 A  1 - 1  
I IbJV 1 10 I 3 1 A  1 - 1  
I JUMP PC Changed 1 10 1 1 1 -  1 - 1  
I PC Unchanged I 8 1 1 1 -  I - I 
I LDCR C=O 1 52 1 3 1 A  1 - 1  
I 1<=C<=8 I 20+2C I 3 I B I - '  I 
I 9<=C<=15 I 20+2C I 3 1 A  1 - I 
I L I  1 12 1 3 1 -  1 - 1  
I LIMI 1 16 1 2 1 -  1 - 1  
1 LREX 1 12 1 1 1 -  1 - 1  
1 LWPI 1 10 1 2 1 -  1 - 1  
I MOV 1 14 1 4 1 A ! A 1  
I MOVB 1 14 1 4 1 B  I B I  
I MPY 1 52  1 5 1 A  1 - 1  
I NEG 1 12 1 3 l A  1 - 1  
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - i - - - - - I - - - - - l - - - - - - -  I 
I -RESET f u n c t i o n  1 26 1 5 1 - 1 - 1  
I -LOAD f u n c t i o n  1 22 1 5 1 -  1 - 1  
I I n t e r r u p t  c o n t e x t  1 I 1 I 1 
1 s w i t c h  1 22 1 5 1 -  1 - 1  
I-------------------l--------I--------1-------.1------- I 
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I,.--,--~-~------~----I--------I--------I---------------- 
I I 
I I n s t r u c t i o n  I Clock j Memory i Add. Mod Tab le  1 
I 1 Cyc le s  I Access 1 Source  I Dest 1 

1 RSET 1 12 1 1 1 -  1 - 1  
I RTWP 1 1 4  1 4 1 -  1 - 1  
I S  1 14 1 4 l A  I A I  
I SB 1 14 1 4 B  1 B I 
I SBO 1 12 1 2 1 -  1 - 1  
I SBZ 1 12 1 2 1 -  I - I 
1 SET0 1 10 1 3 1 A  1 - 1  
I SHIFT CfO I 12+2C I 3 1 -  1 - 1  
1 C=O,RO=O 1 52 1 4 1 -  I - I 
1 C = O , R O = N ~ O  1 20+2N 1 4 1 -  1 - I 
1 soc 1 14 1 4 1 A  I A 1  
I SOCR 1 14 1 4 1 B I B 1 
I STCR C=O 1 60 1 4 1 A  1 - 1  
1 1<=C<=7 1 42 1 4  1 1 - 1  
I C=8 1 44 1 4 1 B  I - 1 
1 9<=C<=15 1 58 I 4 1 A  1 - 1  
i STST f 8 i 2 1 -  ! 
I STWP 1 8  1 2 1 -  1 - 1 
I SWPB 1 10 1 3 1 A  1 - 1  
1 szc 1 14 1 4 1 A  I A I  
1 SZCR 1 14 1 4 1 B  I B 1  
1 TB 1 12 1 2 1 -  1 - 1  
I x b I 8  1 2 1 A  I - I 
I XOP 1 36 1 8 1 A  I - I 
I XOR 1 14 1 4 1 A  I - I 
I - - - - - - - - - - - - - - - - - - - I - I . ~ - ~ ~ ~ I ~ ~ ~ - ~ - ~ ~ 1 ~ I - - - - - - ~ - - - - - - -  1 
I Undefined opcodes 1 6  1 1 1 -  1 - 1  
1 - - - - - - - - - - - - - - - - - - - 1 ~ - ~ - ~ - ~ ~ 1 ~ - - - - - - - 1 - - - - - - ~ ~ ~ ~ - - - ~ - ~  D 

a  Execu t ion  t ime i s  dependent  upon t h e  p a r t i a l  q u o t i e n t  
a f t e r  each  c l o c k  c y c l e  d u r i n g  e x e c u t i o n  

b Execu t ion  t i m e  i s  added t o  t h a t  of t h e  i n s t r u c t i o n  a t  t h e  
s o u r c e  a d d r e s s  minus 4  c l o c k  c y c l e s  and 1 memory a c c e s s  

Address  M o d i f i c a t i o n  T a b l e s  (A and B) 

I---------------1---------------1----.)-.)---------- 1 
1 Address ing  1 Clock Cycles  1 Memory Access I 
I Mode I A I B I A I B I  
I---------------I-------1----11------1-------l------- 1 
I R e g i s t e r  I O I ~ I ~ I O I  
1 I n d i r e c t  1 4 1 4 1 1 I 1 I  
I Indexed 1 8 1 8 1 2 1 2 1  
1 Symbolic 1 8 1 8 1 1 1 1 I  
I I n d i r e c t w i t h I  8  1 6 1 2  1 2 1 
I a u t o i n c r e m e n t  ( 1 i i i 
I---------------I-------I----II-----II--I----l------- I 

Texas I n s t r u m e n t s  October  1981 



SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE 

T - Total instruction execution time 
tc - Clock cycle time 
C - Number of clock cycles for instruction execution 

plus address modification 
W - Number of required wait states per memory access 

for instruction execution plus address 
modification 

M - Number of memory accesses 

As for the TMS9900 except: 

~~--o---o~-~--------~-----o-o~-------- 

1 Instruction I Clock I Memory 
I I Cycles I Access 
I-------------------I-----o--I~-~I~~I~ 
I LIMI 1 14 1 2 
I x a 1 4 1 1 
l ~ - - - - o ~ - - - - ~ - - - ~ ~ - - I I - - - o - ~ I I I I ~ - - - o ~  

---------------- 
I Add. Mod Table 
I Source I Dest ---------------- 

- I - 
' A I - 
--1--1111------- 

a Execution time is added to that of the instruction at the 
source address minus 4 clock cyc1es and 1 memory access 
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1-------------------1---1--1-II0------1-------00----0-- 1 
I I n s t r u c t i o n  I C l o c k  I Memory I Add* Mod T a b l e  I 
I j C y c l e s  I Access I S o u r c e  I Dest 1 
1-------------------f-f--1---f-1-1-11-1-I-~------l----~~- I 
1 A 1 22 1 8 I A  1 A l  
I AB 1 22 I 8 1 B  I B I  
I ABS Msb=O 1 16 1 4 1 A 1 - 1  
I Msb=l 1 20 1 6 1 A  1 - 1  
I A 1  1 22 1 8 1 -  1 - 1  
I A N D 1  1 22 1 8 1 -  1 - 1  
I B 1 12 1 4 1 A  1 - 1  
I RL 1 18  1 6 1 A  I - I 
I RLWP 1 3 8 f 1 2 1 A  I - I 
I c I 20 1 6 1 A  I A I  
I 1 20 1 6 I B I B I  
I C I  1 20 1 6 1 -  1 - 1  
1 CKOF 1 14  1 2 1 -  1 - 1  
I CKON 1 14  1 2 1 -  1 - 1 
I CLR 1 16  1 6 1 A  1 - 1  
( CSC i 20 ! 6 1 A I 
1 czc 1 20 1 6 1 A  I - 1 
1 DEC 1 16  1 6 l A  1 - 1  
I DECT 1 16  1 6 1 A  I - I 
I D I V  ST4 S e t  1 22 1 6 1 A  1 - 1  
I ST4 Reset a 1104-136 1 12  1 A 1 - I 
( IDLE 1 14 1 2 1 -  I - I 
I I N C  1 16  1 6 1 A  I - I 
I INCT 1 16 1 6 1 A  1 - 1  
I INv 1 16  1 6 1 A  I - I 
I JUMP PC Changed 1 12  1 2 1 -  1 - 1  
I PC Unchanged 1 10  1 2 1 -  1 - 1  
I LDCR C=O 1 58 1 6 i A  1 - 1  
I 1<=C<=8 1 26+2C 1 6 1 B 1 - 1  
I 9<=C<=15 1 26+2C 1 6 1 A  1 - 1  
I L I  1 18 1 6 1 - I - 1 
I LIMI 1 22 1 6 1 -  I - I 
I LREX 1 14 1 2 1 -  I - I 
1 LWPI 1 14 1 4 1 -  I - 1 
I MOV 1 22 1 8 1 A  1 A I  
I MOVB 1 22 1 8 1 B I B I  
I MPY 1 6 2 1 1 0 1 A  1 - 1  
I NEG 1 18  1 6 1 A  1 - 1  
I OR1 1 22 1 8 1 -  1 - 1  
I RSET 1 14 1 2 1 -  1 - 1  
I RTWP 1 22 1 8 1 -  1 - 1  
I s 1 22 I 8 1 A  I A 1  
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - , - - - - - - - - l - - - - - - -  I 
1 - R E S E T f u n c t i o n  1 3 6  1 10  1 - I - I 
I '"LOAD f u n c t i o n  1 32 1 10 1 - 1 - 1  
I I n t e r r u p t  c o n t e x t  I i i i I 
I s w i t c h  1 3 2 1  1 0 1 -  I - 1 
1-------------------1-.------1-----------1------- I 
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I-------------------~--------I--------1---------------- I 
1 Instruction I Clock 1 Memory I Add. Mod Table 1 
I 1 Cycles I Access 1 Source 1 Pest 1 
I-------------------l------1----I----II--I--------l------- I 
I Sl3 1 22 I 8 1 B  I B I 
1 SBO I 16 1 4 1 - 1 - 1  
I SBZ 1 16 1 4 1 -  1 - 1  
I SET0 1 16 1 6 1 A  I - I 
1 SHIFT C/O I 18+2C 1 6 1 -  1 - 1  
I C=O,RO=O 1 60 1 8 1 -  1 - 1  
1 C=O,RO=N/O 1 28+2N 1 8 1 -  1 - 1  
I soc 1 22 1 8 l A  I A I  
I SOCB 1 22 1 8 1 R  I B I  
( STCR C=l) 1 68 1 8 1 A  1 - 1  
I 1<=C<=7 I 50 1 8 1 B  1 - 1  
I C=8 1 52 1 8 B  1 - 1  
I 9<=C<=15 1 66 1 8 1 A ! - 1 
I STST 1 12 1 4 1 -  1 - 1  
1 S ~ P  1 12 1 4 1 -  I - I 
I SWPB 1 16 1 6 1 A  1 - 1  
I szc 1 22 1 8 1 A  1 A I  
I SZCB 1 22 1 8 1 B I 1 
I TB 1 16 1 4 1 -  1 - 1  
I X b 1  12 1 4 1 A  1 - 1  
I XOP 1 5 2 1  1 6 I A  1 - 1  
I XOR 1 22 1 8 l A  1 - 1  
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - , - - - - - - - - l - - - - - - -  I 
1 Undefined opcodes I 8 1 2 1 -  1 - 1  
1-------------------I-I--1--------1--------l------- I 

a Execution time is dependent upon the partial quotient 
after each clock cycle during execution 

b Execution time is added to that of the instruction at the 
source address minus 4 clock cycles and 1 memory access 

Address Modification Tables (A and R) 

I Addressing I Clock Cycles I Memory Access I 
I Mode 1 A l R I A 1 R I  
1---------------1-------I-------I------l------- 
I Register 1 o I o I o I o  
I Indirect I ~ 1 6 1 2 1 2  
I Indexed 1 1 2  1 1 2  1 4 1  4 
I Symbolic ( 1 0 1 1 0 1  2 1  2 
I Indirect with / 12 1 10 1 4 I 4 
I autoincrement 1 1 I I 

Use the TMS9900 formula for calculating the TMS9980A and 
the TMS9981 instruction execution times 
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I---------------I----------I---------- I----------I-------.--III---------1 
I 

1 I I E v e r y t h i n g l E v e r y t h i n g l  I I 
i i I b u t  Src 1 bu t  Dst ! ! 
1 I I and D s t  I ope rand  I I Operand I 
I I n s t r u c t i o n  I E v e r y t h i n g l  o p e r a n d s  1 o f f  c h i p  I E v e r y t h i n g l  a d d r e s s  I 
I I on c h i p  I o f f  c h i p  1 a  I o f f  c h i p  1 d e r i v a t i o n 1  
I I C l  l X M l  I C1 l X M l  1 C 1  l X M l  I C 1  l X M l  I S r c  1 D s t  I 
I---------------I-----I~---111---1----1----.~----~-----~----~.---- I ----- I 
I A 1 4 1 ~ 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 A 1  
1 AB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 1 A I A I  
I ARS 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I  
I A I  1 4 1 0 1 6 1 4 1 6 1 4 1 8 l 8 1 - 1 - 1  
I A N D 1  1 4 1 0 1 6 1 4 1 6 ~ 4 1 8 1 8 1 - 1 - 1  
I B 1 3 1 O 1 4 1 2 1 4 1 2 1 4 1 2 I A I - I  
I BL 1 5 1 O 1 6 1 2 1 7 l 4 1 7 1 4 1 A I - 1  
I BLWP I 1 1  1 0 1  12 1 2 1  1 4 b l  6 b l  17 ( 1 2  ( A I - 1 
1 C 1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A 1 A I  
I CB 1 4 1 O 1 5 1 2 1 5 l 3 1 5 I 4 1 A I A l  
1 c1 1 4 1 ~ 1 6 1 4 1 6 1 4 1 7 l 6 1 - 1 - 1  
I CKOF \ 7 i O i $ O 2 ~ 8 ~ 2 f 8 2 2 1 - 1 - I  
I CKON 1 7 1 o 1 8 1 2 1 8 1 2 1 8 1 2 1 - 1 - 1  
I CLR 1 3 1 O 1 4 1 2 1 5 1 4 1 5 1 4 1 A I - I  
I COC 1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A 1 - I  
I C Z C  1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A I - I  
I DEC 1 3 1 0 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I  
I DECT 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I  
1 D I V S T 4 S e t c j  6  1 0 1  7  1 2 1  8 1 4 1 1 0  1 8 1  A 1 - 1 
1 S T 4 R e s e t  1 2 8  1 0 1 2 9  1 2 1 3 0  1 4 1 3 4  1 1 2 1  A I - I 
1 D I V S S T 4 S e t c l  10 1 0 1 1 1  1 2 1 1 2  1 4 1 3 6  1 8 1  A I - 1 
I ST4 Rese t  1 3 3  1 0 1 3 4  1 2 1 3 5  1 4 1 3 9  1 1 2 1  A 1 - I 
I IDLE d  1 7 + 2 1 1  O 1 8 + 2 1 1  2  1 8 + 2 1 1  2  1 8 + 2 1 1  2  1 - I - 1 
I I N C  1 3 1 O 1 4 1 2 1 ~ 1 ~ 1 6 1 6 1 A I - 1  
I INCT 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 l A I - I  
I I N V  1 3 1 O 1 4 1 2 1 6 i 6 1 6 I 6 1 A l - I  
I JTMP - A l l  I 3 I o I 4 I 2 I 4 I 2 I 4 I 2 I - I - I  
I LDCR C=O 1 4 1  1 0 1 4 2  1 2 1 4 3  1 4 1 4 4  1 6 1  A I - I 
I 1<=C<=15 I 9+2C1 0  110+2CI 2  111+2CI 4  112+2CI 6  1 A I - I 
1 LI: 1 3 1 0 1 5 1 4 1 5 1 4 1 ~ 1 6 1 - 1 - 1  
I LIMI 1 5 1 ~ 1 7 1 4 1 7 1 4 1 7 1 4 1 - 1 - 1  
I LREX 1 7 1 0 1 8 1 2 1 8 1 2 1 8 1 2 l - 1 - 1  
I LST 1 5 l o 1 6 1 2 1 6 1 2 1 7 l 4 1 - I - ~  
I LFJP 1 4 1 0 1 5 1 2 1 6 1 2 1 6 l 4 1 - 1 - 1  
I LWPI 1 4 1 ~ l 6 1 4 1 6 1 4 1 6 1 4 1 - 1 - 1  
1 MOV 1 3 1 O 1 4 1 2 1 5 1 4 1 6 1 6 1 A I A I  
I MOVB 1 3 1 O 1 4 1 2 1 4 1 3 1 4 1 4 1 A I A I  
I--.------------I-----I~~-II-I-III~---11----~----~----.~----~--I--~----- I 
1 A l l  i n t e r r u p t  I I I I I I 1 I 1 I 1 
I c o n t e x t  1 1 1 1 1 I I I I I 1 
1 s w i t c h e s  1 14 e l  0  e l  17 b l  6  b l  17 b l  6  b l  20 i l l 2  £1 - 1 - I 
I---------------I-----1~~-~I-~-~-1.-I--I-----~----~-----~----~-----i----- i 
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I---------------I----------~II-~~-Ig~-1----------~----------~----------- i 
I I I E v e r y t h i n g l E v e r y t h i n g l  I I 
I I I b u t  S r c  I b u t  D s t  1 1 I 
I I I and D s t  I operand  I 1 Operand I 
I I n s t r u c t i o n  I E v e r y t h i n g l  o p e r a n d s  I o f f  c h i p  I E v e r y t h i n g l  a d d r e s s  I 
I I on c h i p  1 o f f  c h i p  I a  I o f f  c h i p  I d e r i v a t i o n 1  
1 ( C l  l X M l  I C 1  l X M l  1 C1 l X M l  I C1 l X M l  I S r c  I n s t  I 
1---------------I-----I~---Ig----~----~----~~---~~~----~~---~-----~----- 1 
I MPY 1 2 3  ( 0 1 2 4  1 2 1 2 5  1 4 1 2 8  1 1 0 1  A 1 - I 
1 MPYS ( 2 5  1 0 1 2 6  1 2 1 2 7  1 4 1 3 0  1 1 0 1  A I - I 
I NEG 1 ~ 1 ~ 1 4 l 2 1 6 1 f i 1 6 1 6 1 A 1 - 1  
I O R 1  1 4 1 0 1 6 1 4 1 6 1 4 1 8 1 8 1 - 1 - 1  
1 RSET 1 7 1 0 1 8 1 2 1 8 1 2 1 8 1 2 1 - 1 - 1  
1 RTWP 1 6  1 0 1  7 1 2 1  7 g l 2 g l 1 0  1 8 1  - I - I 
I S  1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 l A I A l  
I SB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 l A I A 1  
1 SBO 1 8  1 0 1  9 1 4 1  9  1 2 1 1 0  1 4 1  - I - I 
I SBZ 1 8  1 0 1  9 1 2 1  9 1 2 1 1 0  1 4 1  - I - 1 
1 SET0 1 3 1 0 1 4 1 2 1 5 1 4 1 5 1 4 1 - - I  
I SHIFT CBO ( 5 + C I  0 1 6 + C 1  2 1 6 + C l  2 1 8 + C 1  6 1  - I - I 
I C=O,RO=O 1 2 3  1 0 1 2 4  1 2 1 2 4  1 2 1 2 7  1 8 1  - I - I 
I C=O,RO=NBO I 7 + N  1 0  I 8 + N  1 2  1 8 + N  1 2  I 1 1 + N  1 8  1 - I - I 
I SOC 1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 1 A I A I  
( SOCB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 I A I A 1  
( STCR C=O ( 4 3  1 0 1 4 4  1 2 1 4 6  1 6 1 4 7  1 8 1  A I - 1 
I 1<=C<=8 119+C ( 0  120+C 1 2  122+C 1 6  123+C 1 8 1 A I - I 
I 9<=C<=15 127+C I 0 128+C 1 2  130+C 1 6  131+C 1 8 1 A I - I 
I STST 1 3 1 ~ 1 4 1 2 1 4 1 2 1 5 1 4 l - 1 - 1  
1 STWP 1 3 1 0 f 4 1 2 1 4 1 2 1 5 1 4 1 - 1 - 1  
I SWPB 1 1 3  1 0 1 1 4  1 2 1 1 6  1 6 1 1 6  1 6 1  A I -  I 
1 SZC l 4 1 ~ 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 A I  
I SZCB f 4 1 ~ ~ 5 ~ 2 ~ ~ ~ 3 1 5 1 5 1 A I A 1  
I TB ( 8  1 0 1  9 1 2 1  9 1 2 1 1 0  1 4 1  - I - I 
I X h 1 2 1 ~ 1 3 1 2 1 4 1 4 1 4 1 4 1 A I - I  
1 XOP 1 1 5  1 0 1  16 1 2  1 1 8 b l  6 b l  22 1 1 4  ( A I - I 
1 XOR 1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 - I  
1---------------1-----~----~-----~----~~----~----~-----~---- I-----!----- I 

a  R e g i s t e r s  f o r  r e g i s t e r - o n l y  i n s t r u c t i o n s  (STST, LST, STWP, LWP, 
s h i f t s )  and r e g i s t e r s  f o r  i n s t r u c t i o n s  where a n  a d d i t i o n a l  r e g i s t e r  
i s  r e q u i r e d  (AI,  A N D I ,  BL, C I S  LDCR, L I ,  O R I ,  SBO, SBZ, STCR, TB, 
and  s h i f t s )  a r e  on c h i p .  

b  T rap  v e c t o r  o f f  c h i p  and new workspace  on c h i p .  
c E x e c u t i o n  t i m e  i s  dependen t  upon t h e  p a r t i a l  q u o t i e n t  a f t e r  each  

c l o c k  c y c l e  d u r i n g  e x e c u t i o n .  Clock c y c l e s  shown a r e  f o r  worse c a s e  
o p e r a n d s .  

d  W i l l  r emain  i n  I d l e  s t a t e  u n t i l  a n  unmasked i n t e r r u p t  r e q u e s t  o c c u r s  
( I =  number of CLKOUT c y c l e s  u n t i l  t h e  r e q u e s t  o c c u r s ) .  

e Trap  v e c t o r  and new workspace  on c h i p  (NMI o n l y ) .  
f Trap  v e c t o r  and new workspace  on c h i p .  
g Workspace on c h i p .  
h  E x e c u t i o n  t i m e  shown does  n o t  i n c l u d e  e x e c u t i o n  t ime  of t h e  

i n s t r u c t i o n  l o c a t e d  a t  t h e  s o u r c e  operand .  
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Operand Address Derivation Table (A) 

I I Registers 
1 Registers, on chip; 
I index base I index base 

Addressing 1 addr, and 1 addr, and 
Mode I symbolic 1 symbolic 

1 address I address 
I on chip I off chip 
1 C2 I XM2 I C2 1 XM2 

- - - - - - - - - - - - - - - 1 - - - - - - 1 1 - ~ - 1 1 1 ~ - ~ - ~ 1 ~ ~ ~ - -  
1 Register 1 0  
I Indirect I 1  
I Symbolic 1 1  
I Indexed 1 3  
I Indirect with 1 3 
I autoincrement I 

Registers 
off chip; 
index base 
addr, and 
symbolic 
address 
on chip 
C2 1 XM2 

------I----- 

I 
Registers, 1 
index base I 
addr, and I 
symbolic I 
address I 
off chip I 
C2 I XM2 I 

,-----I----- I 

T - Total instruction execution time 
tc - CLKOUT cycle time 
C 1  - Base CLKOIJT cycles 
C2 - Additional CLKOUT cycles for operand address 

derivation (table 'A' above) 
W - Number of wait states per off chip (byte length) 

memory cycle 
XM1 - Base off chip (byte length) memory cycles 
XM2 - Additional off chip (byte length) memory cycles 

for operand address derivation (table 'A''- aboire) " 

Address Modification Table A 

---------------I--------I-------- 
Addressing 1 Clock I Memory 
Mode 1 Cycles I Access 

---------------I--------I.-.---..-- 
Register 1 0  1 0  
Indirect 1 4  1 1  
Indexed 1 6  1 2  
Symbolic 1 6  1 1  
Indirect with 1 6 1 2  
autoincrement 1 1 
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l----------------===i==--'--------i---------------- i I 
I I n s t r u c t  i o n  I C l o c k  I M e m o r y  1 A d d .  M o d  T a b l e  I 
1 I C y c l e s  A c c e s s  I S o u r c e  1 D e s t  1 
I-------------------III---1----IIII-I-I-II--------l------- I 
I A 1 1 2  1 4 1 A  I A I  
I AB 1 12 1 4 1 A  1 A i  
I A B S  M s b = O  1 10 1 2 1 A 1 - 1  
I ~ s b = l  1 14 1 3 1 A  1 - 1  
I A I  1 14 1 4 1 - I - I 
I A N D 1  1 14 1 4 1 -  1 - 1  
1 B I 6 I 1 I A  1 - 1  
I B L  1 10 1 2 1 A I - I 
I BLWP 1 2 4  1 6 1 A  1 - 1  
I C 1 1 2  1 3 1 A  1 A 1  
I C B  1 1 2  1 3 1 A I A I  
I C I  1 12  1 3 1 -  1 - 1  
( CKOF 1 10 1 1 1 -  1 - 1  
1 CKON 1 10 1 1 1 -  1 - 1  
I C L R  I 8 1 2 1 A  1 - 1  
1 coc 1 12  1 3 1 A  1 - I 
I C Z C  1 12  1 3 1 A  1 - 1  
I DEC I 10 I 3 1 A 1 - 1 
1 D E C T  1 10 1 3 1 A  1 - 1  
( D I V  S T 4  S e t  1 2 0  1 4 1 A  1 - 1 
1 S T 4  R e s e t  1 56 1 6 1 A  1 - I 
1 D I V S  S T 4  S e t  1 56 1 4 1 A 1 - 1  
I S T 4 R e s e t  1 60 1 6 1 A  1 - 1  
I I D L E  1 10 1 1 1 -  I - I 
( I N C  1 10 1 3 1 A f - I  
I I N C T  1 10 1 3 1 A  I - I 
I I N V  1 10 1 3 1 A 1 - 1  
1 J I J M P s  - A l l  I 6 I 1 1 -  1 - 1  
1 LDCR C=O 1 48 1 3 1 A 1 - 1  
I 1 < = C < = 1 5  I 1 6 + 2 C  I 3 1 A  1 - 1  
I L I  1 12  I 3 1 -  1 - 1  
1 L I M I  1 1 2  1 2 1 -  1 - 1  
1 LREX 1 10 1 1 1 -  1 - 1  
I L S T  1 10 1 2 1 -  1 - 1  
I LWP 1 10 1 2 1 -  1 - 1  
I L W P I  1 1 2  1 2 1 -  1 - 1  
1 MOV 1 10 1 3 1 A  1 A I  
I MOVB 1 1 2  1 4 1 A  I A 1  
I MPY 1 5 2  1 5 1 A  1 - 1  
I MPYS 1 56 1 5 1 A  I - 1 
1 NEG 1 1 2  1 3 1 A  1 - 1  
1-------------------111-1---1II---I-I-I--------l------- I 
I " R E S E T f u n c t i o n  / 2 0  1 5 i - 1 - 1  
I -LOAD f u n c t i o n  1 20 1 5 1 -  I - I 
I I n t e r r u p t  con tex t  I I 1 I I 
I s w i t c h  1 2 0  1 5 1 -  I - I 
1-1-----------------l-----1---1-11-1--111I--------l------- I 
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I--------.----------I~.-.--.-!---.----1---------.---.-- 1 
1 Instruction I Clock 1 Memory j Add. Mod Table 1 
i ) Cycles Access 1 Source I Dest 1 
I--------------.----II~~-----I-~-I-.~-I------.-~~---..- 1 
1 O R 1  ! 1 4  1 4 1 -  1 - 1  
I RSET 1 1 0  1 1 1 -  1 - 1  
I RTWP 1 1 6  1 4 1 -  1 - 1  
I S 1 1 2  1 4 1 A  I A I  
I SB 1 1 2  1 4 1 A  I A 1  
I SBO 1 1 2  1 2 1 -  1 - 1  
1 SBZ 1 1 2  1 2 1 -  I 
I SET0 I 8 1 2 1 A  1 - 1  
I SHIFT CfO I 12+2C 1 3 1 -  1 - 1  
I c = o , ~ o = o  1 52 1 4 1 -  1 - 1  
1 C=O,RO=N/O I 20+2N I 4 1 -  1 - 1  
I soc 1 1 2  1 4 1 A  I A I  
I SOCB 1 1 2  1 4 1 A  1 A 1  
I STCR C=O 1 56 1 4 1 A  I - I 
1 1<=C<=8 1 4 0  1 4 1 A  1 - 1  
1 9<=C<= 1 5  1 56 1 2 1 A  1 - 1  
1 STST I 8 1 2 1 -  1 - 1  
i STVP t 8 i 2 = I - !  
1 swaR I 1 0  I 3 1 A  1 - 1  
I szc 1 1 2  1 4 1 A  I A I  
I SZCB 1 1 2  1 4 1 A  1 A I  
I TB 1 1 2  I 2 1 -  1 - 1  
I x a 1 4  1 1 I A  1 - I 
I XOP b 1  28 1 7 1 A  1 - 1  
I XOR 1 1 2  1 4 1 A  1 - 1  
\ - - - - - - - - - - - - - - . - - - - I - ~ ~ - ~ ~ - - 1 1 - - - - - - - ~ I - - - - - - - I ~ I - - - - -  I 
I Undefined opcodes 1 24 1 I -  1 - 1  
11-----------------III---.-.-I--III-.-I-------.l.----.- I 

% 2 

a Execution time is added to that of the instruction located 
at the source address 

b Execution time includes time to perform a context switch 
resulting from XIPP being inactive 

T - Total instruction execution time 
tc - Clock cycle time 
C - Number of clock cycles for instruction execution 

plus address modification 
W 1  - Number of required wait states per memory access 

for instruction execution plus address 
modification 

M - Number of memory accesses 
R - Number of CRU operations 
W2 - Number of required wait states per CRU operation 
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I-------------------I------.-I-------- 
I I n s t r u c t i o n  I M a c h i n e ]  M e m o r y  
I I S ta tes  1 A c c e s s  
l-------------------I--------l-------- 
I A I 4 I 4 
1 AB I 4 1 4 
I A B S  M s b = O  I I 3 
I M s b = l  I 3 1 3 
I A 1  I 4 1 4 
I AM 1 1 2  1 7 
1 A N D 1  I 4 1 4 
I I 3 1 1 
I R I N D  I 4 1 2 
I B L  I 5 1 2 
I BTJSK I 7 I 5 
I RLWP I 11 I 6 
I c I 4 1 3 
1 C B  I 4 1 3 
I C I  I 4 1 3 
I CKOF I 7 1 1 
( CKON I 7 1 1 
1 C L R  1 3 1 2 
I coc I 4 1 3 
1 czc 1 4 1 3 
I DEC 1 3 1 3 
1 D E C T  I 3 1 3 
I D I V  S T 4  S e t  1 10 I 4 
I S T 4  R e s e t  a 1  31 1 6 
I D I V S  S T 4  S e t  110 o r  131 4 
I S T 4  R e s e t  a 1  35 1 6 
I I D L E  1 7+2N 1 1 
1 INC 1 3 1 3 
I I N C T  I 3 1 3 
I I N V '  I 3 1 3 
1 JUMPS - A l l  1 3 1 1 
1 LDCR C = O , s e r i a l  1 40 1 3 
I C f 0 , s e r i a l  I 8 + 2 C  1 3 
I p a r a l l e l  I 5 1 3 
I L I  I 3 1 3 
( L I M I  I 5 1 2 
I L R E X  I 7 1 1 
I L S T  I 5 1 2 
I LWP I 3 1 2 
1 L W P I  I 3 1 2 
I-------------------!-------- , - - - - - - - - 
I A l l  i n t e r r u p t  I I 
1 con tex t  s w i t c h e s  1 14 1 6 
1-------------------11--1-111111--1-11 

---------------I i 
A d d .  Mod  T a b l e  I 
Source 1 D e s t  f 

--------I------- 1 
A I A I  
A I A I  
A 1 - 1  
A 1 - 1  
0 I - I 
A 
0 

1a1 
I - I 

A 1 - 1  
A 1 - 1  
A 1 - 1  
0 1 - 1  
A I - 1 
A 1 A 1  
A 
0 

I A I  
I - 1 - I - I 

0 1 - 1  
A 1 - 1  
A 1 - 1  
A I - I 
A I - I 
A 1 - 1  
A 1 - 1  
A 1 - 1  
A 1 - 1  
A 1 - 1  
0 1 - I 
A 1 - 1  
A 1 - 1  
A 1 - 1  - 1 - 1  
A 1 - 1  
A 1 - 1  
A 1 - I 
0 I - I - I - I - 1 - 1  
- 1 - 1  
0 1 - 1  - 1 - 1  

--------I------- I 
I - 1 
1 - 1  

--------I------- 1 
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----------G==G-----i--------;-----m-- 
Instruction I Machinel Memory 

I States j Access 
.-.-----------.----I--.-----I-..---.- 
MOV 1 3 i 3 
MOVB I 4 1 4 
MPY 1 24 1 5 
MPYs 1 26 1 5 
NEG I 3 1 3 
OR1 1 4 1 4 
RSET 1 7 1 1 
RTWP I 6 1 4 
S I 4 1 4 
SR I 4 1 4 
SBO I 7 1 2 
SBZ I 7 1 2 
SET0 i 3 1 2 
SHIFT CfO I 5+c I 3 
C=O , RO=O 1 22 1 4 
C=O,RO=N+O I 7+N I 4 

SHIFT DOUBLE C#O I 13+C I 5 
C=O ,R6=0 1 30 5 6 
C=O,RO=N+O I14+N I 6 

SM 1 11 I 7 
SOC 1 4 1 4 
SOCB I 4 1 4 
STCR C#O,serial 1 13+2C I 4 

C=O,serial 1 45 1 4 
parallel I 9 1 4 

STST I 3 1 2 
STWP I 3 1 2 
SWPB I 3 1 3 
szc I 4 1 4 
SZCB I 4 1 4 
TB I 7 1 2 
TEST MEMORY BIT 1 28 1 3 
X b 1 2 1 1 
XOP I 1 5 c I  8 
attached proc. 1 I 10 
XOR I 4 1 4 

-----------..------I...mI---l......------ 
Undefined opcodes 1 14 c I 6 
external proc. 1 I 8 

.l-o--l-l--------l-l---.--.-l-------- 

Add, Mod Table I 
Source 1 Dest I 

a Execution time is dependent upon the partial quotient 
after each clock cycle during execution 

b Execution time is added to that of the instruction located 
at the source address 

c Exceution time does not include the time required by soft- 
ware or an attached processor to emulate the instruction 
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Address Modification Table A 

I---------------I------------- I 
I Addressing 1 Clock I Memory 1 
I Mode 1 Cycles I Access I 

1 Register 
I Indirect 
I Indexed 
I Symbolic 
I Indirect with 
I autoincrement 

T - Total instruction execution time 
tc - Machine state time (four times the external input 

clock period) 
C - Number of machine states for instruction execution 

plus address modification 
W - Number of required wait states per memory access 

for instruction execution plus address 
modification 

M - Number of memory accesses 
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8 4 1 P i n  Assignments 

P i n  Function Pin Function Pin Function 

Vbb 
vcc 
WAIT 
-LOAD 
HOLDA 
-RE SET 
IAQ 
01 
62 
A14 
A1 3 
A1 2 
A1 1 
A1 0 
A3 
A8 
A7 
A6 
A5 
A4 
A3 
A4 

A1 45 
A0 46 
!94 47 
Vs s 48 
Vd d 49 
03 SO 
DBIN 5 1 
CRUOUT 52 
CRUIN 53 
"INTREQ 54 
IC3 55 
IC 2 56 
re1 57 
ICO 58 
NC 59 
NC 60 
NC 6 1 
Vs s 62 
DO 63 
Dl 64 
D2 
D3 

D4 
D5 
D6 
D7 
D8 
D9 
nio 
ni 1 
Dl 2 
Dl3 
Dl4 
Dl5 
NC 
NC 
Vcc 
CRUCLK 
-WE 
READY 
-MEMEN 
-HOLD 

NC - No internal connection 

P i n  Function Pin Function Pin Function 

1 '"HOLD 15 
2 TiOLDA 16 
3 IAQ 17 
4 A~~~CRUOIJT 18 
5 A1 2 19 
6 A1 1 20 
7 A1 0 2 1 
8 A9 22 
9 A8 23 
10 A7 24 
11 A6 25 
12 A5 26 
13 A4 27 
14 A3 28 

Texas Instruments 

A2 
A1 
A0 
DBIN 
CRUIN 
vcc 
Vbb 
-133 
INT 2 
INT 1 
INT 0 
DO 
Dl 
D2 

D3 
D4 
D5 
D6 
D7 
CKIN 
vs s 
Vdd 
CRUCLK 
-WE 
READY 
'"MEMEM 
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i4*iim3 m,*annn* 
1 -BSY Y b l  

P i n  Funct ion  P i n  Funct ion  P i n  Func t ion  

1 -HOLD 15 
2 HOLDA 16 
3 I A Q  17 
4 A l 3 / C R l J O U T  18 
5 A 1  2 19 
6 A 1  1 20 
7 A 1  0 2 1 
8 A 9  2 2  
9 A 8  23 

10 A7 24 
11 A6 25 
1 2  A 5  26 
13 A4 27 
1 4  A 3  28 

A2 
A 1  
A 0  
D B I N  
C R U I N  
vcc 
03 
I N T  2 
I N T  1 
I N T  0 
DO 
D l  
D 2  
D 3  

B 4  
D 5  
D6 
D 7  
OSCOUT 
C R I N  
vs s 
V d d  
CRUCLR 
"WE 
READY 
"MEMEM 

P i n  Funct ion  P i n  Func t ion  P i n  Funct ion  

GND 
GND, 
W A I T  
-LOAD 
HOLDA 
- R E S E T  
I A Q  
CLOCK 
I N J  
A1  4 
A 1  3 
A 1  2 
A 1  1 
A 1 0  
A9  
A 8  
A7  
A 6  
A 5  
A4  
A 3  
A4  

A 1  
A 0  
NC 
I N J  
GND 
GND 
D B I N  
CRUOUT 
C R U I N  
" INTREQ 
I C 3  
I C 2  
I C  1 
I C O  
NC 
NC 
NC 
I N J  
DO 
D l  
D 2  
D 3  

D 4  
D 5  
D 6  
D 7  
D 8  
D 9  
d10 
D l  1 
d12 
d13 
d14 
D l  5 
I N J  
NC 
-CYCEND 
CRUCLK 
"WE 
READY 
"MEMEN 
-HOLD 
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P i n  Funct ion  P i n  Funct fon  P i n  Func t ion  

XTAL 1 15 
X T A L ~ I C L K I N  16 

CLKOUT 17 
D 7  18 
D 6  19 
D 5  2 0  
D 4  2 1 
D 3  22 
D 2  2 3  
V c c  24 
D l  2 5  
DO 2 6  
C R U I N  27 

- 1 N T  4 1 ' " ~ C  28 

-INT 1 
I A Q ~ H O L D A  

- D B I N  
"'HOLD 

-WE/-CRUCLK 
'"MEMEM 
'"NMI 
- R E S E T  
READY 
A 0  
A 1  
A2  
A 3  
A 4  

29 A 5  
30 A 6  
3 1 vs s 
3 2  A 7  
33 A 8  
34 A 9  
35 A 1 0  
36 A 1  1 
37 A 1  2 
38 A 1 3  
39 A 1 4  
4 0  A 1  51 CRUOUT 

P i n  Func t ion  P i n  Func t ion  P i n  Funct ion  

GND 
GND 
W A I T  
-LOAD 
HOLDA 
-RE S E T  
I A Q  
CLOCK 
I N J  
A 1  4 
A 1 3  
A 1  2 
A 1  l. 
A 1 0  
A9  
A 8  
A7 
A 6  
A 5  
A4  
A 3  
A 4  

T e x a s  I n s t r u m e n t s  

A 1  
A 0  
-MPEN 
I N J  
GND 
GND 
DRIN 
CRUOUT 
C R U I N  
-1NTREQ 
I C 3  
I C 2  
I C  1 
I C O  
INTACK 
NC 
MP I L C K  
I N J  
DO 
D l  
D 2  
n3 

D 4  
D 5  
D 6  
D 7  
D 8  
D 9  
d10 
D l  1 
d12 
d13 
d14 
d15 
I N J  
- X I P P  
-CYCEND 
CRUCLK 
-WE 
READY 
-MEMEN 
-HOLD 
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8.14.11.7 TMS99000 Family 

P i n  Func t ion  P i n  Func t ion  P i n  Func t ion  

-WE/-CRTJCLK 15 Vcc 29 A 1 3 / ~ 1 3  
-DEN 16 A O / D O / C R U I N  30 A 1 4 / ~ 1 4  
-RESET 17 ~ 1 1 ~ 1  31 -ST$ /D~~/CRUOUT 
-APP 18 A 2 / ~ 2  32 ALATCH 
-HOLD 19 A3/D3 33 V s  s 
WAITGEN 20 A 4 / ~ 4  34 CLKOUT 
READY 2 1 A5/D5 35 XTAL2 
-1NTREQ 22 A 6 1 ~ 6  36 X T A L ~ I C L K I N  
7?MI 23 A7/D7 37 BST3 
I C O  24 A8/D8 38 RST2 
I C  1 25 ~ 9 1 ~ 9  39 BSTl 
IC2 26 A l o / D l o  40 '"MEM 
IC3 27 ~ 1 1 / ~ 1 1  
-1NTP 28 A 1 2 / ~ 1 2  
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-8.14.12 ASCII C h a r a c t e r  S e t  

Char  Hex C h a r  

NUL 00  
SOH 0 1  
STX 0 2  
ETX 0 3  
EOT 04  
ENQ 0 5  
ACK 06 
BEL 07 
BS 0 8  
HT 0 9  
LF OA 
VT OB 
FF OC 
CR OD 
SO OE 
S 1  OF 
9LE 10 
D C 1  11 
DC2 12  
DC3 1 3  
DC4 14 
N AK 1 5  
SYN 16  
ETR 17 
CAN 18 
EM 19 
SUB 1 A  
ESC 1B 
FS 1 C  
GS 1 D  
RS 1E 
U S  1F 
S p a c e  20 
! 2 1 
11 22 
a 23  
$ 24 
X 25 
& 26 
I 

27 
( 28 
1 29 * 2A 

T e x a s  I n s t r u m e n t s  

Hex Char  

DEL 

Hex 

O c t o b e r  1 9 8 1  
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8 , ? 4 , 1 3  Hex-Decimal Table 

----------------------.--.-l~~--.---...--..---.~--.--~- I 
E v e n  B y t e  I O d d  B y t e  

,-----,------l----------1----l------l---.-----..-- 
i 
i 

H e x  D e c  I H e x  D e c  I H e x  D e c  I H e x  D e c  1 
,------------1----------.--l-~~----..-.--l----------.-- I 

0 0 1  0 0 1  0 0 1  0 0 I 
1 4,096 1 1 256 1 1 16 1 1 1 I 
2 8,192 1 2 512 1 2 32 1 2 2 1 
3 12,288 1 3 768 1 3 48 1 3 3 1 
4 16,384 1 4 1,024 1 4 64 1 4 4 1 

I 5 20,480 1 5 1,280 1 5 80 1 5 5 1 
6 24,576 1 6 1,536 1 6 96 1 6 6 1 

1 7 28,672 1 7 1,792 1 7 112 1 7 7 1 
8 32,768 1 8 2,048 1 8 128 1 8 8 1 
9 36,864 1 9 2,304 1 9 144 1 9 9 1 
A 40,960 1 A 2,560 1 A 160 1 A 10 I 
B 45,056 I B 2,816 1 R 176 1 B 11 I 

I C 49,152 1 C 3,072 1 C 192 1 C 12 1 
1 D 53,248 1 D 3,328 1 D 208 1 D 13 1 
1 E 57,344 1 E 3,584 1 E 224 1 E 14 1 
I F 61,440 1 F 3,840 1 F 240 1 F 15 1 
11-------01---1-0-----------II.~~---I--,--[--.-----.---- I 
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