
S O F T W A R E

jj E -v- E -L (j p -pj E N .T

H A N D B O O K

Geof f Vincent

Jim Gill
-

Texas Instruments October 1981

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any
time to improve design and to supply the best possible
product for the spectrum of users.

The Software Development Handbook is copyrighted by Texas
Instruments, All rights reserved, No part of this
publication may be reproduced in any manner including storage
in a retrieval system or transmittal via electronic means, or
other reproduction in any form or any method (electronic,
mechanical, photocopying, recording or otherwise) without
prior written permission of Texas Instruments,

Information contained in this publication is believed to be
accurate and reliable. However, responsibility is assumed
neither for its use nor for any infringement of patents or
rights of others that may result from its use. No license is
granted by implication or otherwise under any patent or
patent right of Texas Instruments or others.

Copyright Texas Instruments 1981

Note "Texas Instruments" includes where the context permits
Texas Instruments Incorporated, and any of its affiliated
companies, including Texas Instruments Limited.

SOFTWARE DEVELOPMENT HANDBOOK PREFACE

PREFACE

This Second Edition of the Software Development Handbook has
been extensively revised and updated to incorporate new
developments, and to, improve and clarify the presentation.

As before, it is hoped that the book will appeal on several
levels. The first three chapters are an introduction to the
I - - rechaol~gy, and assuae little sr ns b - - L - 2 - e l I - - - - -

L c L r r r r r L c r r hLIUWlzdge .
Chapter 1 , which is introductory, describes the nature of
software and the particular contribution of microsystems
technology. Chapter 2 describes, step by step, the process
of software development for microcomputers. Chapter 3
describes the tools of the software engineer. It is hoped
that these chapters will appeal to those who have a
peripheral interest in the technology, as well as to those
who are or will become directly involved in software
engineering.

Chapter 4 addresses the subject of software>esign, which we
feel can and should be tackled separately from the
discipline of programming in a particular language. The
goal of appealing to a wide level of readership means that
experienced software engineers will find some of the
material familiar; however the approach may well be new, and
some at least of the ideas will be novel, This chapter
introduces suggested algorithmic and graphical notations for
language independent software design, Those new to the
technology are advised to read Chapter 4 in conjunction with
some practical experience of programming in one of the
languages available.

Chapter 5, Component Software, is the major new addition to
the book. It describes a method of developing and packaging
complex real time software functions. Such packages are
available off the shelf from Texas Instruments for direct
incorporation in application systems. Component Software is
a significant step towards complete packaged functions,
incorporating both hardware and software. These are likely
to play an important part in microsystems technology in the
future. Chapter 5 also includes a description of
concurrency and the requirements of real time software.

Chapters 6, 7 and 8 describe in turn Microprocessor Pascal,
Power BASIC, and 9900/99000 Assembly Language. These
chapters are not intended to be complete language
tutorials. Tutorials are available elsewhere; and it is
felt that programming is best taught by a combination of

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK PREFACE

personal tuition and practical experience. Courses on
programming are available from various sources, including
Texas Instruments. Rather, these chapters are designed to
give a feel for each language, its important features, and
its areas of application. Microprocessor Pascal is a
professional programmer's tool which permits the
construction of reliable, real time software systems of any
level of complexity, Power BASIC is a much simpler language
that can be learned in a few hours, and can be used even by
non software professionals to provide quick solutions to
simple problems. Assembly language provides direct access
to all the resources of the microcomputer, and can be used
in critical areas of a system to "fine tune" for maximum
performance. Naturally, effective use of assembly language
requires a certain level of skill. Chapter 8 contains an
extensive "Algorithms and Techniques" section, describing
some commonly used solutions to specific problems. Each
chapter includes, besides the language description, a
Reference Section that tabulates the vital elements of each
language ,

This handbook is not intended as a complete course in
software development for microcomputers. However, wieh
appropriate additional material and combined with practical
experience of one or more of the languages described, it
could form the basis for such a course. The aim is to
provide a Handbook for the emerging discipline of software
engineering for microcomputers, and to begin the process of
identifying and communicating those elements of the
technology that will prove to be of lasting value. This
book is a distillation of the practical experience of
software engineers, and it,is hoped that it will make some

, contribution to those entering on or already immersed in the
technology.

The authors wish to thank all those who have contributed
approaches, ideas, descriptions or actual software examples,
and without whom this book could not have been written,

Geof f Vincent
Jim Gill

October 1981

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

We would appreciate your comments on the usefulness of this
handbook. Please complete and return this form to the
address overleaf .

Name: (last) (first):
Company: Position:
Address :

Country:

1. Is the handbook well organised? Yes No
Comments:

2. Is the text correctly presented and adequately
illustrated? Yes - No -
Comments :

3. What subject matter could be expanded or clarified?

I

4. Are you directly involved in software development?
Please indicate your main area(s) of interest.

5. Have you found this handbook useful
(a) As an introduction to the field
(b) As a source of ideas/information

(c) As a reference book . .
(d) In any other way (please specify)

6. Do you use any Texas Instruments software products?
Is the information on these products useful to you?

7. Any other comments

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Please mail this sheet to:

M/s 35
Microprocessor Group
TEXAS INSTRUMENTS Ltd
Manton Lane
Bedf ord
MK41 7PA
ENGLAND

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

S e c t i o n

TABLE OF CONTENTS

T i t l e

CHAPTER 1 INTRODUCTION

W H A T I S S O F T W A R E .
BLACK BOXES AND D I G I T A L ELECTRONICS
C"Mp-u-TERS
SOFTWARE DEVELOPMENT
GENERAL PURPOSE COMPUTERS
DEDICATED COMPUTERS
ROM AND RAM - SEMICONDUTOR MEMORY

R O M T y p e s
R A M T y p e s
~ ~ ~ / ~ A ~ S u m r n a r y

APPLICATIONS
FUTURE DEVELOPMENTS

CHAPTER 2 SOFTWARE DEVELOPMENT

THE SOFTWARE DEVELOPMENT PROCESS
FUNCTIONAL S P E C I F I C A T I O N
SYSTEM DESIGN

D o c u m e n t a t i o n
HARDWAREDESIGN

E s t i m a t i n g S y s t e m L o a d
M e m o r y S i z e

SOFTWAREDESIGN
PROGRAMMING
PROGRAM TRANSLATION
CONFIGURATION AND LINKING
DEBUGGING

S i m u l a t i o n
HARDWARE INTEGRATION AND EVALUATION

E m u l a t i o n
E v a l u a t i o n

PRODUCTION

P a g e

CHAPTER 3 DEVELOPMENT TOOLS

3 . 1 OVERVIEW 3-1
3 . 2 DEVELOPMENT SYSTEMS 3-1
3 . 3 F I L E S • 3-2

T e x a s I n s t r u m e n t s i O c t o b e r 1 9 8 1

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

. B a c k u p s
T E X T E D I T I N G a

PROGRAMMING LANGUAGES A s s e m b l y L a n g u a g e A s s e m b l e r s
H i g h - L e v e l L a n g u a g e s
P a s c a l C o m p i l e r s
I n t e r p r e t e d L a n g u a g e s

B A S I C . . . m . . . m . . m . .

I n t e r p r e t e d P a s c a l
H i g h - L e v e l vs L o w- L e v e l

L I N K E R m a . ~ ~ m ~ ~ ~ a m a .

A b s o l u t e and R e l o c a t a b l e C o d e
TARGET SYSTEM E X E C U T I O N L o a d e r PROM P r o g r a m m e r
T E X T F I L E S

C H A P T E R 4 SOFTWARE D E S I G N

OVERVIEW
SOFTWARE STRUCTURE
SOFTWARE PACKAGES . a

D E S I G N L A N G U A G E
ALGORITHMS S e q u e n c e S e l e c t i o n A l g o r i t h m D e s i g n T h e C A S E C o n s t r u c t I t e r a t i o n S t r u c t u r e d P r o g r a m m i n g
D A T A m ~ ~ ~ a ~ ~ m ~ a a ~ ~ a m D a t a T y p e s V a r i a b l e s O p e r a t o r s D a t a D e s i g n
D A T A S T R U C T U R E S a

R e c o r d s A r r a y s D y n a m i c D a t a S t r u c t u r e s D a t a D i a g r a m s
D E S I G N APPROACHES
BLOCK STRUCUTRE
PROCEDURES AND F U N C T I O N S a P a r a m e t e r p a s s i n g
REAL T I M E SOFTWARE S e m a p h o r e s E x e c u t i v e s

i n t e r r u p t s MAKING T E A
B I B L I O G R A P H Y

T e x a s I n s t r u m e n t s O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

CHAPTER 5 COMPONENT SOFTWARE

WHAT IS COMPONENT SOFTWARE The Functional Approach Function to Function Architecture
THE COMPONENT SOFTWARE ENVIRONMENT Concurrency Packaged Functions Implementation of Concurrency Levels of Concurrency Data and Re-entrancy Memory Allocation Multiple Activations

TheRealtimeExecutive
Channels and Interprocess Files RxvsBgeratingSystems File I/O Standards 1/0 Subsystems

Configuration Customisation Microprocessor Pascal Code Efficiency Programming Support Environment
Microprocessor Pascal and Component Software

Other Languages
Hardware
Component Software Products
Silicon Functions

BIBLIOGRAPHY

CHAPTER 6 MICROPROCESSOR PASCAL

INTRODUCTION 6-1
TEXAS INSTRUMENTS IMPLEMENTATIONS 6-3
MICROPROCESSOR PASCAL OVERVIEW 6-4
Features 6-4
Stack and Heap 6-5
Systems and Programs 6-6
Processes and Procedures 6-6
Declarations and Statements 6-6
Block Structure 6-8

MICROPROCESSOR PASCAL SYSTEM . PROGRAMMING SUPPORT
ENVIRONMENT 6-1 1

Microprocessor Pascal Editor 6-12
Microprocessor Pascal Compiler and Code Generator 6-14
Microprocessor Pascal Host Debugger 6-16

MICROPROCESSOR PASCAL LANGUAGE 6-17
Basic Language Elements 6-17
Character Set m . . m m . . . m m m 6-17
Keywords m m m . 6-17

Texas Instruments iii October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

. Identifiers Language Element Separators Comments Constants Variables Expressions Operands Operators Function Calls
Assignment Statement Routine Declaration DATATYPES User Defined Types Integer and Longint Type Boolean Type CharType Enumeration Type Subrange Type
RealType Semaphore Type ArrayType Record Type SetType FileType Pointer Type TypeCompatibility

CONTROL STRUCTURES
Procedure Statement Compound Statement IF Statement CASE Statement FOR Statement WHILE Statement ESCAPEStatement GOT0 Statement

CONCURRENCY Processes Process Record Process Scheduling Process Synchronization Semaphores Wait Operation Signal Operation Interprocess Communication Shared Variables MessageBuffers Channels Interprocess Files
MODULARITY
INTERRUPTS INPUT~OUTPUT

CRU Operations a m

Memory-Mapped 1/0 Files
DIGITAL VOLTMETER (DVM) EXAMPLE a

Texas Instruments iv October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

6.13 REFERENCE SECTION 6.13.1 System Commands
6.13.2 Utility Commands (990/4 and TMAM9000 only) 6.13.3 Edit Commands 6.13.4 DebugCommands 6.13.5 F i l e M a n i p u l a t i o n R o u t i n e s 6.13.6 Arithmetic Routines 6.13.7 CRURoutines 6.13.8 Miscellaneous Routines 6.13.9 RxRoutines
6.13.9.1 Processor Management (ScheduPingj Routines 6.13.9.2 Semaphore Routines
6.13.9.3 Semaphore Attribute Routines 6.13.9.4 Interrupt Routines
6.13.9.5 Process Management Routines m a

.. b.i3.9.6 Heap Management Routines . a . m . . m

6.13.9.7 Channel 1/0 Routines
6.13.9.8 Interprocess File Transfer Routines . . .
6.13. 9.9 Exception Handling Routines
6.13.9.10 Critical Transaction Routines a

6.13.9.11 Rx Error and Exception Codes
6.13.10 Backus-Naur Form (BNF) Syntax Deffnitions . .
6.13.10.1 CompilerOptions . . m . . . m . .

6.13.10.2 Concurrent Characteristics 6.13.10.3 System Declaration 6.13.10.4 Typesyntax 6.13.10.5 Statement Syntax 6.13.10.6 ExpressionSyntax 6m13alOa7 Variablesyntax
6.13.10.8 Constant Expression Syntax 6a13m10.9 Language Element Syntax
6.14 BIBLIOGRAPHY

CHAPTER 7 POWER BASIC

INTRODUCTION a

POWERBASIC EvaluationPowerBASIC
Development Power BASIC . m . m . . m .

Configurable Power BASIC . . m a . . a

BASIC LANGUAGE OVERVIEW
POWER BASIC OPERATION Operating Modes Editing Source Statements Automatic Line Numbering System Initialisation
VARIABLES Variable Names Variable Declaration Numeric Representation Integer Variables Floating Point Variables Character String Variables

Texas Instruments v October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

7.5.3.4 Array Variables
7.6 POWER BASIC PROGRAM
7.6.1 Control Statements
7.6.1.1 GOT0 'Statement
7.6.1.2 IF THEN Statement
7.6.1.3 ELSE Statement
7.6.1.4 FOR NEXT Statement
7.6.2 Subroutines
7.6.3 ON Statement
7.6.4 ERROR Statement a . m

7.6.5 CRU Operations
7.6.5.1 BASE Statement . . m m
7.6.5.2 CRB Function . . m m 7.6.5.3 CRF Function
7.6.6 Memory Operations a m .

7.6.6.1 MEMFunction 7.6.6.2 MWD Function
7.6.7 Assembly Language Routines
7.6.8 Interrupts 7.6.8.1 IMASK Statement
7.6.8.2 TRAP Statement m a

7.6.8.3 IRTN Statement
7.7 POWER BASIC STORAGE ALLOCATION
7.7.1 Variable Storage
7.7.1.1 Integer Format
7.7.1.2 Floating Point Format
7.7.1.3 Character String Format
7.7.1.4 Array Storage
7.7.2 System Memory Map
7.8 REFERENCE SECTION
7.8.1 Character Set 7.8.2 Hexadecimal Constants
7.8.3 VariableNames . . . a . m m

7.8.4 Edit Commands m . . m m 7.8.5 Power BASIC Commands 7.8.6 Power BASIC Statements 7.8.7 Operators 7.8.7.1 Arithmetic Operators 7.8.7.2 Relational Operators
7.8.7.3 Boolean Operators m . m m . m . . .

7.8.7.4 Logical Operators . . a . m . m m 7.8.7.5 Operator Precedence 7.8.8 Arithmetic Functions 7.8.9 CRU Operations 7.8.9.1 CRB Function
7.8.9.2 CRF Function . . . m e 7.8.10 Memory Functions 7.8.10.1 BIT Function 7.8.10.2 MEM Function 7.8.10.3 MWD Function 7.8.11 Miscellaneous Functions
7.8.11.1 NKY Function 7.8.11.2 SYS Function
7.8.11.3 TIC Function
7.8.12 String Operations
Texas Instruments vi October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

7.8.13 String Functions
7.8.14 INPUT Options
7.8.15 PRINTOptions . . m m . m

7.8.16 Floating Point XOP Package 7.8.3.7 Variable Storage 7.8.18 ASCII Character Set
7.8.19 Hex-DecimalTable
7.8.20 Error Codes
7.9 BIBLIOGRAPHY

CHAPTER 8 ASSEMBLY LANGUAGE

INTRODUCTION
....

LNSTRUCTION FORMAT
INSTRUCTION FORMAT RESTRICTIONS m a m m a

MEMORY ORGANIZATION a a a a a

B y t e *
Word
Registers Workspace Registers
Register Functions
Context Switch
Addressing Modes Register Addressing
Register Indirect Addressing
Symbolic Memory Addressing
Indexed Memory Addressing
Register Indirect Autoincrement Addressing

Specialized Addressing Modes
Immediate Addressing
CRU Bit Addressing
Program Counter Relative Addressing . . .

SUBROUTINES
PARAMETER PASSING
STRUCTURING
Selection
Condition Codes Jump Instructions Iteration

Sequence
PROGRAMMING FOR RX AND COMPONENT SOFTWARE
COMMUNICATIONS REGISTER UNIT ~ m m m m m Single-Bit CRU Instructions
Multiple-Bit CRU Instructions

INTERRUPTS m m m m m m m m m m m m

Interrupt Structure
Interrupt Vectors
Interrupt Sequence
Fault Tolerant Interrupt Systems

EXTENDED OPERATION INSTRUCTIONS
Defining Extended Operation Instructions . .
Extended Operation Instruction Vectors . .
Extended Operation Instruction Execution . .

Texas Instruments vii October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

8.12 9900/99000 FAMILY
8.12.1 TMS9900 a
8.12.2 SBPggOOA 8.12.3 TMS9980A 8.12.4 T M S 9 9 8 1
8.12.5 T M S 9 9 9 5
8.12.1 Macro Instruction Detect
8.12.2 Arithmetic Overflow
8.12.3 Test for MID or Arithmetic Overflow . . .
8.12.4 OnChipCRUFlagRegister
8.12.5 On Chip Decrementer/~vent Counter 8.12.6 S B P 9 9 8 9
8.12.6.1 MPILCK .
8.12.6.2 XIPP
8.12.6.3 INTACK
8.12.7 TMS99000 Family
8.12.7.1 Macrostore
8.12.7.2 Attached Processors
8.12.7.3 Attached Computers
8.12.7.4 Interrupts 8.12.7.5 MPILCK
8.12,7*6 CRU Operations
8.13 ALGORITHMS AND TECHNIQUES
8.13.1 Invoking the 9900 Family of Assemblers . .
8.13*1.1 LBLA
8.13.1.2 SYMBOLIC
8.13.1.3 TXMIRA
8.13.1.4 SDSMAC
8.13.2 Number Representations
8.13.2.1 Numbersystems
8.13.2.2 Representation of Negative Numbers . . .
8.13.2.3 Representation of Fractions
8.13.2.4 Representationof Floatingpoint Numbers 8.13.2.5 BinaryCodedDecimal
8.13.3 Position Independent Code
8.13.4 ROM/RAM Systems
8.13.5 MacroProcessing a . a

8.13.5.1 Macro Definition a 8.13.5.2 Macrocall 8.13.6 Nested Subroutines
8.13.7 Stacks a . O

8.13.8 Recursion . . a . a 8.13.9 Re-entrancy
8.13.10 Automatic Workspace Allocation
8.13.11 JumpTable
8.13.12 Miscellaneous Techniques
8.13.12.1 Swapping Register Values
8.13.12.2 Error Return
8.13.12.3 Buffered 1/0
8.13.12.4 Increment Register by 4
8.13.12.5 Non Destructive Memory Sizing a . . . e

8.13.12.6 Simple Clock using the 9901
8.13.12.7 Simple 1/0 Routines using the 9902 . . .
8.13.12.8 Automatic Baud Rate Determination . . .
8.13.12.9 PackedData
Texas Instruments viii October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

8.14 REFERENCE SECTION
8.14.1 Instruction Formats
8.14.2 Status Register 8.14.3 Interrupts
8.14.4 CRU
8.14.5 Register Restrictions
8.14.6 Assembly Language Instructions
8.14.7 Pseudo-Instructions
8.14.8 Assembler Directives 8.14.9 Object Record Format and Code
$.i4.i0 instruction Execution Times
8 ~ 1 4 ~ 1 0 ~ 1 TMS99OO
8.14.10.2 SBP9900A a . m 8.14.10.3 ~ ~ ~ 9 9 8 0 ~ / ~ ~ ~ 9 9 8 1
8a14a10~4 TMS9995

nnnnnon 8.14.10.5 a ~ r 7 7 0 7 . . a m . m

8.14.10.6 TMS99000 Family
8.14.11 PinAssignments . . . m 8.14.11.1 TMS9900
8.14.11.2 TMS9980A m m m .

8.14.11.3 TMS9981 m
8.14.11.4 SBP9900A m . . m 8.14.11.5 TMS9995 8.14.11.6 SBP9989 8.14.11.7 TMS99000Family 8.14.12 ASCII Character Set
8.14.13 Hex-Decimal Table 8.15 BIBLIOGRAPHY

Table

Figure

LIST OF TABLES

Title

Semiconductor Memory Characteristics . . .
Methods of Parameter Passing
Interrupt Mask Table
Interrupt Vector Table XOP Vector Table

LIST OF FIGURES

Title

. Conventional Machine
Microprocessor Machine
Layout of a Microprocessor Machine Program Control
Software Has No Unique Physical Form "Black Box" ANDGate AND Gate Truth Table

Page

Page

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

Data Translation Computer
Structure of a Computer
A General Purpose Computer
A Dedicated Microcomputer
Electronic Function Package
The Software Development Process
Hardware Design for a Microprocessor System .
Emulation
SoftwareTools
Backup Cycle . 1

. Backup Cycle 2
Backup Cycle . 3
Editor Function Use of a Screen Based Editor
Microprocessor Pascal Editor 'Menu' of Commands
Assembler
Relocatable Code
Component Packages of a Factory Control System
Tea making Algorithm "Pourcup"A1gorithm Sequence Structure Diagram
Selection Structure Diagram
"Pour cup" Structure Diagram
Alternative Algorithm for "pour cup" . . .
The CASE Construct
CASE Construct with OTHERWISE Clause . . .
Iteration Structure Diagram
Data Representation of a Temperature . . .
Data Diagram for an Array of Records . . .
The Record Variant
Initial Design Algorithm
"Read Input" Algorithm Expansion
Procedure Declaration
Procedure Call
Function Declaration and Reference
Procedure Call Mechanism
Semaphore Signalling
Real Time Algorithm
Compilation Listing for the Tea Making Algorithm
Corrected Compilation Listing
Reverse Assembled Object Code for the Tea Making
Algorithm
Configuration of Component Software Packages .
The Traditional Approach
TI Functional Architecture Concurrency SYSTEMS. PROGRAMS and PROCESSes
Conventional Operating System Structures Software Function Bus
I/O Subsystem 5 Levels of Interface to I/o Subsystems Configuration
The Microprocessor Pascal System
Software/Hardware Correspondence

Texas Instruments x October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

The Functional Approach . m a . . . i .

Program Structure Diagram
System Structure . . a . . O

Lexical Hierarchy
Concurrent Hierarchy
Interpretive vs Compiled Characteristcis . .
Repeat Until Construct
A Sample Program
Channel Mechanism
Interprocess File Mechanism
DVM Example . Lexical Hierarchy DVM Example = Concurrent Structure
CodeMinimisation First Variable Allocation Second Variable Allocation
IntegerFormat
Floating Point Format
Character String Format
Character String Storage Example
Array Storage
System Memory Map
Assembly Language and the Computer
AByte A Word
Memory Organisation
Before Executing the BLWP Instruction . . .
After Executing the BLWP Instruction . . .
After Executing the RTWP Instruction Parameter Passing 1 Parameter Passing 2
Parameter Passing 3
General Selection Construct
Condition Codes for the TMS9900 Status Register A T h r e e W a y S e l e c t i o n E x a m p l e
A Two Way Selection Example
An Iteration Example (REPEAT)
An Iteration Example (WHILE)
A Sequence Example
A Complex Structure
CRU Bit Addressing
CRU Transfer of More Than 8 Bits
CRU Transfer of 8 Bits Or Less
CRU Output Example
CRU Input Example
State Prior to a Level 8 Interrupt
State After a Level 8 Interrupt
State Before Executing the XOP 2 Instruction .
State After Executing the XOP 2 Instruction Macrostore Attached Processor Attached Computer Full TMS99000 Instruction Sequence
BitGrouping
Floating Point Format A Possible BCD Format

Texas Instruments xi October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

8-35 ROM/RAM P a r t i t i o n i n g 8-69
8-36 Macro Processor Operation 8-72
8-37 Stack Representaion 8-76
8-38 A S t a c k / ~ o r k s p a c e A l l o c a t i o n Implementation . 8-80
8-39 TMS9902CharacterTiming a . e e . . . 8-93

Texas Instruments x i i October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

CHAPTER I

INTRODUCTION

1.1 WHAT IS SOFTWARE?

Software is what makes microprocessor technology different
from conventional engineering techniques. Fundamentally,
software is a set of instructions that tells the hardware
(the microprocessor, and any electrical or mechanical
devices connected to it) what to do.

In a conventional machine, the physical layout of the parts
determines what the machine will do:

- L LdJjg,
Figure 1-1 Conventional Machine

In a microprocessor machine, it is not always possible to
tell from the physical arrangement exactly what the machine
does:

PROCESSOR

Figure 1-2 Microprocessor Machine

The function of the machine is determined by software.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

The g e n e r a l l a y o u t of a m i c r o p r o c e s s o r machine i s shown i n
F i g u r e 1-3.

INPUTS

SENSORS
(TEMPERATURE,

POSITION,
LIGHT, ETC)
SWITCHES,

KEYBOARDS

PROCESSOR
OUTPUTS

-

MOTORS,

DISPLAYS,
PRINTERS

F i g u r e 1-3 Layout of a M i c r o p r o c e s s o r Machine

I n t h e c e n t r e i s t h e m i c r o p r o c e s s o r . To t h e p r o c e s s o r a r e
b r o u g h t a s e r i e s of i n p u t s - which might come from
t e m p e r a t u r e s e n s o r s , l i m i t s w i t c h e s , o p e r a t o r keyboa rds and
s o on, A l l i n p u t s must be c o n v e r t e d t o e l e c t r i c a l s i g n a l s
b e f o r e t h e y r e a c h t h e p r o c e s s o r .

From t h e p r o c e s s o r come a c o l l e c t i o n of o u t p u t s - a g a i n
e l e c t r i c a l s i g n a l s , which c a n be u sed t o o p e r a t e m o t o r s ,
a c t u a t o r s , d i s p l a y s and s o on, The p r o c e s s o r i t s e l f h a s a n
e x t e n s i v e r e p e r t o i r e of o p e r a t i o n s i t c a n pe r fo rm, i n v o l v i n g
i n p u t s , o u t p u t s and i n t e r n a l m a n i p u l a t i o n s . However, by
i t s e l f t h e p r o c e s s o r i s u s e l e s s , It needs a program - a s e t
o f s o f t w a r e i n s t r u c t i o n s t h a t s p e c i f y e x a c t l y what
o p e r a t i o n s t o p e r f o r m , and i n what o r d e r . The program w i l l
d e t e r m i n e when t o t a k e n o t i c e of (t o r e a d) t h e i n p u t
s i g n a l s , what t o do w i t h them, and what o u t p u t s i g n a l s t o
p roduce . It i s t h e program t h a t c o n t r o l s t h e machine.

x a s I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

INPUTS OUTPUTS
PROCESSOR

SENSORS
(TEMPERATURE,

POSITION, MOTORS,
LIGHT, ETC) \
SWITCHES, DISPLAYS,

PRINTERS

PROGRAM
-

Figure 1-4 Program Control

One characteristic of microprocessor systems is that a
different program placed in the 'same set of hardware will
cause the machine to do different things. Of course, the
scope of what can be done is determined by the hardware: if
there is not a motor control circuit connected to a
microprocessor, there is no way that the software will be
able to turn a motor on and off. It is the hardware that
determines what is possible; it is the software that
determines what the machine actually does.

Software must have some ultimate physical reality in order
to have any effect on the real world. However, it has two
fundamental characteristics which distinguish it from
hardware. First, it is at least an order of magnitude
easier to manipulate than hardware: changing a piece of
software usually involves no more than typing a few keys at
a keyboard, while changing a hardware layout (say a printed
circuit board) requires a lot of work and a lot of time.
Second, software has a chameleon-like quality of being able
to change its physical form without altering its essential
nature. The same piece of software may exist on a magnetic
disk, in semiconductor memory, as printed output or
displayed on a screen.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

HUMAN READABLE MACHINE READABLE

Figure 1-5 Software Has No Unique Physical Form

The problems which characterise software engineering are
problems of management and organization rather than the
problems of dealing with the physical world.

The way the traditional computer evolved was determined by
the size and cost of available technology. These factors
influenced how the different parts of the computer
developed, how they were .put together, and the kinds of
applications where computers could be used. For reasons of
cost and physical size it made no sense at all to consider
placing a computer in a consumer product, or even in the
average factory. Microprocessors are small and cheap enough
to be placed in any piece of equipment. This, in turn, has
revolutionised some aspects of computer technology:
microcomputers are not just smaller copies of large
computers, but have some significant new characteristics.

The major effort of design for a microcomputer application
goes into software. Software is in a number of ways easier
to deal with than hardware. However, it must be treated
with respect. Designing the software for a complex
application is not trivial, especially as the potential of
the microprocessor leads to more ambitious projects. With a
new technology, new methods must be used: those developed
for hardware design are not appropriate. Even techniques

Texas Instruments 1 - 4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

used in the design of software for 'mzinfrzme' or 'mini'
computers need adapting, because of the special features and
the different areas of application of microcomputers. This
book describes the techniques of system and software design
that are applicable to the new technology of microsystems
(= microprocessor systems).

1.2 BLACK BOXES AND DIGITAL ELECTRONICS

Any mechanical or electrical device can be considered, very
simply, as a black box with inputs and outputs:

Figure 1-6 "Black Box"

"Inputs" might be switches, temperature sensors, flow. rate
detectors, or keys pressed by a human operator. ltOutputs"
might control a motor, print text or figures, switch on a
heater, and so on.

The "black box" processes .these inputs and produces outputs
in a well-defined fashion. For example, a typewriter takes
key presses as input and produces printed characters
corresponding to the key inputs as outputs. All problems
that are solvable by machinery can be analyzed in this
manner. The black box, with its inputs and outputs, may be
called a system.

How can such black boxes be built? The traditional,
non-computer method would be to design a dedicated piece of
hardware: a mechanical device. Methods of implementation
have varied. Early workers used wires, pulleys, cogs and a
great deal of mechanical ingenuity. In general, mechanical
systems are restricted to the kind of simple and direct
response characterised by the typewriter. Electrical
systems provide additional power, but in general do not
permit much greater complexity.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

Electronics introduced a whole new range of possibilities.
Perhaps the most significant advance in black-box
implementation was the invention of digital electronics,
based on the binary digit, or bit.

A bit can be considered as a switch. It has two possible
states: on or off, 1 or 0 , high or low. Bits can easily be
represented in electronic circuits, and they can be used to
store information. Circuit elements can be designed that
combine bits in various useful ways. One such element is
the AND gate, conventionally depicted as follows:

INPUTS

Figure 1-7 AND Gate

OUTPUT

The basic AND gate has two inputs, here called A and B, and
one output C. These are digital signals, each of which can
take one of two possible values (conventionally represented
as "0" and "1"). Each input and output line represents one
bit of information. For given conditions of the inputs A
and B, the output C is completely determined. For an AND
gate, C is 1 only when both A and B are 1. This can be
summarised in a truth table, which maps the value of the
output C for all possible values of the inputs A and B:

Figure 1-8 AND Gate Truth Table

By combining logic elements such as the AND gate, electronic
circuits can be constructed to take decisions and signal
appropriate outputs depending on the state of any number of
inputs. It is only necessary to arrange that the inputs
represent the state of switches, sensors etc, and to connect
the outputs to motor control circuits, actuators and
displays, to construct very complex pieces of machinery.

Electronic systems can provide a limited kind of memory,
counting operations, and simple arithmetic. Integrated

Texas Instruments 1-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

circuit technoiogy allows many thousands of logic ele ents
such as the AND gate to be implemented on a single chi3 of
silicon 4 or 5 mm square. Electronics works very fast, too:
many millions of decisions of the AND gate variety
(determining the vaiue of C given the values of A and B) can
be made per second, and many decisions can be made in
parallel. However, the technology becomes very expensive
for complex applications, and systems take a long time to
develop.

Digital electronics is powerful because it permits any
operation that can be conceived using bits; and any real
world action that can be translated into electrical signals
can he represented as bits. The techniques of digital
electronics can be used for a vast range of different
applications, where any kind of iogicai decision making or
arithmetic processing is required.

Solving a real world problem, of course, depends on
translating real inputs (such as mechanical movements,
temperature readkngs, etc) into bits, and translating bits
back into the rear world.

J

This process of translation can be represented (adding to
the hlack box diagram) as:

MOTORS,

'PHYSICAL
MEASUREMENTS
(TEMPERATURES,
PRESSURES, ETC)

&
INFORMATION

REAL WORLD 'BLACK BOX' SYSTEM

OUTPUTS
*

ACTUATORS
(DIRECT

. DATA
.

(INFORMATION)

REAL WORLD

Figure 1-9 Data Translation

'Data' is a term used for coded information - that is,
information translated into a pattern of bits for processing
by a digital circuit. Data can be considered as an

Texas Instruments 1 - 7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

a b s t r a c t e d r e p r e s e n p a t i o n of t h e r e a l wor ld .

I n e x t r a c t i n g d a t a f rom t h e r e a l wor ld f o r p r o c e s s i n g by a
d i g i t a l c i r c u i t , %he d e s i g n e r ' s e l e c t s o n l y t h e a s p e c t s of
t h e i n f o r m a t i o n ? a v a i l a b l e t h a t he w a n t s , enumera t e s a l l
p o s s i b l e va lues , ; and d e s i g n s h i s sys tem t o cope w i t h and
respond p r e d i c t a b l y t o e v e r y p o s s i b l e combina t ion . The
d i g i t a l c i r c u i t does n o t know o r c a r e what t h e d a t a
r e p r e s e n t s ; i t s imp ly p r o c e s s e s b i t s a c c o r d i n g t o t h e l o g i c
d e s i g n e d i n t o i t ,

T h i s can c a u s e problems, b e c a u s e b i t s (d a t a) a r e e n t i r e l y
a b s t r a c t e n t i t i e s . The d e s i g n e r must be v e r y s u r e t h a t he
knows e x a c t l y what h i s d a t a r e p r e s e n t s , T r a n s l a t i n g
i n f o r m a t i o n i n t o d a t a i n a w e l l thought- out manner i s
p r o b a b l y t h e most i m p o r t a n t s t e p i n d e s i g n i n g any d i g i t a l
sys tem.

1

I n t h e l?st 2 0 y e a r s , advances i n t echno logy have v a s t l y
d e c r e a s e d k h e p r i c e and i n c r e a s e d t h e cap i l i t y of d i g i t a l
e l e c t ron*s. However, w i t h t h e t echno g i c a l advance h a s
come th$ problem of o r g a n i z a t i o n . Org i z i n g a l l t h e s e
l o g i c /e lements t o pe r fo rm t h e d e s i r e d a c t i o n i s a v e r y
d i f f i $ @ l t , t i m e consuming, and e x p e n s i v e : t a sk , r e q u i r i n g . a
high* s k i l l e d ' d e s i g n e r 1 (o r team of d e s i g n e r s) . I n

L i o n , b e c a u s e a n AND g a w i s a p i e c e of hardware - a
i c a l d e v i c e - i t i s q u i t e awkward t o m a n i p u l a t e . Once a
gn h a s b ~ n p u t t o g e q e r , i t i s e x t r e m e l y d i f f i c u l t t o

nge i n a n y , ' s i g n i f i c a n t gay w i t h o u t s t a r t i n g a g a i n from
s c r a t c h .

~ h i $ i s where t h e compute comes i n . "f

l a 3 COMPUTERS

The i d e a f o r t h e computer e x i s t e d l ong b e f o r e t h e
i m p l e m e n t a t i o n t e c h n i q u e s t h a t made i t p r a c t i c a l l y
r e a l i s a b l e . I n t h e 1 9 t h Cen tu ry , C h a r l e s Babbage conce ived
a ' d i f f e r e n c e e n g i n e " t h a t would o p e r a t e a c c o r d i n g t o t h e
i n s t r u c t i o n s of a s t o r e d program. However, t h e t e c h n i q u e s
a v a i l a b l e t o him (mechan ica l cogs and l e v e r s) were unequa l
t o t h e t a s k . Babbage n e v e r comple ted h i s p r o j e c t .

P r a c t i c a l r e a l i s a t i o n of t h e computer had t o w a i t f o r
e l e c t r o n i c s - f i r s t u s i n g v a l v e s (which were . n o t o r i o u s l y
u n r e l i a b l e , l a r g e , and power h u n g r y) , t h e n t r a n s i s t o r s , and
f i n a l l y i n t e g r a t e d c i r c u i t s . What t h e computer does i s t o
s e p a r a t e t h e d e v i c e which c a r r i e s o u t t h e work of d e c i s i o n
making, c a l c u l a t i o n e t c - t h e p r o c e s s o r - f rom t h e se t of
i n s t r u c t i o n s - t h e program - which t e l l t h e p r o c e s s o r what
t o do. T h i s s e p a r a t i o n a l l o w s s p e c i a l i s t m a n u f a c t u r e r s t o
d e s i g n and implement power fu l and e f f i c i e n t p r o c e s s o r s f o r

Texas I n s t r u m e n t s 1-8 Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

t h e range of p o s s i b l e a p p l i c a t i o n s , w h i l e a p p l i c a t i o n
e n g i n e e r s can t a k e a s t a n d a r d p r o c e s s o r and w r i t e a s o f t w a r e
program t o t a i l o r i t s o p e r a t i o n t o t h e i t s p e c i f i c need.

L ike o t h e r d i g i t a l d e v i c e s , computers work w i t h b i t s , I n
f a c t , t hey u s u a l l y work w i t h g roups of b i t s . The Texas
I n s t r u m e n t s TMS 9900/99000 f a m i l y of m i c r o p r o c e s s o r s u s e s a
b a s i c u n i t of 16 b i t s , c a l l e d a word. The p o s s i b l e
o p e r a t i o n s t h a t can be performed on words a r e s t r i c t l y
l i m i t e d and w e l l d e f i n e d , which i s what makes t h e computer
p o s s i b l e ,

Of t h e t o t a l range of o p e r a t i o n s , t h e most u s e f u l a r e
s e l e c t e d t o form t h e computer 's i n s t r u c t i o n s e t . Each
i n s t r u c t i o n per forms one o p e r a t i o n , For example, t h e r e i s
a n o p e r a t i o n t o per form a l o g i c a l AND on two words of d a t a :

f i r s t w o r d O 1 0 1 1 0 1 1 1 0 0 1 O 1 1 0
s e c o n d w o r d 0 1 O 1 0 1 0 1 1 0 1 0 1 1 0 1

r e s u l t 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0

Corresponding b i t s i n each word a r e ANDed t o g e t h e r t o
produce t h e c o r r e s p o n d i n g b i t i n t h e r e s u l t a n t word. Here,
a word i s t r e a t e d a s c o n t a i n i n g 16 unconnected h i t s , The
i n s t r u c t i o n s which o p e r a t e on words i n t h i s way a r e c a l l e d
l o g i c a l i n s t r u c t i o n s ,

Using t h e b i n a r y number sys tem *, a 16- bi t word can a l s o
r e p r e s e n t a number. There i s a group of
a r i t h m e t i c i n s t r u c t i o n s which t r e a t words a s numbers, and
pe r fo rm t h e u s u a l a r i t h m e t i c o p e r a t i o n s on them. For
example, ADD:

B I N A R Y DECIMAL

f i r s t w o r d 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 23446
s e c o n d w o r d 0 1 0 1 O 1 0 1 1 0 1 0 1 1 0 1 + 21933

r e s u l t 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 = 45379

The i n s t r u c t i o n s e t f o r t h e TMS9900 and 99000 a l s o i n c l u d e s
o p e r a t i o n s on b y t e s (1 b y t e = 8 b i t s) of d a t a ,

I n a d d i t i o n t h e r e a r e i n s t r u c t i o n s t o r ead i n p u t s i g n a l s
from t h e o u t s i d e world and t o w r i t e o u t p u t s , and t o move
d a t a around w i t h i n t h e computer ,

* The b i n a r y number sys tem i s d e s c r i b e d i n Chap te r 8 ,
s e c t i o n 8.13.2.1

Texas I n s t r u m e n t s 1-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

A program is a list of these instructions stored in the
computer's memory. A computer, then, looks like Figure
1-10,

Figure 1-10 Computer

t

PROGRAM

1

The stored program controls the operation of the computer.
The processor fetches the program instructions one at a
time. Instructions are normally executed in sequence, one
after another. However, the computer has the capability to
change this. It can make simple decisions about whether to
execute one set of instructions or another. The decisions
might depend on the value of some data word stored in
memory, or the state of some input, or on a more complex
condition.

INPUTS PROCESSOR . b

For example,

2

OUTPUTS

"IF temperature LESS THAN set value AND heater is off THEN
switch heater on"

The primitive control instructions, which can change program
flow and make pre-programmed decisions, are the final group
of operations that make up the computer's instruction set.
With these five basic groups of instructions - logical,
arithmetic, input/output (I/O), data transfer, and control -
a computer can perform any task that can be precisely and
unambiguously specified. The task of software design is to
carry out this specification and, ultimately, to produce the
program in a form that the computer can implement it.

The program completely determines the operation of the
system. If the initial conditions and all of the inputs are
known, the action of the computer will he entirely
predictable. Thus a computer is a black box, but one whose
operation is determined not by the physical arrangement of
its parts, but by a software program. Computer hardware can

Texas Instruments 1-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

be regarded as a pool of resources, which are organized 3y
the software. By placing the burden of organization on
software, many of the problems of designing a digital system
are solved.

Figure 1-11 shows the structure of a computer in more
detail.

I MEMORY I

I

I PROCESSOR (CPU) I
I

-- --
OUTPUTS E I

Figure 1-11 Structure of a Computer

I

The Arithmetic and Logic Unit (ALIJ) performs the operations
requested by the program (addition, subtraction, logical
ANDing, etc). The Control section supervises the reading
and writing of program, data, and 1/0 (Input/Output), and
ensures that everything happens in the proper sequence.
These two elements are traditionally grouped together to
form the Central Processing Unit (CPU), or Processor. Whwr
this is implemented on a single silicon chip it is called a
Microprocessor, or MPU. The complete system is a
Microprocessor System, or Microcomputer. A microcomputer
may be implemented as a single chip (eg the Texas
Instruments TMS9940) or as several chips.

ARITHMETIC

Besides inputs and outputs, a computer will need a place in
which to store intermediate data (a scratchpad or filing
system). Therefore a computer will generally have data
memory as well as program memory.

Texas Instruments 1-1 1

I

October 1981

I
I
I I

AND
LOGIC UNIT

(ALUI

I
I

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

The inputs and outputs, more than anything else, determine
what a computer system "looks like1' to the user, When the
usual peripherals (card reader, visual display unit (VDU),
line printer, magnetic tapes, etc) are connected, the system
looks like the traditional idea of a computer. But connect
motors, actuators, lights, switches, displays and it could
be a part of anything from a washing machine to a car, A
microcomputer is small and inexpensive enough to be hidden
in almost any piece of electrical equipment, and the user
need not even know that it is there.

1.4 SOFTWARE DEVELOPMENT

Because there is typically a large gap between the task to
be performed by the system (eg "control a factory production
line") and the instruction set of the computer ("ADD two
numbers"), various techniques have been evolved to bridge
the gap and make the task of software design and development
simpler and faster. Most of these make use of development
tools and utilities that are themselves implemented in
software. In fact, one of the major advantages gained in
moving from a digital electronic to a software
implementation is that the design information itself can be
manipulated by computer, allowing much of the design and
development process to he automated.

The tools of the software engineer are rather more abstract
than the screwdriver and the soldering iron. A software
engineer will spend much of his time typing information at- a
keyboard, and looking at results displayed on a screen.
However, the keyboard and screen will take on different
roles depending on which utility program (which "software
tool") is being used at the time. Chapters 2 and 3 of this
book describe what is involved in the process of designing
and developing software for a microprocessor system, and the
tools and procedures used. Chapter 4 describes some of the
principles of software design, and the modern techniques of
software engineering which have been developed to make
complex software systems manageable.

A high level language (see Sections 2.6 and 3.5) allows the
software designer to make strategic decisions about what the
system will do, while the compiler determines the tactics to
be employed by the computer (memory addresses, storage
allocation and other "housekeeping" functions that have to
be performed thousands of times a second). The compiler is
a software utility that translates high level language
programs into the detailed machine instructions required by
the computer,

In effect, a high level language provides a more powerful

Texas Instruments 1-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

csnputzr that can deal w i t h most of its internal functions
automatically, allowing the software designer to concentrate
on the application problem to be solved,

Component Software supplies further assistance by permitting
complete pre-written software packages, designed to
implement whole areas of an application, Chapter 5
describes Component Software in detail. This chapter also
describes concurrency, which is a powerful technique for
designing software systems which have to perform a number of
different tasks simultaneously (as is often required in real
systems),

Early programming languages performed their task
imperfectly, and were of ten designed simply as extended
versions of the instruction set of a particular computer,
Modern languages, with the benefit of twa decades of
research on the requirements for specifying and solving
application problems, come much closer to the ideal of
requiring nothing more than a complete and unambiguous
specification of what is to be done (an algorithm) in order
to produce an executable program, One of the best and most
successful of the modern languages is Pascal, Chapter 6
describes the Microprocessor Pascal language,

Pascal is a professional programmer's tool, designed to
produce reliable systems and yet to give full flexibility
for implementing complex applications, For users who do not
wish to become professional programmers, but who need to
write occasional programs in the course of their work, BASIC
may be an acceptable alternative, BASIC is a simple
language that can be learned in a few hours and is
exceptionally easy to use, Chapter 7 describes Texas
Instruments' implementation of Power BASIC,

For those who wish to understand the machine architecture of
the TMS 9900/99000 family, or to program directly in the
instruction set of the microprocessor, Chapter 8 describes
9900/99000 assembly language, Assembly language programming
requires more detailed knowledge and there is more risk of
error than when using a high level language, However,
assembly language programming allows the designer to squeeze
the last ounce of performance out of the machine, and may be
especially useful in critical areas of a software design,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1.5 GENERAL PURPOSE COMPUTERS

Until a few years ago, the only computers in common use were
general purpose machines. A general purpose digital
computer consists of a central processing unit (CPU), main
memory and a set of standard peripherals - devices which
enable data to be input to and output from the computer. A
typical configuration might look something like this:

READER

BACKING

STORE

VISUAL

DISPLAY
UNITS (VDU's)

SYSTEM
CONSOLE

Figure 1-12 A General Purpose Computer

The input and output to a computer of this type is likely to
be entirely textual or numeric information (customer files,
order details, scientific results etc), and the work that it
does is entirely information processing or data processing
(DP for short). Human beings always act as buffers to this
kind of system - preparing textual or numeric input data in
the form of punched cards or keyboard input, and
interpreting or acting on printed results or reports.

Texas Instruments 1-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

One of the most important peripherals is the backing store,
This is a memory device that is slower acting than the main
memory, but has a large capacity, Its principal function is
to load programs and data into the computer's main memory,
A generai purpose computer has a large repertoire of
programs in its backing store, any one of which can be
loaded and executed, Some of these programs are
systems programs, which control the operation of the
computer and provide commonly required tasks, These will
normally be provided by the computer manufacturer, Others
are application programs developed by the user for his
particular needs,

The most important systems program is that which runs the
entire computer, and controls the loading and executing of

I I1 IS other programs under commands from the operator, ""'-
program is called the Operating System (0s) and is loaded
into main memory when the computer is switched on, remaining
in control the whole time the system is running, Other
systems programs provide software tools for developing
application programs, They can be called in as required by
the Operating System,

A general purpose computer is, therefore, a chameleon-like
device which can perform any processing function depending
on the application program which is loaded into it,
However, the range of things it can do is limited by its
input and output devices, Standard peripheral devices
include keyboard sand visual display unit (VDU), teletype,
line printer, punched card or paper tape readers and
punches, and magnetic disc or magnetic tape devices, These
last two are forms of backing store; the others are means of
communicating with the user,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1 6 DEDICATED COMPUTERS

A microcomputer can be constructed as a general purpose
computer. But the microcomputer has brought a new
possibility: the dedicated system. A dedicated
microcomputer might look like this:

PRESSURE
SENSOR

L

KEYPAD

DISPLAY

MINIATURE PRINTER

INPUTS OUTPUTS

Figure 1-13 A Dedicated Microcomputer

This system could serve as a weighing scale. A program
would be written to read the pressure sensor and the price
(entered on the keypad), multiply the weight by the price,
display the result, and print a ticket. With extra
software, the system could become a complete cash register.
The complete microcomputer and associated circuitry could be
fitted into one corner of the case.

A term that is often applied to dedicated computer
applications is real time. "Real time" means that the
computer is responding to and controlling events as they are
happening. Unlike a DP system, whiih provides - huge
processing power but at a considerable remove from real
physical events, a real time system must respond
immediately. It will often need to respond within
milliseconds or less.

Dedicated microcomputers often have an executive rather than
an Operating System. While an Operating System is likely to
be a large, all-inclusive piece of software, an executive is
more likely to be a set of service functions selected for
the particular application, and occupying very little memory
space. The program for a dedicated system may well be

Texas Instruments 1- 16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

permanen t l y and i n e r a d i c a b l y s t o r e d i n read o n l y memory (see
be low) , and t h e microcomputer may on ly e x e c u t e one s m a l l s e t
of programs a l l i t s l i f e . A d e d i c a t e d microcomputer may
we11 have no back ing s t o r e from which t o l o a d a l t e r n a t i v e
- - e m - t." u 5 L a m .

I n t h e example p i c t u r e d above, t h e program would r e p e a t e d l y
check whether o r n o t t h e r e was any i n p u t 'from t h e p r e s s u r e
s e n s o r o r t h e keypad. I f t h e r e was, t h e p o r t i o n of t h e
program w r i t t e n t o d e a l w i t h t h a t i n p u t would execu te .

1.7 ROM AND RAM - SEMICONDUCTOR MEMORY

Computer memory can be though t of a s a c o l l e c t i o n of p igeon
h o l e s o r l o c a t i o n s i n which v a l u e s (i e , numbers o r p a t t e r n s
of b i t s) can be s t o r e d . These l o c a t i o n s can be r e f e r r e d t o
by t h e i r c o n s e c u t i v e l y numbered a d r e s s e s .

Semiconductor memory sys tems a r e t y p i c a l l y o rgan ized i n
b y t e s (1 b y t e = 8 b i t s) . The TMS 9900/99000 f a m i l y can
o p e r a t e on bo th b y t e s and words (16 b i t s) of d a t a . A word
i s s t o r e d i n two c o n s e c u t i v e memory l o c a t i o n s , s t a r t i n g a t
a n even a d d r e s s .

A g e n e r a l purpose computer r e q u i r e s a program memory t h a t
can be w r i t t e n t o a s w e l l a s r e a d , s i n c e d i f f e r e n t programs
must be loaded i n t o i t from t h e backing s t o r e . However,
once t h e program i s loaded , t h e p o r t i o n of program memory i n
which t h e program i s s t o r e d w i l l n o t normal ly be changed
u n t i l t h e o p e r a t i n g sys tem l o a d s i n t h e n e x t program. (The
program can change d a t a memory, bu t n o t t h e program code.)

A s p e c i a l t y p e of program memory, c a l l e d Read Only Memory
(ROM) i s commonly used f o r d e d i c a t e d microcomputer sys tems.
A ROM memory c h i p i s programmed (i e , l oaded w i t h a program)
once , d u r i n g p r o d u c t i o n of t h e sys tem i n which i t w i l l be
u s e d , and r e t a i n s i t s c o n t e n t s permanent ly , even when t h e
power i s swi t ched o f f . Th i s l a s t f e a t u r e i s i m p o r t a n t
because t h e r e w i l l o f t e n be no back ing s t o r e from which t o
l o a d t h e program when t h e d e v i c e i s swi t ched on.

1.7.1 ROM Types

There a r e s e v e r a l d i f f e r e n t t y p e s of ROM, each w i t h i t s own
c h a r a c t e r i s t i c s .

Mask ROM h a s t h e program i n s e r t e d a s p a r t of t h e
manufac tu r ing p r o c e s s . A mask must be made t o e t c h t h e
p a t t e r n of b i n a r y d i g i t s which form t h e program on t h e
s u r f a c e of t h e s i l i c o n c h i p . Genera t ing t h i s mask i s an

Texas I n s t r u m e n t s 1-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

expensive process, because it must be done with great
precision. However, once the mask has been made, programmed
ROMs can be manufactured very cheaply. Where large
quantities (hundreds of thousands) of identical ROMs are
required, this method is by far the least expensive.

Programmable ROM (PROM) is manufactured with fusible metal
links in each memory cell. These links can be selectively
fused by applying high voltage pulses to the PROM chip after
manufacture using a device known as a PROM Programmer.
Blank PROMs are supplied by Texas Instruments and can be
programmed by the user, with appropriate development tools,
to put in his system. Once the pattern of 0's and 1's has
been 'burned in' in this way the PROM cannot be erased.
PROMs are more expensive per chip than mask ROMs, but work
out cheaper overall for small to medium quantities
(thousands), because of the cost of manufacturing a mask.

Erasable Programmable ROM (EPROM) is supplied blank and
programmed in the same way as PROM. But the high voltage
pulses do not break fusible links: instead they selectively
establish static charges in the memory cells, which turn on
or off switching devices (transistors) that represent the
0's and 1's. An EPROM is a very useful device. It can be
programmed permanently, like a fusible link PROM; the static
charge will be retained for a period of 20 years or more.
But by exposing it to ultraviolet light for a period of
about 20 minutes, the EPROM becomes erased and can be
programmed with something different. EPROMs are now
commonly used in all medium volume applications, except for
very high performance applications where the superior speed
of bipolar PROMs is required.

1.7.2 RAM Types

Most microcomputer systems require some memory that can be
written to as well as read, for storage of intermediate
results. This is achieved by using RAM (Random Access
Memory) instead of ROM. RAM is a slightly misleading term,
since ROM can also be accessed randomly. (Read/Write Memory
would be more descriptive, but 'RAM' is at least easier to
say.) In a general purpose computer, the main memory is
implemented entirely with RAM. A microcomputer system is
more likely to have a partitioned memory - some ROM and some
RAM.

Semiconductor RAM is volatile; that is, the contents
disappear when the power is switched off. There are, in
fact, two types of RAM:

o Static RAM retains its contents for as long as
the power is switched on.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

s Dynamic RAX milst be refreshed, that is, read or
written to every few milliseconds, or its
contents decay. Dynamic RAM requires some
external circuitry to implement this refresh,
and is therefore more difficult to design i n t o
a microcomputer. However, it is less expensive
and smaller than static RAM. Static RAM is
normally used for systems that require a
relatively small amount of RAM; dynamic RAM for
larger systems where the cost of refresh
circuitry can be justified by the savlngs on
memory chips.

1.7.3 ROM/RAM Summary

The characteristics of semiconductor memory are summarised
bn Table 1-1 below.

Mask PROM EPROM Static Dynamic
ROM RAM RAM

Readable? Y

Writeable? N

User programmable? N
(outside system)

Eraseable?
(outside system)

Retain contents
without power? Y Y Y N
(non-volatile)

Require refresh? N N N N

Table 1-1. Semiconductor Memory Characteristics

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1.8 APPLICATIONS

The microcomputer has accomplished three things:

1) It has revolutionized the design of both
small and large-scale electrical devices,
from toys to cars

2) It has changed the nature of conventional
computer systems

3) It has made possible a completely new range
of applications, for which the new technology
of microsystems is uniquely suited*

There is virtually no electrical device within which a
microcomputer cannot be incorporated, providing cheap but
sophisticated control, and powerful processing capability.

Many applications previously performed by large general
purpose computers ('mainframes') can now be carried out more
effectively by microprocessor systems, located at the point
where they are needed rather than isolated in a remote data
processing department.

With the arrival of the minicomputer several years ago, the
death of the mainframe was predicted. That death sentence
was premature. Rut a 'mainframe' is no longer likely to be
a solitary monolith, isolated within a data processing
department. It is more likely to fulfil a specialised need
for central data storage or massive processing power, within
a network incoporating microcomputers, minicomputers and
possibly other mainframes too.

Computer power now comes in sufficient shapes and sizes (and
prices) that it can be distributed anywhere that there is a
need for it* Large computer systems look less and less like
traditional computers and more like communications networks,
with processors judiciously placed at appropriate points in
the network. The microcomputer allows the distribution of
computing power to the place where it is needed - the
office, the factory floor, or the home. Local processors
can be linked to larger computers, using the telephone
network if permanent connection is not required. Special
purpose microcomputers can be constructed to collect
information where it is generated and in the form that it
already exists. Such devices can do away with the tedious
manual process of data preparation.

Microcomputers have been used to build 'intelligent'
peripherals for mainframes (disc controllers, for example)
which can handle some of the local 'housekeeping' functions
required by the peripheral and take the load off the central

Texas Instruments 1-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

processor. One significant development in this regard has
been the intelligent terminal, a visual display unit
containing a microcomputer. The intelligent terminal
provides local processing power for small tasks, and can be
iinked to a network for referenee to cen t ra l files, and for
handling large processing tasks.

The development of 'personal' computers and small business
systems allows a further stage of development. A
storekeeper, for example, might use a microcomputer to
handle his daily transactions, and then transmit his
accounts over a dial-up link to the central office network.

In future, there are likely to be a number of imaginative
applications linking the power of the microprocessor with
rapidly deveioping communications technoiogy. Vfewdata is
an example that makes use of television, telecommunications
and processor technology. This is a public computer network
which can be accessed by anyone with the right equipment (an
adapted TV set) via the telephone network. It provides
information and services, and can even be used to transmit
software to a subscriber's computer.

The development of local area networks will allow separate
computing devices to be connected together simply and
straightforwardly, to build distributed systems for office,
factory and even home environments. Fibre optics technology
promises a ,cheap, reliable and interference-free
communication medium.

The automation of industrial processes was first made
possible by minicomputers, which were general purpose
computers small and cheap enough that they could be placed
in a factory or chemical plant and used to provide some
degree of automatic control. However, such computers still
typically required a room to themselves.

Microcomputers are small and cheap enough to be incorporated
in individual machines, and to be distributed across the
factory floor wherever control functions or processing power
are required. Cheap, fast microprocessors make robots of
all kinds technically and economically feasible. Robots can
be used to construct flexible manufacturing systems, which
can provide the advantages of mass production in the
manufacture of small quantities of diverse products.

Microcomputer applications range from simple real time
control functions (such as a weighing scale) to production
control systems and sophisticated computer networks. In
'real-time' applications the computer is in direct control
of a process, event, or phenomenon such as engine control -
monitoring electronic ignition timing and fuel mixing, for
example, and modifying the physical parameters while the
process is taking place. Real time applications can be on a
small scale, or could involve control of (say) a complete

Texas Instruments 1-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

chemical plant. The TMS 9900/99000 family is particularly
suited for real time and control applications. It has a
fast context switch to implement multiprocessing and modular
programs, and a flexible bit-oriented method of input and
output (the architecture of the 9900/99000 family is
described in Chapter 8).

The microcomputer has a dual personality: it is both
electronic component and computer. This is why it provides
such a rich field for applications. The technology and the
opportunity exist for a wide range of products; the only
real limit is the imagination of the designer.

1.9 FUTURE DEVELOPMENTS

With microcomputers cheap and readily available, there is no
need for systems to be restricted to a single processor.
Groups of cooperating processors, each with its own software
and possibly local input and output, can implement powerful
and reliable systems.

A significant development in this regard is the Electronic
Function Package (EFP).

LOCAL I10 I
MEMORY

MEMORY

I PROCESSOR I
I MESSAGE

INTERFACE I

FUNCTION BUS

Figure 1-14 Electronic Function Package

Each package encapsulates a local processor with program and
data memory, I/O, and a standard functional interface to

Texas Instruments 1-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

other packages. The first implementation of such a package
will be as a complete circuit board; but miniaturisation
will quickly reduce the size and cost of such packages.
Developments in hardware and software will make such
packages easy to construct, and easy to connect together
into appiication systems. c.. 3uCll ,t. packages are l i k e l y to be
common components in tomorrow's systems.

Speeds of microcomputer devices are likely to increase
significantly over the next decade, so that many new
applications, including real time signal processing, wiii
become possible. Among other things, real time processing
and storage of speech, audio and even video signals is
likely to become a reality, all at reasonable cost. The
scope for new products and applications is considerable.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

CHAPTER 2

SOFTWARE DEVELOPMENT

This chapter gives an overview of the steps required to
design and implement software for a microprocessor system.

The end result of software development is a program - a
pattern of bits residing in memory that instructs the
processor what to do. To achieve this requires several
stages of development:

(1) Functional. Specification

(2) System Design

(3) Software Design (and, in parallel, hardware
design)

(4) Programming (ie entering the software design
in precisely coded source program statements
on a development computer system)

(5) Translation of the source program (in a
human-readable programming language) into
binary machine code

(6) Configuration and linking of the software

(7) Debugging the software

(8) Integration and testing of hardware and
software

(9) Evaluation of the final system

Each of these is an iterative process. Problems encountered
at any stage may alter decisions taken at a previous stage,
so that the true picture is more like Figure 2-1:

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

I FUNCTIONAL I 1 SPECIFICATION 1,

I SYSTEM I
I DESIGN

I TRANSLATION I
1

CONFIGURATION
& LINKING

I DEBUGGING I

I INTEGRATION I

EVALUATION 0
Figure 2-1 The Software Development Process

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.2 FUNCTIONAL SPECIFICATION

Functional specification is where product requirements and
implementation technology meet, It is the first, and most
imp~rtant, stage in deve lop ing any systeme

A good functional specification will take account of the
spectrum of possible market requirements, and the range of
possible implementation techniques, and derive a "best fit"
solution, Charecteristic of a good functi~nal specification
is that it can accomodate a degree of change both in product
requirements and in implementation technology,

As both types of change are likely to happen during the
development phase of a product, it is worth spending a good
deal of time (perhaps 30 per cent of the total prsjeet
effort) t o derive the best possible functional
specification, Microprocessor technology, software and
hardware, means that implementation from a well defined
functional specification is fast and straightforward.
Surprisingly, the major cause of delays, problems, and
ultimately project failure is inadequate specification,

The task of specification is to isolate and jdenTify,--from-a- - - - -

general appreciation of what is required, precise
definitions of the functions to be performed, Fast
developing technology, and rapidly changing markets and user
requirements, dictates collaboration between experts in the
area of application and engineers with knowledge of the
technology (software and hardware),

Microprocessors can replace more conventional technology -
for example digital logic - in existing applications, but
there are other possibilities, Software is a medium that
can be engineered in the same way as hardware, If it is
managed correctly, software development can be done much
more cheaply, more quickly and more flexibly than developing
custom hardware, Software functions can provide
"intelligent" control, information processing, and flexible
operator interaction, With software it is possible to
construct "working models" that can be tried out, adapted,
tested and finally "frozen1' in silicon memory chips for use
in a production system.

A microprocessor is both a programmable logic device and a
computer, Where it is being used to replace conventional
logic, its abilities as a computer may also be used to
advantage, and vice versa, For example, a microprocessor
might replace digital logic in controlling a scientific

Texas Instruments 2-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

instrument. In this application, it can also be used to
perform calculations on the results obtained by the
instrument, something not easily achieved by digital logic.
New forms of operator interface might also be considered; a
keyboard and visual display screen, for example, rather than
the traditional knobs and switches. The instrument can be
given some degree of programmability, to allow the user to
set up a series of operations to be performed unattended.
New possibilities are introduced simply by using a
microprocessor.

A full functional specification for a microcomputer based
product involves :

(1) Defining the environment - that is the devices
and signals with which the product must
operate, the operator controls and displays,
and any special interfaces

(2) Defining how the product reacts to this
environment - that is the actions it is
required to take, the inputs it is required to
respond to and the outputs it is required to
produce. Usually, this can be done by
defining a number of distinct functions that
the product is required to perform - operator
interface, data storage, machine control,
report generation etc. The major functions
must be identified, their operation specified
and their interaction detailed. If the
different functions are clearly isolated and
well defined, they can be implemented
straightforwardly as separate "packages".
Some functions may be implemented directly
using standard hardware and software
components.

Writing the functional specification requires some
understanding of what is possible with microprocessor
systems, as well as what is required by users. Functional
specification cannot be completely isolated from system
design, which considers some of the "how" of
implementation. Several passes through the functional
specification/system design cycle may be needed before an
acceptable solution is produced.

Nevertheless, the functional specification should be
maintained as a separate document, which does not describe
any of the "how1'. The functional specification is the
interface between market (or user) requirements and
implementation technology; changes in either can be
incorporated in the functional specification and their
implications worked through. Functional specifications can
be written in a language that both engineers and marketing
executives (or users) can understand. Other types of

Texas Instruments 2-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

sptcification may be incomprehensible to one or the other.
with''both market requirements and technology changing month
to monkh, this channel of communication is essential.

1

2.3 SYSTEM DESIGN

The purpose of system desigd to derive from the - what of
specification, a - how that scribes an implementation
strategy. The system decide how to integrate
hardware and software, whether any-, special interfaces are
required, if any special hardware\is needed (for analog to
digital conversion, for instance), an&, on. System design
must specify how each function is to performed - in
software, hardware or a combination o th, and with what
mix of standard and custom-developed co

The first step is to identify whether standat
software packages can be used for
identified. An existing custom IC
function (eg control of a floppy

cost and time, plus reliability.

performance and, usually, cheapness. A standard Comp nent
Software package gives tremendous savings in develoxent

Unlike hardwah-%
components, Component Software can also be tailored to meet
very precise application needs (see cdapter 5).

1
Having eliminated those parts of the system tc/ be
implemented with standard components, attention can be
turned to the other functions required. System design
requires an appreciation of the characteristics of hardware
and software, and how they fit together. Often a function
(say, signal averaging) can he performed in either hardware
or software. Strictly, the comparison Ys between :dedicated
hardware, and general purpose hardware,(eg a microprocessor)
plus custom software. The advantages of a software
implementation are flexibility, fast development time and
low development cos t. The general equation governing
microsystems production is:

development cost
unit cost = material, labour, overheads +

no of items

For products which will be produced in large quantities,
development cost is of no importance: where a product is to
be mass produced in tens or hundreds of thousands,
development of a custom integrated circuit is justified. As
the number of products to be produced falls, development
cost becomes more and more important. For systems to be
produced in small quantities (say 1 - 100 per year) the cost
of development dominates all consideration of material
costs. Microsystems technology (in particular software

Texas Instruments 2-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

technology) allows t h e tre-,endous advances in integr3ted
circuit technology to be applied to areas where a ?~bstom
chip design could not be justified. It does ' so by
dramatically lowering the cost of development ffr a product.

Other considerations may apply: , a micro~rocessor is
already present in a product and has spare capacity, it
makes sense to use it to "mop up1' as much as possible of the
logic. Some functions may custom hardware for speed
reasons. Again, there functions, such as complex
calculations, that simply performed economically
in hardware.

i However, software is *ot just directed to solving problems
that, in some

Whereas changing a hardware
design requires, of a new printed
circuit board, software program can be changed by typing

at a keyboard, executing one or two
automatic utilities (a matter of minutes), and

Engineering changes can be made in
trtonthr (assuming the use of PROMS

M o d L n techniques are integrating software and hardware in
&w pays, and giving the system designer an expanding range ' of choices. TI'S Function to Function Architecture (FFA) is
di~ected to defining a common set of rules for the
inkraction of complex functions, whether implemented in
hardware, software or a combination. In future systems, it
will be possible to choose the appropriate mix of hardware
and software (and a wide range of corresponding standard
components) for every function in a system.

A well thought out system design, with adequate appreciation
of functional divisions, will make possible relatively
painless evolution of t-oday's systems to make use of
advanced functional components. Functions can be replaced
incrementally, to incorporate new components and new
application requirements, without requiring major redesign
of the whole system. Chapter 5, Component Software, gives
more details of the functional approach to system design.

The end result of system design should be a specification of
how each function is to be implemented, and a precise
definition of the interface between functions. System
design should specify all hardware/software interaction (eg
the configuration of all 110 devices), so that hardware and
software design can proceed independently.

Texas Instruments October 1381

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT ,

2.3.1 Documentation

It is important to keep a record of the design process.
Notes, and formal documents such as specifications, can be
collected together to form a project notebook. Some part of
this can usefully be an "electronic notebook". Documents
stored in files on a development system computer (see
Section 3.3) can e a s i l y be k e p t up t~ date, and printed
copies can be obtained when required. This is an ideal
medium for specifications.

The project notebook should record design decisions taken.
F g r example, an analog input (a voltage, for example) may be
required. Decisions to be taken include:

(1) How much precision (ie, how many bits) is
required

(2) Bow often a reading must be taken

(3) What type of analog/digital converter can be
used

(4) Whether the input should be binary or coded
decimal

~ardware/software trade-offs can also be recorded in the
notebook. When writing a number to a seven segment display,
should the conversion from binary to decimal digits, and
then from digits to the signals used to drive the display
segments, be handled by microprocessor software or by
external hardware?

If processor resources are available, it makes sense to
perform the conversion in software and save the cost of
extra hardware. However, this depends on the processor
having enough spare time to handle it.

If the situation changes (eg new technology becomes
available), a comprehensive project notebook makes it much
easier to backtrack and discover for what reasons the
original decisions were made, and whether they are still
valid.

Texas Inst?ument~ October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.4 HARDWARE DESIGN

This section describes some aspects of hardware design which
affect and are affected by software.

In many applications, it makes sense to regard the hardware
of a system as resources, to be controlled by the software.
This implies an approach that is different from designing a
purely hardware system.

Much of the design effort consists simply of interfacing the
outside world (the inputs and outputs) to the microprocessor
system bus.

I I,' -
INPUTS < M P U

Figure 2-2 Hardware Design for a Microprocessor System

What must be presented to the bus is a control interface.
The software will only have access to those signals which
are connected to the bus.

The design decision which must be taken when constructing
each 1/0 interface is "how much control and information is
to be given to the software?". The answer will be based on

(a) the decisions taken at the system design stage on
what is to be implemented in software and what in
hardware

(b) how much flexibility is required in the design.

Where software access is provided, design changes can be
made simply by reprogramming rather than redesigning the
hardware. Extra software control signals may be provided
for this reason, particularly at an early stage of the
design.

use of a ready-built microcomputer board (or boards)
simplifies the process of hardware design. Texas
Instruments supplies a range of microcomputer modules (the
TM990 and TM990/Euroboard series) which are ready built
microcomputers with a range of inputs and outputs, and

Texas Instruments 2-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

memory configurations, to suit many requirements. Expansion
boards are available to extend both memory and 110, and to
provide additional functions.

2.4.1 Estimating System Load

A single microprocessor can do only one thing at a time. If
it is required to perform several functions in parallel (as
a real time system usuaiiy is) i~ must do so by tackiing
each one in turn, sufficiently fast that every one is
performed within the required time. An important part of
specification is defining how fast and how often the
microprocessor needs to perform each function. (For
exampie: an anaiog input might need to be sampled every 5
ms, this being the minimum period in which it could change
significantly in a particular application). An important
part of hardware design is to determine that the processor
can meet these specifications.

A useful measure of this is system load, which can be
defined as:

Processor Time

Rea 1-Time

For a given task, the load on the system is the processor
time needed to perform the task, divided by how often the
task must be performed. If the processor spends 2 ms
carrying out a particular task, and the task must be
performed every 10 ms, this represents a .2 or 20 per cent
system load.

An estimate of the total system load can be obtained by
calculating the system load for each task that must be
performed, and adding them together. System load is not a
foolproof test of a design's practicality; but it does give
the designer an indication of the magnitude of the task, and
quickly shows up impossible specifications. Estimating the
load for a given task involves a consideration of the
software algorithm that will be used to perform it. This
need not be very detailed at this stage. A rough
calculation often shows that use of system resources is
dominated by a very small number of tasks.

An estimation of 0.1 per cent could be out by a factor of 5
without making too much difference; a task calculated at 25
percent, however, needs careful evaluation. Usually, it is
only necessary to look at a very small portion of program,
which can be coded experimentally if necessary.

If the total system load comes out at more than 50 percent,

Texas Instruments 2-9 October i 4 8 i

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

t h e d e s i g n s h o u l d be r e c o n s i d e r e d . There a r e two r e a s o n s
f o r l e a v i n g a wide marg in :

(1) To a l l o w f o r e r r o r s i n t h e e s t i m a t i o n , and f o r
m o d i f i c a t i o n s t o t h e s o f t w a r e

(2) Most sy s t ems have a d e g r e e of randomness: t h e
a v e r a g e r a t e a t which t h i n g s happen may be
p r e d i c t a b l e , b u t i t may sometimes be exceeded
by q u i t e a l a r g e amount. It i s w i s e t o l e a v e
some power i n r e s e r v e t o d e a l w i t h b u r s t s of
a c t i v i t y . a

B e s i d e s t h e raw e s t i m a t e s of sy s t em l o a d , t i m i n g c o n s t r a i n t s
need t o be c o n s i d e r e d . The s t r a i g h t f o r w a r d e s t i m a t e assumes
(n a i v e l y) t h a t p r o c e s s o r t i m e i s s p r e a d e v e n l y o v e r
r e a l- t i m e . I f t h e sys t em needs t o do a g r e a t d e a l w i t h i n a
p e r i o d of 1 m s , and t h e n n o t h i n g f o r 50 ms, t h i s o b v i o u s l y
must be t a k e n i n t o a c c o u n t . I n t h i s c a s e , t h e l o a d d u r i n g
t h e 1 m s p e r i o d s h o u l d be e v a l u a t e d s e p a r a t e l y .

I f t h e sys t em l o a d d o e s come t o more t h a n 50 p e r c e n t , t h e r e
a r e s e v e r a l a l t e r n a t i v e s :

(1) Unload some of t h e work from s o f t w a r e t o
e x t e r n a l ha rdware

(2) Reduce t h e s p e c i f i c a t i o n of t h e sys tem

(3) Use a more power fu l p r o c e s s o r

(4) Add a n o t h e r p r o c e s s o r

I f t h e sys t em l o a d comes o u t v e r y low (l e s s t h a n 1 p e r c e n t ,
f o r example) t h i s need n o t be a bad t h i n g , i f d e s i g n and
c o s t c r i t e r i a a r e m e t . However, i f t h e r e a r e t a s k s b e i n g
per formed by e x t e r n a l hardware t h a t c o u l d e q u a l l y be done i n
s o f t w a r e , t h i s i s w o r t h c o n s i d e r i n g .

M i c r o p r o c e s s o r s have become i n e x p e n s i v e enough t o make i t
e c o n o m i c a l l y f e a s i b l e i n many a p p l i c a t i o n s t o have them
l y i n g i d l e f o r much of t h e t i m e . On t h e o t h e r hand , h a v i n g
t o r e d e s i g n b e c a u s e d e s i g n p a r a m e t e r s have been pushed t o o
f a r can be e x p e n s i v e .

Once t h e l o a d h a s been c a l c u l a t e d and t h e d e s i g n f i x e d , t h e
d e s i g n e n g i n e e r needs t o beware of ' c r e e p i n g enhancements ' .
M i c r o p r o c e s s o r s y s t e m s f o l l o w a r e v i s e d form of P a r k i n s o n ' s
Law: u n l e s s c a r e f u l l y c o n t r o l l e d , d e s i g n s expand t o f i l l 150
p e r c e n t of t h e r e s o u r c e s a v a i l a b l e . To a v o i d t h i s , t h e
d e s i g n e r needs t o e v a l u a t e c a r e f u l l y t h e e f f e c t of p roposed
enhancements , and c o n s i d e r them i n r e l a t i o n t o h i s l o a d i n g
e s t i m a t e s - which can be checked e x p e r i m e n t a l l y once t h e
d e s i g n i s b u i l t .

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2,4,2 Memory Size

Naturally, one important c o ~ ~ i d e r a t i ~ n when designing the
hardware for a system is how much memory space to allow,
The only way to estimate memory size is to break a system
down into software packages and estimate the size for each,
based on existing packages, If the software designer making
the estimate lacks confidence in his figures, then the
packages shohd be broken down still further and, perhaps,
parts of them trial coded,

Whatever the figure arrived at, the hardware designer should
allow a sizeable margin for expansion; first, because no-one
has yet found a completely reliable method for estimating
the final size of a software package, and second because of
the previously mentioned tendency for 'creeping
enhancements', It is usually much easier to cut down an
over-designed prototype version when producing a production
model, than to add significant memory space not foreseen in
the original design, The size of each software package
can be monitored as it is produced and compared with the
original estimate, to give a progressively better picture of
the final memory size,

2.5 SOFTWARE DESIGN

Software design consists of turning the specification of
each function the processor is to perform into precise
software algorithms (ie step by step procedures for
performing the desired function) and data structures. This
is not yet programming, which occurs at a more detailed
level, Starting to program too early, before a software
design strategy has been worked out, will lead to a design
that is incoherent and badly structured, At least a third
of the software development effort should be spent on
design, to establish the overall structure of the software
before starting on the details,

Software design should identify:

(1) The data structures to be used

(2) The routines and algorithms to be written

(3) How the different parts of the software will
work together,

The basis of software is data, since this represents the
information that will be manipulated by the algorithms. A

Texas Instruments 2-11 October 1381

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

system uses two types of data: input or output data, which
is the system's means of communication with the outside
world, and stored data, which is held in memory and
represents those concepts internal to the system of which a
record must be kept.

The first task of the software designer should be to
determine:

o What data is required

o How it should be organized (structured).

The data should be structured to reflect as closely as
possible the information it represents, This involves:

o identifying those aspects of the information
which are fundamental and not superficial

o using these as the basis for structuring

o wherever possible using structures instead of
single unrelated data items. This makes the
software more coherent and more manageable,

Older 'high level' languages such as FORTRAN, and low level
assembly language, provide no means of grouping and
structuring basic items of data to form more complex
entities* Any such grouping that is done must be done
inside the programmer's head, Newer languages such as
Pascal provide, within the language itself, powerful means
of building complex data entities out of simple ones. This
means that complex software systems can be built up that
model the outside world, and real operations, with
surprising accuracy, A single data structure, for example,
referred to by a single name, may contain all the
information that needs to be known about a chemical process,
or the operation of a machine, This data structure may be
passed as a single item to a routine that performs a complex
operation - say, shutting down the chemical reaction or
using the machine to manufacture a part for a motor, The
data structures establish a basis - an abstract model of the
"real world" - from which program algorithms can be
developed to perform various useful tasks, The real time
structure of Microprocessor Pascal and Component Software
also makes it possible to define and group complex
operations, "packaging" a group of concurrent, closely
interacting operations, together with the data they operate
on as a single, higher level function,

The process of software design is considered in detail in
Chapter 4 ,

Texas Instruments 2-12 October

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.6 PROGRAMMING

Programming involves turning a software design into source
program code, following the syntax rules of a particular
programming language. The amount of work involved depends
on the programming language selected for implementation.

Pascal was designed as a problem-oriented language
incorporating modern design techniques. Turning a software
design into a Pascal program should involve little more than
formalizing it and writing it to conform to the syntax
rules. The constructs used in design can be implemented
directly in Pascal. The routine work of translating the
design into machine instructions is handled automatically
by a software utility - the compiler.
BASIC, like Pascal, is a high-level language that handles
much of the routine work (data allocation, for example) of
translating the design into machine terms automatically.
However, BASIC was designed for simplicity and is not as
powerful as Pascal. It does not provide all the constructs
required for reliable software design in a directly usable
form.

BASIC does have other advantages. Being simple, it is easy
to learn. As an interpreted language, it has special
characteristics which are explained in Chapter 7. Because
it is designed to run on the TM990 range of microcomputer
modules, a design can be developed very quickly and cheaply
using standard hardware and a very low cost development
system. BASIC is ideal for experimental and low volume
designs.

Assembly Language is the most powerful, the most time
consuming and the most difficult alternative. It gives the
programmer complete control over all the resources of the
microcomputer, but to exploit this control requires skill
and discipline. Program development also takes much longer
than in a high level language. Assembly language should be
used where code size and efficiency is crucial (for example,
in small, high volume applications). It can also be used to
code critical areas of a program written in a high level
language (I/O routines, for example). In general, assembly
language can be used very effectively in small areas; large
programs quickly become unwieldy.

Selecting which language to use depends very much on the
application, the development facilities available, the
development timescale, and the skills of the programmers.
Later chapters of this book describe each language in more
detail.

Texas Instruments 2-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

Programming, or coding, is a relatively mechanical process
which involves expressing a software design in a precise,
unambiguous form that conforms to strict syntax rules. The
real creative work of development is done at the system
design and software design stages. When choosing which
implementation language and what type of development system
to use, the designer is choosing how much of the programming
process will be handled automatically by software
development tools (compilers, linkers, etc) and how much
will be done by a human programmer.

Programs may be written on paper and then entered into the
development system, or they may be written directly at the
computer. The second method offers many advantages - no
duplication of effort, easy modification of the program, and
an immediate printed record if required. The development
system acts, in effect, as an electronic notebook -
faithfully 'recording the program as it develops, and also
checking periodically that the programmer has followed the
rules sf the programming language.

The programmer uses a software tool called an editor (see
Section 3.4) to enter and modify his program on the
development system. A structured high level language like
Pascal makes it easy to build up a program as it develops in
the mind of the programmer. The Microprocessor Pascal
System (Chapter 6) includes a syntax-checking editor, which.
will point out language errors for immediate correction on
the screen, during an edit session.

2.7 PROGRAM TRANSLATION

The source program, which is in a programming language, must
be translated into machine executable form - that is, a
pattern of binary 0's and 1's corresponding to the
microprocessor's instruction set.

This is done by software tools called compilers and linkers
(see Sections 3.5.5, 3.6). The process of translation from
human-readable to machine-executable form is almost entirely
automatic, and takes only a few minutes. It will usually
need to be done several times, as the programmer corrects
errors in his program by changing the source program code
and re-translating.

Two types of error can arise:

(1) Language errors. If what the programmer
writes does not conform to the rules of the
programming language, the compiler or
assembler will give an appropriate error

Texas Instruments 2-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

message, and the error can be corrected
immediately.

(2) Logical errors. If there is an error in the
logic of the program, this may not be found t 4 1
U U L l l the software is tested.

To minimise frustration and development bottlenecks, it is
important that compilers and assemblers can be called up
simply and directly from the development system keyboard,
and that they execute quickly.

2 8 CONFIGURATION AND LINKING

Most software systems are written not as one large piece of
software, but as several smaller packages. Smaller programs
are much easier to manage, and take less time to translate.

This means that the pieces must be welded together into one
complete system before they can be used, Configuration is
the process of selecting the pieces of software required for
an application (perhaps from a "library" of software parts), ,

taking care of any system-wide considerations (such as how
to allocate memory, and what will be the hardware addresses
of I / O devices), and linking the pieces together,
Configuration is particularly relevant to Component Software
systems - see Chapter 5.
The actual forging of the links between software packages is
carried out automatically by a software tool called a
link editor or a linker (see Section 3.6).

2.9 DEBTJGGING

Once a program has been written, it must be tested.
However, a microcomputer program is often designed to run on
a system other than the one on which it is developed, (The
development system is often referred as the host system; the
final application system is called the target system). The
program is often ready for testing some time before the
target system is built; and in any case the target system
may not provide the facilities needed to test a program.

2.9.1 Simulation

To overcome this problem, some means of simulating the
target system environment on the development system is
required. The Texas Instruments Microprocessor Pascal

Texas Instruments 2-15 October 1 9 8 i

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

System provides a host debugger that permits target system
programs to be executed and monitored interactively on the
host development system. The debugger builds a "software
model" of the target system on the development system.
Inputs and outputs can be simulated via operator commands.
Program flow can be traced, and data items examined. Using
the debugger, the user can examine exactly what goes on when
the program is running. A 9900 Simulator is also available
to test assembly language programs.

Testing should exercise every possible path through the
software, and every possible condition, A good test
strategy is to test each software module separately,
simulating its interaction with the rest of the system
(perhaps writing a test program to provide. suitable inputs
and outputs). Modules can then be placed together with
confidence that they work in themselves, and the interaction
between modules ean then be tested, Without a test plan
like this, it is almost impossible to carry out a thorough
test.

2 10 HARDWARE INTEGRATION AND EVALUATION

While a simulator provides powerful debugging facilities,
and can be used to check out completely the logic of a
program, it does not prove that the software will work
correctly with the target system hardware. The critical
stage of hardware/software integration is best handled by
emulation.

2.10.1 Emulation

Using emulation, the software can be tried out in the target
system hardware, while retaining the facilities of the
development system to monitor program execution and change
the program if necessary.

This is achieved by connecting the development system to the
target by a special cable. The microprocessor is removed
from the target system and the cable plugged in in its
place.

Part way along the cable is a "buffer module" containing a
microprocessor and interface circuitry. This microprocessor
can execute a program contained in "emulation memory" on the
development system. Emulation memory can be loaded from the
development system with the program under test. The program
executes in the buffer module exactly as it would in the
target system (in real-time) and is connected to the target
system hardware for input and output. The development

Texas Instruments 2-1 6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

system can monitor program execution, trace the program flow
and stop execution if specified conditions (breakpoints)
Occure

BUFFER
. " h h l I, r
I V l U U U L t

DEVELOPMENT

TARGET
SYSTEM

f (MICROCOMPUTER
BOARD)

STATUS INFORMATION
DISPLAYED
ON SCREEN

USER ENTERS COMMANDS
TO CONTROL EMULATION

Figure 2-3 Emulation

For Texas Instruments microprocessors, emulation is provided
by the AMPL (Advanced Microprocessor Prototyping Laboratory)
module. Emulation is controlled by a structured high-level
language, in which sophisticated test procedures can be
written.

2.10.2 Evaluation

Once the system is working in emulation, the software can be
programmed into PROMS and the "umbilical cord" to the
development system can be severed. At this stage the device
should undergo a thorough evaluation and audit by someone
not involved in its development. The designer will have
tested the device to the best of his ability, knowing its
internal structure and what might be likely to go wrong.

-
'xexas Instruments 2-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

The independent auditor will test without knowledge of the
internal workings, according to how the device is likely to
be used. This audit should be performed against the
original statement of requirements; and it should use (and
criticize) the documentation (User's Guide, etc) that is to
be provided to the end user.

2.11 PRODUCTION

When a working system has been obtained that satisfies the
design criteria, the hardware can be frozen and production
of the device can begin. (If the device is 1-off, of
course, this is the end of the road.) Hardware typically
requires a much longer production lead time than software
(for printed circuit board layout, tooling, etc) and
therefore needs to be frozen much earlier. Minor software
changes and enhancements can still be made, provided they do
not affect the hardware.

The software should not be frozen until it has been tested
with production hardware. It may be possible to fix minor
problems introduced by the move from prototype to production
by modifying the software. This will usually be much easier
than changing the hardware at this stage.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

CHAPTER 3

DEVELOPMENT TOOLS

This chapter describes the hardware and software tools used
in software development for microprocessors, and some of the
m n f i h a n i ~ ~ L ' C I L A I I L A A L ~ ~ n n =f ~cftware developzent,

3-2 DEVELOPMENT SYSTEMS

In traditional forms of computing, software is usually
developed on the machine on which it is to run. Such
computers are general purpose machines capable of running
many different programs, including the 'software tools' used
in program development,

With microcomputers, this is not usually possible.
Normally, a dedicated system cannot be used to develop the
software that is to run on it, Many dedicated systems will
not provide the peripheral devices (keyboard, printer,
etc,), much less the software tools, required for program
development,

For this reason, a general purpose computer system called a
development system (or host system) is used to develop
software for a microcomputer, The dedicated microcomputer
in which the software will finally run is called the
target system. The development system is often a
minicomputer, such as the Texas Instruments 990 family, 990
minicomputers have the same basic instruction set as the TMS
9900 family of microprocessors, which makes software
development much easier, However, it is possible to develop
software for a microcomputer on a large mainframe computer,
such as an IRM 370,

A microcomputer development system is likely to have one or
two special purpose peripherals, such as a PROM Programmer.
The AMPL package (Advanced Microprocessor Prototyping
Laboratory) provided by Texas Instruments also allows target
system emulation. The target hardware is connected by a
cable to the development system, The emulator runs a
program contained in the development system's memory, on the
actual hardware of the target system. All the resources of

Texas Instruments 3-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

the development system are available to monitor and to
change the program if necessary, AMPL provides
sophisticated testing aids for both hardware and software.

Using the peripheral devices and the software tools provided
with the development system, it is possible to write a
microcomputer program, translate it into machine
understandable form (ie binary digits), test it under
simulation on the development system, try it out in the
target system hardware, and finally write it permanently
into the memory of the target microcomputer system.

3.3 FILES

Much of the mechanics of program development consists of
creating and manipulating files on a development system. A
file is a sequential list of information held on a backing
storage device (disc, magnetic tape, etc). This information
may be text, numbers or binary digits. Files are used to
store the source program code that a programmer writes, and
to store the machine code that can be executed by the
microcomputer. Files can also be used to store
documentation, user's guides etc - in fact anything that can
he reduced to words, numbers or bits.

Once a design has passed the paper stage, it will consist
entirely of files stored on the development system. This
medium may be unfamiliar to those used to working with
circuit diagrams, printed circuit boards and soldering
irons. However, once the basic techniques have been
mastered, it is an easy and natural medium to work in.
Software tools can manipulate the "stuff" of the design
directly, and hence a large part of the design and
development process is automated, eliminating repetitive
work and enhancing productivity.

A file can be read as input data by a program running on the
development system; the program can write back a file of
output data,

Utility programs are provided with a development system to
perform many of the tasks associated with program
development - for example, translating source code written
in a high-level language into object code that can be
understood by the microprocessor. The source code is read
from a file held on backing storage; the object code is
written to another file.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

FROM BACKING
STORE

TO BACKING
STORE

TAPE CASSEITE

/ , I FLOPPY DISC

or

'HARD' DlSC

PROGRAM
INPUT L.----A

t OUTPUT
FILE(S) FILEIS)

SCREEN
DISPLAYS USER CONTROLS

STATUS FROM KEYBOARD

F i g u r e 3-1 Sof tware Tools

These u t i l i t y programs a r e t h e t o o l s of t h e s o f t w a r e
e n g i n e e r ; t h e y a r e what h e o r s h e u s e s t o c r e a t e and
m a n i p u l a t e s o f t w a r e . A u t i l i t y program (a ' s o f t w a r e t o o l ')
may have s e v e r a l i n p u t and s e v e r a l o u t p u t f i l e s , depending
on t h e f u n c t i o n i t per forms. An o u t p u t f i l e need n o t go t o
back ing s t o r a g e : i f i t c o n t a i n s t e x t u a l i n f o r m a t i o n i t might
be s e n t d i r e c t l y t o a p r i n t e r . S i m i l a r l y , a n i n p u t f i l e
might be typed i n a t a keyboard .

F i l e s which c o n t a i n r e a d a b l e t e x t - t h a t i s , i n f o r m a t i o n
t h a t can be u n d e r s t o o d and m a n i p u l a t e d by a programmer - a r e
known a s t e x t f i l e s . B ina ry codes a r e used t o r e p r e s e n t t h e
i n d i v i d u a l t e x t c h a r a c t e r s (s e e s e c t i o n 3 . 8) .

3 . 3 . 1 Backup

Once programming h a s begun, t h e work of t h e s o f t w a r e
d e s i g n e r w i l l be h e l d e n t i r e l y on f i l e s i n back ing s t o r a g e .
While s t o r a g e media a r e i n h e r e n t l y v e r y r e l i a b l e , e r r o r s do
o c c a s i o n a l l y o c c u r (due , f o r example, t o d u s t a c c i d e n t a l l y
g e t t i n g i n t o a d i s c d r i v e) which can wipe o u t d a y s o r even

-
Texas i n s t r u m e n t s 3-3 Octobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

weeks of work. It i s t h e r e f o r e n e c e s s a r y t o have some form
of backup f o r i m p o r t a n t f i l e s - a n e x t r a copy, s t o r e d away
from t h e computer. The re a r e many ways of do ing t h i s : f o r
example , copying f i l e s a t r e g u l a r i n t e r v a l s t o magne t i c t a p e
o r pape r t a p e .

One method which works p a r t i c u l a r l y w e l l f o r f l o p p y
d i s c- b a s e d s y s t e m s , and can a l s o be used f o r h a r d d i s c s , i s
t o d u p l i c a t e t h e comple t e d i s c (o r d i s c s) c o n t a i n i n g t h e
f i l e s f o r a p r o j e c t . The s u g g e s t e d way of do ing t h i s i s t o
h a v e 2 backup d i s c s f o r e a c h d i s c i n u se . The 3 d i s c s
(l a b e l l e d A, B, C f o r conven ience) can be used i n a
backup c y c l e :

CURRENT DlSC

FIRST BACKUP DlSC

SECOND BACKUP DlSC

F i g u r e 3-2 Backup Cycle - 1

A t r e g u l a r i n t e r v a l s - s a y once a week, b u t depending on how
much work h a s been done - t h e c u r r e n t d i s c i s backed up.
T h i s i s done by copy ing t h e comple t e d i s c t o t h e second
backup (C). The copy shou ld be v e r i f i e d a f t e r i t h a s been
made.

I
COPY FIRST BACKUP DlSC

F i g u r e 3-3 Backup Cycle - 2

Once t h i s h a s been done, t h e second backup (C) becomes t h e
c u r r e n t d i s c , t h e p r e v i o u s c u r r e n t d i s c (A) i s r e l e g a t e d t o
backup, and t h e f i r s t backup t o second backup:

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

CURRENT DlSC

FIRST BACKUP DlSC

SECOND BACKUP DlSC

F i g u r e 3-4 Backup Cycle - 3

There are two r e a s o n s f o r u s i n g C a s t h e new c u r r e n t d i s c
i n s t e a d of c o n t i n u i n g w i t h A:

1) I f t h e c y c l e i s c a r r i e d o u t r e g u l a r l y each d i s c
w i l l g e t t h e same amount of u s e

2) I f f o r any r e a s o n t h e copy d i d n o t work, t h i s
w i l l q u i c k l y become a p p a r e n t when t r y i n g t o u s e
C.

I f t h e c u r r e n t d i s c becomes c o r r u p t e d a t any t ime , t h e f i r s t
backup can be used t o r e s t o r e t h e s i t u a t i o n a t t h e t ime of
t h e las t backup c y c l e .

The second backup p r o v i d e s a n e x t r a i n s u r a n c e p o l i c y a g a i n s t
c a t a s t r o p h e s - f o r example i f a d i s c d r i v e f a u l t c o r r u p t s
b o t h t h e c u r r e n t d i s c and t h e f i r s t backup, o r a power
f a i l u r e o c c u r s d u r i n g t h e backup p r o c e s s .

The e x t r a expense of t r i p l i c a t i n g d i s c s (n o t much f o r
f l o p p i e s) and t h e t ime s p e n t back ing up i s more t h a n p a i d
f o r by t h e s a v i n g s i f a f a u l t does occu r .

3 . 4 Text E d i t i n g

The t e x t e d i t o r i s a program which a l l o w s t h e u s e r t o c r e a t e
and m a n i p u l a t e t e x t f i l e s . The e d i t o r i s p e r h a p s t h e most
i m p o r t a n t t o o l on t h e development system. It i s t h e t o o l
which a programmer w i l l spend more t ime u s i n g t h a n any
o t h e r . So i t i s i m p o r t a n t t h a t a n e d i t o r i s w e l l d e s i g n e d ,
e a s y t o u s e and h a s a good set of f a c i l i t i e s .

New t e x t i s e n t e r e d a t a keyboa rd , and saved i n a f i l e on
backup s t o r a g e (c a s s e t t e , f l o p p y o r h a r d d i s c) . The t e x t
w i l l u s u a l l y c o n s i s t of s o u r c e program code i n assembly o r
h i g h l e v e l l anguage ; however most e d i t o r s w i l l a l l o w any

3-5 ...a. Texas I n s t r u m e n t s Oc tobe r l r a l

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

k i n d of t e x t u a l i n f o r m a t i o n t o be e n t e r e d . The t e x t
(w h e t h e r newly e n t e r e d o r r e c a l l e d from b a c k i n g s t o r a g e) can
b e m o d i f i e d by e n t e r i n g commands a t t h e keyboard (F i g u r e
3- 5) .

G e n e r a l l y t h e e d i t o r s which a r e e a s i e s t t o u s e a r e t h o s e
which a r e s c r e e n based : t h a t i s , t h e t e x t i s d i s p l a y e d on a
v i s u a l d i s p l a y s c r e e n and c a n be m o d i f i e d by moving a c u r s o r
and u s i n g s i m p l e key s t r o k e s t o change , i n s e r t - o r d e l e t e
c h a r a c t e r s a t a p p r o p r i a t e p o s i t i o n s (F i g u r e 3- 6) .

(1) Creating a new file

ENTERS
TEXT

(2) Modifying an existing file

EDITOR
CREATES TEXT FlLE
ON BACKING STORAGE

TEXT FILE C MODIFIED TEXT
READ FROM FILE WRITTEN TO

BACKING STORAGE BACKING STORAGE

USER ENTERS COMMANDS
TO MODIFY TEXT

F i g u r e 3-5 E d i t o r F u n c t i o n

Texas I n s t r u m e n t s 3-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT T O O L S

CURSOR
MOVEMENT

"INS" KEY "DEL" KEY
= INSERT CHARACTERS = DELETE CHARACTER
AT CURRENT CURSOR AT CURRENT CURSOR
POSITION POSITION

F i g u r e 3-6 Use of a S c r e e n Based E d i t o r

O c t o b e r i 4 8 i

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Most editors also provide a repertoire of commands that
allow such functions as searching for and replacing
specified strings of characters.

ABORT E x i t t h e e d i t o r BOTTOM P o s i t i o n c u r s o r a t e n d- o f- f i l e
INPUT E d i t a n o t h e r f i l e TOP P o s i t i o n c u r s o r a t t o p- o f- f i l e
QUIT Save f i l e & ABORT +/- i n t P o s i t i o n c u r s o r up o r down " i n t "
SAVE Save f i l e & INPUT

INSERT I n s e r t a f i l e
CHECK Check s y n t a x of f i l e SHOW D i s p l a y a f i l e

COPY Copy t h e s p e c i f i e d b l o c k a f t e r t h e c u r r e n t l i n e
DELETE D e l e t e t h e s p e c i f i e d b l o c k
MOVE Move t h e s p e c i f i e d b l o c k a f t e r t h e c u r r e n t l i n e
PUT Put t h e s p e c i f i e d b l o c k i n t o t h e s p e c i f i e d f i l e

FIND(tok,n) F ind t h e Nth o c c u r r e n c e of t o k
REPLACE(to4l9tok2,n) Rep lace t o k l w i t h t o k 2 f o r n o c c u r r e n c e s
TAB(increment) S e t t a b inc remen t

--*-*-*-*-*-*-*-*-*-*-*-*-*-* F u n c t i o n Keys *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
F1 F 2 F 4 F 5 F6 F 7 F 8

R o l l Up R o l l Down D u p l i c a t e S t a r t Block End Block Edit/Compose S p l i t

F i l e = 1NPUT.FILE
< >

Tab = 2

Figure 3-7 Microprocessor Pascal Editor 'Menu' of Commands

As far as a prqgrammer is concerned, software development
consists mainly of manipulating text files stored on a
development system. These text files will probably be
written in some programming language. A programming
language is a precise form of notation that a programmer
uses to specify what he requires the microprocessor to do.
Software tools are used to translate the program in this
form (in which it can be created and worked on by a software
engineer) into a form that can be understood and executed by
the microprocessor. Together, the language and the software
tools form a design system for programming electronic
parts.

Texas Instruments October i 9 8 i

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

3.5.1 Assembly Language

The earliest computers were programmed directly in machine
code: that is, binary digits. Each instruction in a
computer is represented by a unique pattern of bits within a
word of program code. Fzr example, in the TMS 9900,

The X's carry other information (where the elements to be
added can be found, and where to store'the result) and may
be 0's or 1's. Some instructions require two or three
words, because they contain data addresses of ------

9 lue I U U L j'

locations, etc.

Programming in machine code is extremely tedious and very
prone to errors . Theref ore assembly language was invented.
Using assembly language, a program can be written with
meaningful mnemonfcs (e.g., MPP for multiply) instead of
binary code for instructions, and symbols instead of numeric
addresses for memory locations:

C WORD^, WORD^ COMPARE WORDl WITH WORD2
JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME"

SAME TB 7

WORDl BSS 2
WORD2 BSS 2

TEST INPUT BIT

RESERVE STORAGE (BLOCK STARTING
WITH SYMBOL) FOR WORDl AND WORD2
2 BYTES = 1 WORD EACH

3.5.2 Assemblers

Translation from assembly language to machine code, which
must be done before the program can be executed, is a
tedious but fairly straightforward process; the sort of
thing computers do well. The translation is carried out
automatically by a software tool (a computer program) called
an assembler.

An assembler converts assembly language source code, which
is produced by a programmer, into object code, which can be
understood by the microprocessor. The input to the
assembler will normally be a text file created by the
editor. The output will be a file of object code. The

Texas Instruments 3-9 October iY8i

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

assembler also generates a listing file, which is a text
file containing details of the assembly, and any error
messages.

TEXT FILE I I

STATUS CONTROL //
COMMANDS MESSAGES

OF SOURCE
CODE \

OBJECT

ASSEMBLER

CODE / FILE

LISTING
Fl LE

Figure 3-8 Assembler

One of the advantages of using an assembler (instead of
programming directly in machine code) is that programs can
easily be changed. For example, an extra instruction can be
inserted in an assembly language program and the program
simply reassembled. Inserting an extra instruction in a
machine code program would involve going through the whole
program changing (eg) jump addresses, because the position
of all the code after the insertion would have changed.

3.5.3 High-Level Languages

Assembly language, though a great improvement on machine
code, still requires a problem to be translated into machine
terms before it can be programmed. Each assembly language
instruction corresponds to one machine instruction.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

The programmer must w r i t e a s t a t e m e n t l i k e

I F t e m p e r a t u r e l e s s t h a n 70 d e g r e e s AND
p r e s s u r e s e n s o r i s o f f THEN
netifg ope ra t e r

i n te rms of t h e low- level t e s t s and c o n d i t i o n a l jumps t h a t
a r e t h e on ly t h i n g s t h e computer u n d e r s t a n d s :

C I @TEMp,70
ZNZ NEXT
CI @PRESS,OFF
J N E NEXT
BLWP @NTFYoP

NEXT .

I n a d d i t i o n , t h e programmer must manage a l l t h e r e s o u r c e s of
t h e computer , such a s which memory l o c a t i o n s a r e t o be used
t o s t o r e each i t e m of d a t a , h i m s e l f .

High l e v e l l anguages were i n t r o d u c e d t o a l l o w t h e computer
t o hand le a l l t h e s e 'housekeeping ' f u n c t i o n s a u t o m a t i c a l l y ,
and t o f r e e t h e programmer t o c o n c e n t r a t e on t h e problem.

One of t h e f i r s t h i g h- l e v e l l anguages was FORTRAN, which
s t a n d s f o r FORmula TRANslation. It a l l o w s programs t o be
w r i t t e n i n a s t y l i z e d l anguage t h a t combines e l emen t s of
mathemat ics and E n g l i s h :

1 O J = 4
I = 5*J + 7
I F (I.EQ.27) THEN GOT0 100

The programmer can s e t up s t o r a g e l o c a t i o n s w i t h names l i k e
I1 1" and "J". I and J a r e c a l l e d v a r i a b l e s because t h e y can
b e a s s i g n e d any v a l u e . The f i r s t l i n e of t h e program
(l a b e l l e d 10) s e t s J t o t h e v a l u e of 4. The second l i n e
t a k e s t h e v a l u e s t o r e d i n J (which we know t o be 4) ,
m u l t i p l i e s i t by 5 , adds 7 and a s s i g n s t h e r e s u l t i n g v a l u e
t o I. Line 30 t h e n t e s t s I t o s e e i f i t h a s t h e v a l u e 27;
i f s o , t h e nex t l i n e t o be execu ted w i l l be t h e one l a b e l l e d
100. Otherwise t h e program c o n t i n u e s w i t h t h e n e x t l i n e i n
t h e sequence.

I and J r e p r e s e n t memory l o c a t i o n s . But t h e programmer does
n o t have t o worry abou t where i n memory they a r e .

It i s much e a s i e r t o w r i t e programs i n FORTRAN t h a n i n
assembly language . However, i n some r e s p e c t s FORTRAN i s
s t i l l c l o s e r t o t h e way machines o p e r a t e t h a n t o t h e way
human b e i n g s t h i n k . The GOT0 s t a t e m e n t , f o r example, i s
o b v i o u s l y d e r i v e d from t h e assembly language JMP; i t i s a
machine c o n s t r u c t and n o t a human, o r l o g i c a l , one.

Texas i n s t r u m e n t s 3 - i i r n o * October l r a l

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Implementation of conditional statements, for example,
requires GOT0 statements and labels. To program "If I is
equal to 5 then do X else do Y", it is necessary towrite:

IF (I.EQ.5) THEN GOT0 50

(do Y)

(do X)

Not only are the statement numbers an additional confusion
and a source of error, but the order is inverted: the then
action comes second. FORTRAN was designed simply as an
easier and quicker way of writing assembly language
programs.

More recently, high-level languages have been designed with
the intention of getting as close to the problem as
possible. The ideal is that writing a program should
require no more than a precise and unambiguous statement of
what to do. Everything else (translating this precise
statement into code to be understood by a machine, and
allocating machine resources) should be done automatically
by software tools.

A precise and unambiguous statement of what to do is known
as an algorithm, One advantage of this approach is that the
algorithms derived are independent of a particular machine
architecture, and can survive changes in hardware
technology, Many of the newer languages are based on ALGOL
(ALGOrithmic Language), which was designed in the 1960s as a
natural language for writing algorithms.

3.5.4 Pascal

Pascal is acknowledged as one of the best modern high-level
languages, Developed principally by one man, PASCAL has a
coherence which some committee-designed languages lack. It
implements most of the generally accepted good programming
practices, Besides providing the fundamental constructs
needed to write algorithms, in a much more natural way than
in FORTRAN (say), Pascal also has powerful methods of
organizing and structuring data.

Algorithms can be turned directly into Pascal programs with
very little effort.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

A Pascal program is easy to read, and is almost
self-documenting:

IF input value = 5 THEN -
B E G I N
perform test procedure;
print - results
END

ELSE
record - value;

perform test procedure, print results and record value will -
be precFsely-def ined elsewhere-in the program.

3.5.5 Compilers

A compiler performs the same function as an assembler (see
section 3.5.2 above), but its input will be a program
written in a particular high level language, Some compilers
produce object code (machine code) directly; others generate
assembly language source, which must be run through an
assembler to generate object code. This is an extra step,
but it does give the user the option of hand optimizing the
compiler output before it is assembled. The input to a
compiler or assembler is called source code; the output is
object code.

Execution of a compiler or an assembler is completely
separate from execution of the resulting program. A
compiler or assembler is a software tool used during
development that translates a program written in a
programming language into a machine executable form, In
developing a microcomputer application, the
compiler/assembler will run on the development system and
the compiled or assembled program will be designed to
execute on the target system.

3.5.6 Interpreted Languages

Languages such as FORTRAN are compiled languages; that is,
the source program is turned into machine code in a separate
step (perhaps on a different machine) before it is
executed.

With an interpreted language, such as BASIC, there is no
separate compilation step. The program is not stored in
machine code but in intermediate code, which can be regarded
as condensed source code with all unnecessary symbols
removed. At execution time, the interpreter, a program
which resides with the intermediate code in the target
system, looks at each line of intermediate code, determines

Texas Instruments 3-13 October i98i

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

what it means and carries out the necessary action. The
intermediate code is not executed directly; the interpreter
examines it to determine what it means, then calls an
appropriate piece of assembly language code, contained
within the interpreter, to perform the operation.

Intermediate code is much more compact than machine code;
however, the interpreter must always he there, whatever the
size of the intermediate code, so that there is a minimum
overhead in an interpretive system. Beyond a certain size,
an interpreted program will take less memory than an
equivalent compiled program. However, an interpreted
program will run a lot slower (typically 5 to 10 times) due
to the extra work that must be done at execution time in
interpreting the intermediate code.

3.5.6.1 BASIC

BASIC is a simple language which is very easy to learn.
BASIC systems also use a very simple set of software tools.

BASIC is especially suited to systems where development and
execution are carried out on the same hardware. BASIC
systems usually have a special editor, which converts input
programs to intermediate code, a line at a time, as they are
entered. The BASIC editor checks each line for syntax
errors as it is entered, and signals any errors for
immediate correction. There is no separate compilation or
assembly step; programs can be executed simply by typing
"RUN". Programs can be halted and changed, then run again,
which makes for very quick, interactive development.

Texas Instruments' Power BASIC (see Chapter 7) is designed
to run on the TM990 range of microcomputer boards. A RASIC
program can be developed and executed using, at minimum, one
TM990 board and a terminal. BASIC provides an inexpensive
microcomputer system which is ideal for small applications
and experimental work, and can be used by people without
computer experience.

However, BASIC does have limitations. Its "line at a time"
nature means that there is no adequate program or data
structuring, and very limited checks on program
correctness. RASIC is not recommended for the development
of complex systems.

3.5.6.1 Interpreted Pascal

Microprocessor Pascal programs (see chapter 6) will normally
be executed in machine code ("native" code). This gives
maximum execution speed. However, they can optionally be
executed interpretively. This allows the user to trade-off
execution speed against memory size, and to select which is

Texas Instruments 3-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

more important for his particular application. Interpretive
execution is slower, but takes less memory.

Faced with the choice of which language is best, some
general observations can be made,

Low-ievel (assembly) language allows t he programmer direct
access to all the features of the machine and thus the
opportunity to write compact and efficient programs. To
capitalize on this requires skill and time. The opportunity
equally exists to make mistakes and to write inefficient
- r . -Alnrr . - rn

L VsI QL113.

High-level languages can shorten development time by a
factor of 5 or more, and produce more reliable code. With a
high-level language it is much more difficult to make
expensive mistakes. High-level programs are more
understandable (if properly written, they can be
self-documenting), so that a project is less likely to be
dependent on one programmer. Changes are easier to make in
the late stages of a project. The cost is some code
inefficiency because a compiler cannot optimize as well as a
good assembly language programmer. However, this becomes
less true as the size of the program increases.
Inefficiencies (and errors) may be introduced in a large
assembly language program simply because of the intellectual
difficulty of managing such a large amount of detail
(especially when it is worked on by more than one
programmer). Compilers do not suffer from this problem.

Restrictions on code size, particularly for high volume
products, may dictate the use of assembly language in order
to produce the most compact code possible. Unless this is
the case, it makes sense to use a high-level language.
Assembly language projects ~f more than a few K (= thousand)
bytes should be considered very carefully because complexity
increases very rapidly with size. (Studies have estimated
that complexity is proportional to the square of the size of
the program).

For many projects, a compromise solution may be attractive.
For example, the control aspects, where clarity of the
design is important, can be programmed in high-level
language, with assembly language routines for critical low-
level areas such as input and output.

An alternative (or complementary) solution is to
hand-optimize compiler-produced code, once the program has
been completely checked out; or even to rewrite it in
assembly language after proving the design in (say) Pascal.
Both approaches have been used very successfully by Texas

3 4 5 i n n * Texas Instruments October i r u l

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

I n s t r u m e n t s i n i n t e r n a l p r o j e c t s ,

3.6 L i n k e r

A l i n k e r , o r l i n k e d i t o r , i s a program which w i l l combine
s e p a r a t e l y compi led o r assembled o b j e c t code modules t o form
a comple t e sys tem,

With a sys t em of any s i z e , i t i s much e a s i e r t o b reak t h e
program down i n t o modules which can be w r i t t e n s e p a r a t e l y .
U s u a l l y , t h e s e modules w i l l be chosen s o t h a t each per forms
a f a i r l y s e l f - c o n t a i n e d f u n c t i o n and c a n be t r e a t e d a s a
l o g i c a l u n i t ,

The i n t e r f a c e s between t h e s e modules - t h a t i s , t h e way t h a t
t h e y w i l l f i t t o g e t h e r t o form a comple t e sys tem - must be
c a r e f u l l y c o n s i d e r e d when t h e sys t em i s b e i n g d e s i g n e d ,
Modules w i l l o f t e n need t o u s e programs o r d a t a c o n t a i n e d i n
o t h e r modules , These can be d e f i n e d a s e x t e r n a l r e f e r e n c e s
t o symbo l i c names: t h e y w i l l be i n d i c a t e d (t a g g e d) a s
u n r e s o l v e d a d d r e s s e s i n t h e o b j e c t code. D e f i n i t i o n s t o be
u s e d by o t h e r modules w i l l a l s o be i n c l u d e d i n t h e o b j e c t
code. The l i n k e r c o n n e c t s t o g e t h e r , o r r e s o l v e s , t h e s e
l o o s e ends by l i n k i n g r e f e r e n c e s w i t h t h e i r c o r r e s p o n d i n g

-

d e f i n i t i o n s ,

3.6.1 Abso lu t e and R e l o c a t a b l e Code

B e f o r e a program can be e x e c u t e d , i t must be l o c a t e d a t a
p a r t i c u l a r p l a c e i n memory, Addres se s i n a program r e f e r t o
p a r t i c u l a r memory l o c a t i o n s , and t h e r i g h t d a t a o r program
code must be p r e s e n t a t t h o s e l o c a t i o n s f o r t h e program t o
work,

Some a s s e m b l e r s f o r t h e 9900 (t h e Line-By-Line Assembler f o r
example) produce o n l y a b s o l u t e code ; t h a t i s , t h e p o s i t i o n
o f t h e code i n memory i s s p e c i f i e d a t t h e t i m e of assembly ,
and canno t s u b s e q u e n t l y be changed ,

However, most a s s e m b l e r s produce r e l o c a t a b l e code , Program
and d a t a a d d r e s s e s a r e c a l c u l a t e d r e l a t i v e t o t h e program
b a s e a d d r e s s - u s u a l l y 0. Address f i e l d s a r e s p e c i f i e d a s
" r e l o c a t a b l e " i n t h e o b j e c t code o u t p u t . When t h e program
i s l o a d e d f o r e x e c u t i o n , s t a r t i n g a t , f o r example, a d d r e s s
100 , t h e l o a d e r program can add t h i s v a l u e t o a l l t h e f i ' e l d s
t a g g e d " r e l o c a t a b l e " s o t h a t t h e program w i l l e x e c u t e
c o r r e c t l y (F i g u r e 3- 9) .

R e l o c a t a b l e code a l l o w s t h e programmer t o pos tpone d e c i d i n g
where t h e program w i l l be l o c a t e d u n t i l t h e t ime comes t o

Texas I n s t r u m e n t s 3-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

load it, This can be very useful when a system is being
constructed from a number of different program modules.
Each nodule can be assembled separately without needing to
calculate exactly where it will fit in memory - which would
l n v o l v e kncwing the lengths ef all the ether modules, More
important still, one module can be changed (perhaps
increasing its length) without the need to reassemble all
the others in different positions to make room for it,

Program assembled at
base address 0

0

I* Branch to
1
I

Loaded in memory
at address >I00

-4A

5F -

Figure 3-9 Relocatable Code

* address >4A
B @LABEL

LABEL MOV R1 ,R2

Modules to be linked will usually be relocatable. The
linker stacks them one after the other in memory, adjusting
all the addresses accordingly, Output from a linker can
either be a larger relocatable module, or absolute code,
designed to be executed at a particular position in memory.

Linkers and relocatable code make a great difference to
software development. It is possible to break a project
down into manageable modules, One module can be changed
without recompiling or reassembling the whole system, The
linker automatically takes care of changes in module size
and in the addresses of external variables. This can save a
great deal of time (and money) in developing software.

A linker also allows the use of libraries of standard
routines. Libraries can provide, for example, mathematical

Texas instruments 3- i 7 OcCoBer 198:

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

c a p a b i l i t i e s o r run- time s u p p o r t f o r a p a r t i c u l a r
programming l anguage . A l i b r a r y c o n s i s t s of a number of
d i f f e r e n t modules , which can e i t h e r be w r i t t e n by t h e u s e r
o r s u p p l i e d by a m a n u f a c t u r e r , These modules a r e s t o r e d a s
r e l o c a t a b l e o b j e c t code. A u s e r can r e f e r e n c e any of t h e s e
modules i n h i s program; when t h e t i m e comes t o l i n k , t h e
l i n k e r w i l l a u t o m a t i c a l l y se lect from t h e l i b r a r y t h e
modules r e q u i r e d by t h e program, and l i n k them i n t o t h e
sys tem. See Chap te r 5, Component S o f t w a r e , f o r f u r t h e r
i n f o r m a t i o n on t h e u s e of s o f t w a r e l i b r a r i e s .

Wi th a l i n k e r , some modules can be w r i t t e n i n h i g h l e v e l
l a n g u a g e and o t h e r s i n a s sembly l anguage , a c c o r d i n g t o t h e i r
c h a r a c t e r i s t i c s . T h i s makes p o s s i b l e a v e r y f l e x i b l e
a p p r o a c h t o sys t em d e s i g n .

3 . 7 TARGET SYSTEM EXECUTION

Having produced a n e x e c u t a b l e program u s i n g t h e s o f t w a r e
t o o l s of a deve lopment sys t em, t h e r e a r e two ways of
t r a n s f e r r i n g t h e program f o r e x e c u t i o n i n t h e i n t e n d e d
t a r g e t sy s t em (a t h i r d method, e m u l a t i o n , i s d e s c r i b e d i n
C h a p t e r 2 , s e c t i o n 2.10.1).

3.7.1 Loader

A l o a d e r i s a s o f t w a r e u t i l i t y t h a t l o a d s an e x e c u t a b l e
program from some form of back ing s t o r a g e i n t o r e a d / w r i t e
(RAM) memory, f o r e x e c u t i o n by t h e p r o c e s s o r . A l o a d e r w i l l
t h e r e f o r e be used i n a t a r g e t sys tem which h a s been d e s i g n e d
t o e x e c u t e more t h a n one program, and which h a s a back ing
s t o r e of some k i n d (m a g n e t i c d i s c , t a p e e t c) a v a i l a b l e ,
However, a l o a d e r may a l s o be used i n a t a r g e t sys tem
w i t h o u t b a c k i n g s t o r a g e , t o l o a d a program i n t o RAM memory
f o r t e s t e x e c u t i o n . Here , t h e " backing s t o r e " is l i k e l y t o
b e a h o s t development s y s t e m , o r a t e r m i n a l w i t h some form
o f s t o r a g e .

Any computer sys t em r e q u i r e s some form of program s t o r e d i n
r e a d o n l y memory t h a t w i l l be e x e c u t e d immed ia t e ly when t h e
s y s t e m powers up. I n a g e n e r a l pu rpose computer , t h i s
program may do n o t h i n g more t h a n l o a d i n t h e O p e r a t i n g
System o r C o n t r o l Program from back ing s t o r e , and t h e n
r e l i n q u i s h c o n t r o l . Such a program i s c a l l e d a " b o o t s t r a p
l o a d e r" .
Some l o a d e r s a r e r e l o c a t i n g l o a d e r s - t h a t i s , t h e y can t a k e
a r e l o c a t a b l e o b j e c t program from back ing s t o r a g e and p l a c e
i t a t any s p e c i f i e d p o s i t i o n i n memory, a d j u s t i n g t h e
a d d r e s s e s t agged ' r e l o c a t a b l e ' s o t h a t t h e program w i l l

Texas I n s t r u m e n t s 3- 18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

e x e c u t e c o r r e c t l y . Other l o a d e r s r e q u i r e program code i n
image fo rma t - t h a t i s , a b s o l u t e b i n a r y code t h a t can be
p l a c e d d i r e c t l y i n t h e computer 's RAM memory.

3 , 7 , 2 PROM Programmer

A d e d i c a t e d microrcmputer i s l i k e l y t o have i t s program code
a l r e a d y s t o r e d i n r ead o n l y memory when t h e sys tem powers
UP 9 s o t h a t no i o a d e r i s r e q u i r e d . A u t i i i f y c a l l e d a PROM
Programmer i s used t o permanent ly f i x t h e program i n t o a
PROM memory c h i p which can be plugged i n t o t h e t a r g e t
system. (I n t h e c a s e of EPROM, t h e program can be e r a s e d
a g a i n by exposure t o u l t r a v i o l e t l i g h t - s e e S e c t i o n 1.7,
Semiconductor Memory), A PXGM P r o g r a n m e r is -.-.,<-l.,--l ~ C I I ~ L I G L Q I

d e v i c e a t t a c h e d t o a microcomputer development system,
t o g e t h e r w i t h a s o f t w a r e u t i l i t y which t a k e s program f i l e s
from d i s c on t h e development sys tem and f e e d s them t o t h e
p e r i p h e r a l dev ice .

For sys tems produced i n l a r g e q u a n t i t i e s , mask RUM (S e c t i o n
1.7) may be used. I n t h i s c a s e t h e developed program w i l l
be i n c o r p o r a t e d i n t o t h e ROM d e v i c e d u r i n g manufac ture .
However, PROM (Programmable ROM) i s l i k e l y t o be used t o
prove t h e f i n a l program b e f o r e i t i s committed t o mask.

3 . 8 TEXT FILES

I n o r d e r t o s t o r e t e x t u a l i n f o r m a t i o n i n a machine which
r e c o g n i z e s o n l y b i n a r y d i g i t s , some form of code must be
used - t h a t i s , some r u l e f o r t r a n s f o r m i n g t e x t u a l
i n f o r m a t i o n i n t o b i n a r y d a t a . The code adop ted f o r t h e 990
and 9900 s e r i e s i s ASCII (American S tanda rd Code f o r
I n f o r m a t i o n I n t e r c h a n g e) . The ASCII code s p e c i f i e s a unique
b i t p a t t e r n (number) f o r each member of t h e ASCII c h a r a c t e r
s e t - l e t t e r s , d i g i t s , p u n c t u a t i o n marks and c o n t r o l
c h a r a c t e r s . 7 b i t s a r e s u f f i c i e n t t o u n i q u e l y i d e n t i f y an
ASCII c h a r a c t e r . ASCII c h a r a c t e r s a r e u s u a l l y s t o r e d one
p e r b y t e (8 b i t s) , w i t h t h e most s i g n i f i c a n t b i t o f t e n be ing
used f o r e r r o r d e t e c t i o n (p a r i t y check) .

T h i s means t h a t t e x t u a l i n f o r m a t i o n can be h e l d i n memory,
saved a s a t e x t f i l e on back ing s t o r a g e and man ipu la t ed by
u t i l i t y programs.

Texas i n s t r u m e n t s October i98i

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Character ASCII code
Binary Hexadecimal*

A 01000001 41
T 01010100 54
1 00110001 3 1
5 00110101 35
? 00111111 3F

line feed 00001010 0 A

It is the input and output devices (Visual Display Unit,
printer, etc) that recognize '01000001' as 'A', and so on.
They translate key presses into ASCII coded data, and coded
data back into displayed and printed characters,

Program manipulation of textual data is normally limited to
moving it around in memory (to insert or delete text),
searching for particular sequences of characters, and
similar operations, (Arithmetic operations on text do not
make much sense.)

Numbers (decimal, hexadecimal or otherwise) can be
represented in text as a string of ASCII digits, However,
the bit pattern representing these digits in the computer is
a code and bears no direct relation to the binary
representation of that number - which the computer would use
to perform any calculation,

* For the hexadecimal number system, see Section 8.13,2,1

Texas Instruments 3-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

CHAPTER 4

SOFTWARE DESIGN

This book cannot present a full description of the software
designer's craft. However, the aim of this chapter is to
sl;ggeat d i r e z t i o r ; ~ 2nd --AT.: yL,vAUG a- a starting point for f u r t h e r

investigation. The science of software - particularly real
time software - is inexhaustible.
New tools and procedures are gradually automating the "lower
levels" of software development and pushing the area where
creative engineering is most needed back towards system
design and requirements specification. New requirements
will always provide scope for innovative and practical
engineering solutions.

This chapter is concerned with the design and structuring of
software for microcomputer applications. What is presented
here is independent of any particular programming language -
though much of it is quite close to Pascal, which was
designed with the explicit goal of implementing the
I I universal" elements of a programming language.

Producing an initial language-independent software design
has a number of advantages. It allows the overall strategy
of the design to be worked out before it becomes cluttered
with implementation detail; and it provides a common point
of reference that can be returned to when making changes to
the system, or if it is desired to implement the sane
application using different techniques. For a large
project, the initial design can be kept sufficiently simple
to be manageable by one man, or a small team. This design
specification can then be used to coordinate the efforts of
a larger group.

Some languages (eg assembly language, FORTRAN, BASIC) offer
no means of developing a high level design strategy without
descending to the details of implementation. Here a
stylized design language must be used in the initial
stages. Using more modern, application-oriented languages
such as Pascal, it is possible to develop a high level
design in the language itself. Some users may still prefer
to use a design language to produce a separately documented
design.

- .Iexas instruments

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.2 SOFTWARE STRUCTURE

Good structure, both of program and data, makes the
difference between a well-ordered, reliable program that is
easy to maintain and upgrade, and untidy ("spaghetti") code,
with hidden bugs that may not be found until it is too
late. Establishing a good structure may mean spending some
time on system and software design before going near a
keyboard or coding pad, but the time spent is well worth
while. Errors not caught at the design stage become ten
times more expensive to correct at the programming stage, a
hundred times more expensive at final test, and,
potentially, thousands of times more expensive when the
product is in the field.

Structure is equally important for high level and for
assembly language programs, although a good high level
language gives much more assistance by supplying pre-defined
structural constructs.

This chapter describes the basic principles of modular
software design (ie structuring at the level of
software/hardware packages and modules), and also some of
the 'fine detail' of data structure and program algorithms.
An algorithmic design language and a structured graphical
notation that can be used for design are introduced. This
chapter owes much to the pioneers of modern software
engineering techniques, in particular Dahl, Dijkstra, Hoare
and Wirth. The graphical notation used in this book was
developed by Eric Richards * from a notation devised by
Michael Jackson. The references at the end of this chapter
provide material for further research.

No accepted standard for a design language yet exists. A
suggested notation and standard is introduced in this
chapter. Designers who wish to adopt a strict formal
notation for software design are recommended to use Pascal.
Designs can then be checked automatically for consistency by
a suitable Pascal compiler. This approach has been very
successfully adopted within the experience of the authors.

The present chapter describes in some detail the basic
structuring techniques that are fundamental to modern high
level languages. Chapter 5 describes how these have been
extended in the Component Software environment to apply to
real time microprocessor systems. Chapter 6 describes Texas
Instruments' Microprocessor Pascal System.

* Described in an article in the British journal Computing,
May 19 1977

Texas Instruments October 1 9 8 1

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4 . 3 SOFTWARE PACKAGES

With a p r o j e c t of any s i z e , i t i s h e l p f u l t o s p l i t t h e
-------I 1
U V ~ L ~ A L problem up i n t o s m a l l e r packages which can be
t a c k l e d s e p a r a t e l y .

When a d o p t i n g t h i s app roach , two t h i n g s must be c o n s i d e r e d :

(1) The d e t a i l e d n a t u r e of each package

(2) How t h e packages w i l l f i t t o g e t h e r t o form a
comple t e system.

To s i m p l i f y t h e t a s k of i n t e r f a c i n g , packages shou ld be
to be a s a s poss ib l e* T- -&L - - 111 uLIler

words , t h e package b o u n d a r i e s s h o u l d be drawn s o t h a t
r e l a t i v e l y l i t t l e i n f o r m a t i o n needs t o be exchanged between
packages , compared w i t h t h e work done w i t h i n each package.

"Mature" sys t ems , where s i g n i f i c a n t t h o u g h t and e x p e r i e n c e
h a s been p u t i n t o t h e d e s i g n , and where t h e imp lemen ta t ion
medium i s f l e x i b l e enough n o t t o d i c t a t e t h e sys t em
s t r u c t u r e , t e n d t o m i g r a t e t o t h i s c o n d i t i o n . However, f o r
a new sys tem, t h e d e s i g n e r may have t o p u t i n c o n s i d e r a b l e
t h o u g h t t o e n s u r e t h a t t h e sys tem s t r u c t u r e i s a p p r o p r i a t e
from t h e s t a r t . Where t h e d e s i g n e r i s implement ing a n
e x i s t i n g sys tem i n a new way (i e where t h e a p p l i c a t i o n i s
m a t u r e) , much of t h i s t h o u g h t may have been done f o r him.

Packages s h o u l d be l o g i c a l l y s e l f - c o n t a i n e d , each pe r fo rming
a w e l l- d e f i n e d set of f u n c t i o n s . The ways i n which each
package i n t e r f a c e s w i t h t h e r e s t of t h e sys tem must be
c l e a r l y d e f i n e d .

A d e s i g n e r implement ing a f a c t o r y c o n t r o l sys t em, f o r
example, might i d e n t i f y t h e f o l l o w i n g packages :

FACTORY
CONTROL

F i g u r e 4-1 Component Packages of a F a c t o r y C o n t r o l System

I

Texas I n s t r u m e n t s

I

October 1981

CONTROL
INDUSTRIAL

PROCESS

COMMUNICATE
WITH REMOTE

COMPUTER
I

STORE AND
RETRIEVE

DATA

DISPLAY
INFORMATION
TO OPERATOR

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Each of these packages is still a fairly complex entity, but
the problem is beginning to look more manageable.

This analysis identifies the logical components of the
system. At this point, it is important to determine the
physical distribution - where will each function need to be
performed, and what communication paths are necessary? The
physical analysis will determine the likely hardware
components of the system - where processing capability is
required, where physical operations have to be performed,
at what points interaction with a human operator is
required, and where the communication paths will run.
Microsystems technology allows information processing
capability (which includes the ability to control things,
and the rudiments of an "intelligent" response) to be
located wherever it is required.

Although the example described is a factory control system,
the same considerations, on an appropriate scale, apply to
systems of all types and sizes.

A software package encapsulates a particular type of
"intelligence", a control function, or a data processing
operation. Many such packages can be specified
independently from the hardware environment where they will
he used, and some may be available as standard software (see
Chapter 5, Component Software). A standard package will
usually need to be "configured" into the particular
application (analagous to providing a standard socket and
circuit elements to interface to an integrated circuit).

Some applications may require little more than selecting
standard software packages and configuring them into a final
system. However, most applications will require some custom
software to be developed.

Each package can in turn be split into successively smaller
packages, until thedcomplete problem has been broken down
into manageable blocks. At every level in the structure,
the packages can be regarded as 'black boxes' that perform
clearly specified functions and combine in clearly defined
ways. The programmer can focus on a particular part of the
design, knowing that he can concentrate on the other parts
of the structure at other times.

4.4 DESIGN LANGUAGE

Design language can he compared to the logic diagrams used
by circuit designers. As yet there is no universal standard
for software design languages, but there are some generally
agreed "good practices". The notations used in this and the
following sections incorporate the features generally

Texas Instruments 4-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

r e g a r d e d a s u s e f u l i n s o f t w a r e d e s i g n .

A d e s i g n l anguage can be r e g a r d e d a s a g e n e r a l i s e d
programming l a n g u a g e , w i t h t h e f o l l o w i n g c h a r a c t e r i s t i c s :

(1) S y n t a x need n o t be c o m p l e t e l y rigid, a s l o n g
a s t h e l o g i c i s c l e a r l y d e f i n e d and
unambiguous

(2) O p e r a t i o n s can be i d e n t i f i e d by v e r b a l
dsscription t o s t a r t w i t h , and l a t e r d e s c r i b e d
p r e c i s e l y - e g " c a l c u l a t e mean"

(3) Only s t a n d a r d , 81 u n i v e r s a l " c o n s t r u c t s -
s e q u e n c e , s e l e c t i o n , i t e r a t i o n (s e e be low) and
s t a n d a r d data structures - a r e used .
Language- dependent c o n s t r u c t s a r e n o t
i n c l u d e d .

The aim of t h e d e s i g n l anguage i s t o e s t a b l i s h t h e p r e c i s e
l o g i c a l s t r u c t u r e of t h e a p p l i c a t i o n b e f o r e p r o c e e d i n g t o
imp lemen ta t i on . In f a c t t h e n o t a t i o n d e s c r i b e d h e r e i s v e r y
c l o s e t o t h e P a s c a l programming l anguage (s e e C h a p t e r 6) .
P a s c a l was deve loped a s a l anguage t h a t would implement ,
more o r l e s s d i r e c t l y , t h e f e a t u r e s r e q u i r e d f o r s o f t w a r e
d e s i g n . It was n o t d e s i g n e d f o r any p a r t i c u l a r machine
a r c h i t e c t u r e and hence h a s a " u n i v e r s a l 1 ' s t r u c t u r e .

It i s p o s s i b l e t o u s e P a s c a l i t s e l f a s a d e s i g n language .
The a d v a n t a g e of t h i s i s t h a t a d e s i g n can be checked
a u t o m a t i c a l l y f o r l o g i c a l c o r r e c t n e s s , even i f p a r t s of t h e
d e s i g n a r e i ncomple t e .

The g r a p h i c n o t a t i o n d e s c r i b e d below p r o v i d e s a n a l t e r n a t i v e
n o t a t i o n t h a t implements t h e same c o n s t r u c t s . E i t h e r o r
b o t h can be u sed d u r i n g d e s i g n ; sometimes a g r a p h i c n o t a t i o n
p r o v i d e s a c l e a r e r p i c t u r e , e s p e c i a l l y i n t h e e a r l y s t a g e s .

4.5 ALGORITHMS

An a l g o r i t h m i s a l i s t of i n s t r u c t i o n s : a s t a t e m e n t of 'how
t o do' someth ing . More p r e c i s e l y , i t i s t h e s p e c i f i c a t i o n
o f a f i n i t e number of s t e p s r e q u i r e d t o a c h i e v e a d e s i r e d
end . A f u n c t i o n can be per formed by a computer i f and o n l y
i f t h a t f u n c t i o n c a n be s t a t e d a s a n a l g o r i t h m . However,
w r i t i n g a n a l g o r i t h m r a t h e r t h a n a program l i b e r a t e s t h e
d e s i g n e r f rom c o n c e r n w i t h t h e s y n t a x and d e t a i l s of a
p a r t i c u l a r programming language . An a l g o r i t h m s h o u l d be
u n d e r s t o o d by p e o p l e who a r e n o t programming s p e c i a l i s t s ;
hence i t i s v e r y u s e f u l when s p e c i f y i n g a p r o j e c t .

Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

An algorithm for making tea might be as follows:

begin
fill kettle;
put kettle on;
put tea in teapot;
wait for kettle to boil;
fill teapot;
delay 5 minutes;
for number of cups required do - -

pour cup
end

Figure 4-2 Tea Making Algorithm

Two things can be identified in this (or any) algorithm.
First, there are the fundamental operations (fill kettle,
pour cup etc). Second, there are the control structures
which dictate if and when these operations are to be
performed. These control structures are identified by
underlined keywords:

begin . . end -
if .. . then .. . else - - -
for ... do ... - -
while .. . do .. .

etc

It is the control structures that provide the power of an
algorithm, and of a computer program. Algorithms can
specify alternative or repeated operations, provided the
conditions that determine the different actions are
specified completely and precisely. The algorithm
enumerates all possible options, and specifies exactly how
to take every decision. This is what is required to write a
computer program.

The individual operations described in Figure 4-2 can
themselves be analyzed into algorithms. For example, 'pour
cup' :

if milk is required -
then -
begin
pour milk;
pour tea
end

e -
pour tea

Figure 4 - 3 "pour cup" Algorithm

Texas Instruments 4-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

By combining t h e c o n t r o l s t r u c t u r e s shown h e r e , e x t r e m e l y
power fu l a l g o r i t h m s can be deve loped t o c o n t r o l , f o r
example, a complex s c i e n t i f i c i n s t r u m e n t o r a n i n d u s t r i a l
p r o c e s s .

It i s p o s s i b l e t o d e f i n e many d i f f e r e n t c o n t r o l s t r u c t u r e s ,
However, i t can be proved t h a t any s e q u e n t i a l a l g o r i t h m (and
any computer program) can be w r i t t e n u s i n g o n l y t h r e e b a s i c
c o n s t r u c t s -- sequence , s e l e c t i o n and i t e r a t i o n -- a l l of
which are i n c l u d e d i n t h e above examples .

4 , 5 , 1 Sequence

A s equence i s s imp ly a l i s t of o p e r a t i o n s c a r r i e d o u t one
after the 0 t h 2 r , i n o r d e r :

begia
f i l l k e t t l e ;
p u t k e t t l e on;
p u t t e a i n t e a p o t
end -

The keywords " begin" and "end" b r a c k e t t h e s equence , s o t h a t -
i t can be t r e a t e d a s one l o g i c a l e n t i t y , The g e n e r a l form
o f a s equence i s :

b e g i n
< s t a t e m e n t > ;

< s t a t e m e n t >
end -

< s t a t e m e n t > d e f i n e s a s i n g l e o p e r a t i o n , I n d i v i d u a l
s t a t e m e n t s a r e s e p a r a t e d by semico lons . I n t h e d e s i g n
l a n g u a g e , a s t a t e m e n t c a n be a v e r b a l d e s c r i p t i o n t h a t w i l l
l a t e r be expanded i n t o a p r e c i s e d e f i n i t i o n (a s i n t h e
example above , which c o u l d be expanded i n t o a p r e c i s e
program f o r a t e a making r o b o t) ,

I t i s i m p o s s i b l e t o s t a r t t h e s equence anywhere o t h e r t h a n
a t t h e b e g i n , o r f i n i s h i t anywhere o t h e r t h a n a t t h e end. -
T h i s p r o p e r t y of h a v i n g a s i n g l e e n t r y and a s i n g l e e x i t
p o i n t i s s h a r e d by a l l of t h e b a s i c c o n s t r u c t s ,

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

A s equence can a l s o be r e p r e s e n t e d g r a p h i c a l l y , a s f o l l o w s :

F i g u r e 4 - 4 Sequence S t r u c t u r e Diagram

P
r
e
P
a
r
e

The l o n g v e r t i c a l box r e p r e s e n t s t h e s equence a s a whole,
The o t h e r boxes a r e t h e e l e m e n t s of which i t i s composed.
It i s of t e n u s e f u l t o g i v e a s equence a name, because i t can
t h e n be r e f e r r e d t o a s a s i n g l e o p e r a t i o n i n a
' h i g h e r - l e v e l ' a l g o r i t h m . The e l e m e n t s of t h e s equence a r e
c a r r i e d o u t i n o r d e r , from t o p t o bo t tom,

fill kettle

put kettle on

1

put tea in

T h i s i s a s t r u c t u r e diagram. The c o n n e c t i n g l i n e s show t h a t
t h e e l e m e n t s b e l o n g t o t h e sequence . (The l i n e s do n o t
i n d i c a t e l o g i c f l o w , a s i n a f l o w c h a r t) . The l o g i c f l ow i s
o b t a i n e d s imp ly by p r o c e e d i n g from t o p t o bo t tom, pe r fo rming
e a c h o p e r a t i o n i n t u r n .

teapot u

The e l e m e n t s of a s equence might be s i m p l e o p e r a t i o n s , o r
t h e y can t h e m s e l v e s be any of t h e t h r e e b a s i c c o n s t r u c t s
(s e q u e n c e , s e l e c t i o n o r i t e r a t i o n) ,

A comple t e program w i l l u s u a l l y be a sequence . I n t h e
d e s i g n l a n g u a g e , t h e s emico lons a r e a n i m p o r t a n t p a r t of t h e
s equence c o n s t r u c t . They a r e n o t p a r t of t h e i n d i v i d u a l
s t a t e m e n t s ; r a t h e r t h e y s e p a r a t e (o r d e l i m i t) t h e
s t a t e m e n t s , and s h o u l d more p r o p e r l y be r e g a r d e d a s
b e l o n g i n g t o t h e b e g i n ... end c o n s t r u c t . Note t h a t t h e r e -
i s no semico lon f o l l o w i n g t h e l a s t s t a t e m e n t ; t h e r e i s no
need f o r one , a s t h e end s e r v e s a s a d e l i m i t e r i n s t e a d . -

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.5.2 Selection

The selection is a decision construct. Depending on a
condition. one of two or more alternative o~erations is
selected and performed. For example,

if weather is fine -
then open v e n t i l a t o r s
else switch on heaters

Graphically, this is represented as:

is fine?

switch on
heaters

Figure 4-5 Selection Structure Diagram

The circle represents the selection as a whole: that is, a
single component which can be either of two things* The
boxes are the elements of the selection. For each execution
of the selection, one and only one of the elements is
executed. Once again, the connecting lines express that the
components are members of the selection (they are
subordinate to it). The logic flow through a selection
consists of testing the condition, and executing one only of
the elements.

Texas instruments nn. Bctober l r a l

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

There is a selection in the example algorithm:

if milk is required -

then begin

pour pour milk; tea 'P
end -

else

pour tea

r t ~ l milk

Figure 4-6 "Pour cup" Structure Diagram

Here, the first alternative is a sequence of operations.
The begin and end indicate clearly that, as far as the -
selection is concerned, the sequence is a single element
that can be regarded as one statement. The single
entrylexit property of the sequence makes this possible.
Each of the three basic constructs "packages" a complex
operation, so that from outside it can be regarded as a
single, indivisible statement.

The keywords begin end can be regarded as "bracketing" -
a sequence of statements in the same way that parentheses
are used to bracket numerical expressions:

The general form of a selection in the design language is:

if <condition> then <statement> - -
else <statement>

<condition> is any expression which evaluates to one of the
values TRUE or FALSE. Such an expression is called a
Roolean expression, and the most common way to arrive at it
is by the use of comparison operators such as =, <, >:

if temperature > 70 then ... -

A special case of a selection occurs when there is only one
alternative, to be executed when the condition is
satisfied. If it is not satisfied, nothing is done. This
can be regarded as a selection in which one of the
components is the null action, "do nothing". This component

Texas Instruments 4-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

is usually left out of the diagram. In the design language,
this corresponds to omitting the else clause:

if <condition> then <statement> -
In the example, 'pour cup' can be written another way:

begin I I n pour milk

if milk is required - reqd?

then pour milk;

pour tea

end -

Figure 4-7 Alternative Algorithm for "pour cup"

Here, 'pour cup' is a sequence consisting of two elements:
an if construct (with only one alternative), and a simple
statement. 'Pour tea' is always executed;. 'pour milk' is
executed only if milk is required. The effect is exactly
the same as before.

The semicolon (which, as indicated in section 4.5.1, is part
of the begin ... - end construct) separates the two elements
of the sequence, and makes clear where the end of the if -
statement occurs. 'Pour tea' is not a part of the if -
statement, and hence is not dependent on the condition; it
is the next item in the begin . . . end sequence, and is -
executed in all circumstances. If 'pour tea' was to become
part of the - if statement, begin . . . - end brackets would be
used as in Figure 4-6. The indentation of the text makes
the relationship clearer. The structure diagram shows
without doubt that "pour tea" is an element of the sequence
and not of the selection. The strong visual resemblance of
the diagram to the indented text makes comparison of the two
notations easy.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE D E S I G N

4.5.3 Algorithm Design

It is common in software design to start with a vague
formulation of the problem (if - weather is fine ...) and
gradually home in on a precisely defined, deterministic
solution that specifies every measurement and calculation.
Although a precise solution is finally needed (or it will
never get past a compiler or assembler), a degree of
vagueness (or "controlled imprecision") is actually
beneficial in the early stages, even though it may go
against the grain, A precise formulation too early on may
exclude some vital elements, particularly if the software
designer does not have direct knowledge or experience of the
application, The design language helps here by permitting
partial solutions to be tried out on paper before they
become cast in silicon, The logic of the application can be
precisely formulated before considering in detail how the
individual operations required are to be implemented, The
design language allows the designer to identify and
precisely specify each operation required (reading a
temperature, controlling motors and heaters etc) before an
attempt is made to implement them,

The software design can be compared to the architect's plans
for a building, Although some of the details may be changed
during implementation, plans for the foundations and overall
structure must be established before starting to build
individual rooms.

The algorithm of Figure 4-5 might be part of a system
controlling the environment in a greenhouse (say), The next
stage in design might be to consider whether it is the
inside or outside temperature (or both) that is significant,
whether the temperature should vary according to the time of
day, and what effect other parameters such as humidity might
have.

There are often several alternative ways of writing an
algorithm to perform a particular function, The first
solution hit upon may not always be the best,

Just as a good data structure (see section 4.6) extracts the
essential elements of the information being represented, so
a good algorithm extracts the essential elements of the
process being performed and uses these elements as the basis
of its design.

The best algorithms are usually those that clearly reflect
some underlying structure of the application itself, rather
than imposing some new structure invented by the system
designer. It's quite easy to see why, Unless the
specification for a piece of software is perfect the first

Texas Instruments 4-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

time, changes are likely to occur. Perfect specifications
are almost unheard of. If the software is structured along
the same lines as the application, the software will be able
to follow changes in specification quite easily. It will

~ c m e t t w - 0 4 1 4 n-finrv have I = o I J - - L C L l L c in +I.. , L l l C -s - L - - - 2 - - face U L Cliauglug
requirements.

A software design that is structured in a significantly
clifferefit way to the a p p l i c a t i o n i s l i k e l y to be "brittle",
and to break under the strain rather than adapt gracefully
to new requirements. Changes in requirements may have
unpredictable consequences in different areas of the design,
which will either make adaptation impossible, or will reduce
confidence in the reliability of the final system.

WL- -a&-.-- I r r t : ‘rcr L ~ L t: of software aggravates the problem. Sof fware
tends to be applied to complex problems, so that changes are
likely to be complex. It's very easy to actually make a
software change - simply type in something new. It is much
more difficult to ensure that the change is correct.

At first sight it may he very hard to tell the difference
between a change that has only limited effect in an isolated
software function, and a change that can have ramifications
throughout the design.

For this reason it's necessary to pay a lot of attention to
software design, Programming is only a part (a relatively
small part) of the story. Software needs to be designed and
engineered for resilience and reliability, rather than
stacked up like a house of cards.

In fact, there are two types of resilience, Software should
be able to cope with and recover from unexpected conditions
and, ideally, minor hardware faults. Secondly, the system
should maintain its integrity in the face of changes to
parts of the software itself - perhaps in response to new
requirements. A structured design methodology, such as is
presented here, assists greatly. The framework of Component
Software (Chapter 5) and Microprocessor Pascal (Chapter 6)
was designed to the same purpose.

However, a good set of tools is not enough. The system
designer needs to spend a good deal of time understanding
the application he is designing for, and the ways in which
it is likely to change over the lifetime of the system. In
this way, likely changes can actually be anticipated and the
system can be designed to make them possible.

Texas instruments October i 9 8 i

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.5.4 The CASE C o n s t r u c t

The re i s a v e r s i o n of t h e s e l e c t i o n which v e r m i t s more t h a n
two c h o i c e s . T h i s i s r e p r e s e n t e d i n t h e deHign language by
t h e c a s e c o n s t r u c t : -

c a s e wea the r of -

sunny : go f o r walk ;

r a i n i n g : b e g i n

p u t c o a t on;

go f o r walk

end; -

snowing: s t a y i n s i d e

end -
stay inside n

go for
walk

F i g u r e 4-8 The CASE C o n s t r u c t

a -

The c a s e l a b e l s "sunny", " r a i n i n g" , "snowing1' s p e c i f y t h e
p o s s i b l e v a l u e s of t h e c a s e e x p r e s s i o n "weather" , and t h e
a c t i o n s t o be performed f o r each ("weather1' w i l l have been

put coat on
7

d e c l a r e d a s a v a r i a b l e of t y p e (sunny , r a i n i n g , snowing)) .
When e x e c u t i n g t h e s e l e c t i o n , t h e c a s e e x p r e s s i o n i s t e s t e d

n -

-

and , a c c o r d i n g t o i t s v a l u e , o n l y one of t h e o p e r a t i o n s w i l l
b e performed. (Note t h a t t h e o p e r a t i o n f o r " r a i n i n g" i s a

go forwalk

sequence , e n c l o s e d w i t h i n a b e g i n ... - end b r a c k e t .)

The c a s e l a b e l s can s p e c i f y a l i s t o r a range of v a l u e s .
The re can be any number of c a s e a l t e r n a t i v e s .

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Case c o n s t r u c t s can have a n o t h e r w i s e c l a u s e t h a t s p e c i f i e s
a n a c t i o n t o be c a r r i e d o u t i f t h e c a s e e x p r e s s i o n h a s a
v a l u e n o t e x p r e s s e d i n any of t h e c a s e l a b e l s :

c a s e number $5 -

0 . . 3 , 8 : add number t o t o t a l ;
4 , 6 , 7 : s u b t r a c t number from t o t a l ;
5 9 9 : d i v i d e t o t a l by 2
o t h e r w i s e w r i t e ('number o u t of r ange ')

end -

G r a p h i c a l l y , t h i s i s r e p r e s e n t e d a s :

write ('number 7
F i g u r e 4-9 CASE C o n s t r u c t w i t h OTHERWISE Clause

- . Iexas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

The general syntax of the case statement is:

case <expression> - of

.
<case label> : <statement>
otherwise <statement>

end ;

The otherwise clause is optional.

4.5.5 Iteration

The third and final algorithmic construct is the iteration,
or loop. The iteration allows an operation to be repeated
either H specified number of times, or while some condition
remains true. There is an example of the first kind of
iteration in the algorithm of Figure 4- 2.

for number of cups required do - -
pour cup

Graphically, an iteration can be represented by a
lozenge-shaped box:

number of

while
buffer
not full

milk

read
character

Figure 4- 10 Iteration Structure Diagrams

Texas Instruments 4- 1 6 October 1 9 8 1

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Once again, the left hand box represents the iteration as a
whole, which can form a single element in another
algorithm. This single element consists of a (possibly
zero) number of executions of the right hand box. The right
hand box represents an individual execution of the operation
to be performed. The distinction may appear subtle at
first, but it is important. It allows a repeated operation
to be included as a single element of, say, a selection
construct. Like the sequence and selection, the iteration
packages a complex operation as one element with a single
entry and exit point,

Usually, it is a sequence of operations that will be
repeated. As most computer programs carry out some
operation repeatedly (otherwise there would be little point
netting a computer to do it), the iteration is a xjery useful v - -

construct.

In many iterated operations, it is useful to know which
iteration is currently being performed. Most programming
languages that implement the - for construct therefore specify
a for-loop variable :

FOR I := 1 TO 10 DO
BEGIN
START MACHINE (I);
DISPL~Y (START - MESSAGE, I)
END

The variable I keeps a count of the repeated execution, and
can be referred to within the code of the for-loop. This
feature is often required, and this convention will be
adopted in the design language. The general form of the
for-loop, then, is:

for <variable> := <initial expression) to - -
<final expression) - do

<statement>

<statement> is executed for all possible values of
(variable), in order, starting at <initial expression) and
ending with <final expression>. <statement> will usually be
a sequence, enclosed within begin ... end brackets. -
<initial expression) and <final expression) must be
compatible with the type of <variable>, which can be any
enumeration type (see section 4.6). <initial expression)
and <final expression) are only evaluated once, on entry to
the for loop (so it is not possible to change the value of
<final expression>, for example, within the loop). If
<initial expression) is greater than <final expression) to
begin with, <statement> is not executed at all. *
* Some programming languages differ slightly from these
conventions. However, some standards must be specified to
maintain consistency in the design language. These
standards represent generally agreed opinion on language

Texzc I n s t r m e n t s 4-17 O c t ~ b e r 1 9 8 1

SOFTWARE D E V E L O P M E N T HANDBOOK SOFTWARE DESIGN

A variant is:

for <variable> := <initial expression) downto -
<final expression) - do

<statement>

Here <variable> is decremented from <initial expression), which
should be the larger of the two, down to <final expression>.
This may be more useful in some applications.

The alternative form of the iteration construct is:

while buffer is not full do -
read character

The while construct is used where it is not possible, or not
convenient, to find out in advance how many times the loop
must be executed. The general form is

while <condition> do <statement> -
The condition is checked before each execution of the loop;
as long as it remains TRUE, the loop is executed one more
t ime .
4.5.6 Structured Programming

Although many programming languages provide additional
control structures, programs written using only the three
constructs described above have been shown to be easily
understood, easily amended, and above all likely to be
correct. This discipline is known as
structured programming.

The three constructs sequence, selection, and iteration are
basic mental structures, representing very closely the way
the human mind analyzes a problem. Consequently they are
very easy and natural to "think in1', once the notation has
become familiar. The single entry and exit properties of
each construct mean that "high level1', application-oriented
algorithms can be developed without worrying (yet) about
what happens at the detailed level of the operations
described. It is known that the effect of each operation is

design, and most modern languages (including Pascal) behave
exactly like this. When translating a software design into
a particular programming language, it is important to
determine how the language implements the standard
programming constructs - eg does the iteration construct
allow for the special case of zero iterations? Pascal
directly implements all the constructs of the design
language; implementation of these constructs in Power BASIC
and Assembly Language is discussed in Chapters 7 and 8.

Texas Instruments 4-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

localised, and that the operation will complete and return
control to the high level algorithm without (say) jumping
unexpectedly to another part of the program.

Other notatiozs, such as flcwcharts, have sometimes been
used for designing computer programs. Flowcharts may be
useful at the lowest levels of implementation, when coding
in Assembly Language for instance (see Chapter 8). However,
flowcharts are designed to represent the way machines
operate rather than the structure of an application. Trying
to understand a problem using flowcharts involves bending
the mind, and the application, to work in the way machines
do. This may be necessary at some point, but it is not
advisable in the earlier stages of a design. Flowcharts
concentrate on the details of implementation, and have no
----- -c ---uA.-.rr-.t: e r r A t -.a, +..-A w a y U L L ~ ~ L T D T L L L I L I ~ DLLULLULC.

4.6 DATA

Data elements, which are implemented in the computer simply
as a collection of bits, can he used to represent any kind
of information. Often the information represented will be
numeric, but this need not be the case. A single bit may
signal the state of a digital input or output line; or a
group of bits may be coded to represent text or any other
information.

Most programming languages provide some pre-defined data
types (eg FORTRAN defines integers and real numbers) that
can be used directly in a program. A data type definition
can be regarded as a code that translates some kind of
information into an internal representation in the
computer. Some languages allow users to define new data
types, either by combining already existing data types into
new st-ructures, or by specifying the characteristics of a
new data type from scratch. These capabilities are very
useful when developing software designs.

Structured data types allow related data items to be grouped
together and referred to as a single entity. This is much
easier than remembering that the information about (say) a
piece of production machinery is contained in several
different integer and real variables, all with different
names. Programs with well thought out data structures are
likely to be more reliable and much easier to maintain.

Even where the programming language chosen for
implementation does not support flexible data structures,
such structures can be worked out by developing a paper
design using a design language. This can then be translated
into the implementation language. This method, which seems
roundabout, will often result in a faster development

Texas Instruments 4-19 ~ - L - I - - -
uLLuu=L 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

turnround than coding directly in the implementation
language. Certainly, it will produce a more reliable
system.

Effective use of data depends on identifying the essential
elements of what is to be represented, and,choosing the most
appropriate representation in terms of numbers or binary
digits. For example, if a temperature is to be input from
the outside world to a microprocessor system, how should it
be represented? Does the system need to know the actual
temperature value? To what precision? Or is a single bit,
indicating that the temperature is above or below some
threshold, sufficient?

HIGH
LOW

Figure 4-11 Data Representation of a Temperature

This decision will, of course, dictate the choice of sensor
used to measure the temperature.

Data items can also represent things that are much more
abstract than a temperature - for example the root mean
square of a collection of statistical figures, It is this
ability to represent and manipulate anything that can be
defined exactly that gives software its power. Data items
can represent things which only have meaning within a
particular piece of software - intermediate results in a
calculation, for example, or codes representing which of a
number of possible operations should be performed.

How the data types are chosen defines the environment within
which software algorithms can work. A program can only
manipulate things which have previously been defined as data
items. Hence, data design is the key to any piece of
software.

4.6.1 Data Types

The first step in building a software design is to identify
the different kinds of information that need to be dealt
with, and to define appropriate data types, A
type declaration identifies a particular type of variable
that will be dealt with in the program, and the range of

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

v a l u e s t h a t v a r i a b l e s of t h i s t y p e might have. For example,
a p a r t i c u l a r sys tem might need t o make d e c i s i o n s a c c o r d i n g
t o what day of t h e week i t is, It makes s e n s e t o d e f i n e a
d a t a t y p e c a l l e d "day":

t y p e day = (Monday, Tuesday, Wednesday, Thursday,
F r i d a y) ;

The i t e m s i n b r a c k e t s i d e n t i f y t h e v a l u e s t h a t v a r i a b l e s of
t y p e "day" might have. Note t h a t t h i s d e c l a r a t i o n does n o t
a c t u a l l y s p e c i f y any v a r i a b l e s of t y p e "day", It s imply
i n t r o d u c e s t h e n o t i o n t h a t v a r i a b l e s of t h i s t y p e can
e x i s t . A f t e r t h i s d e c l a r a t i o n , w e can t a l k abou t "days" i n
t h e s o f t w a r e d e s i g n and know e x a c t l y what i s meant. (I n
o r d i n a r y c o n v e r s a t i o n we t h i n k we know what days a r e , b u t i n
s o f t w a r e i t ' s n e c e s s a r y t o be more p r e c i s e . The d e f i n i t i o n
makes c l e a r t h a t we're t a l k i n g abou t days of t h e week, n o t
days of t h e month, and i n p a r t i c u l a r t h a t we're t a l k i n g
about workdays: Sa tu rday and Sunday a r e n ' t i n c l u d e d ,)

A t t h i s s t a g e i t i s n e i t h e r n e c e s s a r y n o r d e s i r a b l e t o
c o n s i d e r how t h i s d a t a t y p e w i l l be implemented, Data i t e m s
of t y p e "day" must be c a p a b l e of t a k i n g f i v e d i f f e r e n t
v a l u e s r e p r e s e n t i n g t h e days of t h e week. These i t e m s cou ld
be s t o r e d a s t h e v a l u e s 0-4 , 1-5 o r a s a r b i t r a r y p a t t e r n s of
b i t s , That d e c i s i o n can be made l a t e r . A t t h i s p o i n t i t i s
n e c e s s a r y s imply t o u n d e r s t a n d what ' s needed t o s a t i s f y t h e
a p p l i c a t i o n .

From t h e computer 's p o i n t of view, what h a s been s a i d s o f a r
i s :

(1) There w i l l be d a t a i t e m s t h a t can t a k e one o u t
of f i v e p o s s i b l e v a l u e s

(2) The d e s i g n e r i s go ing t o r e f e r t o t h e s e a s
"dayVs

(3) The d e s i g n e r i s going t o r e f e r t o t h e
d i f f e r e n t v a l u e s of t h e s e "day"s a s Monday,
Tuesday, Wednesday, Thursday, F r i d a y ,

The g e n e r a l form of a t y p e d e c l a r a t i o n is:

t y p e <name> = < t y p e d e f i n i t i o n) ;

The a n g l e b r a c k e t s i n d i c a t e a g e n e r i c name; i n a n a c t u a l
t y p e s t a t e m e n t , "<name>" w i l l be r e p l a c e d by a n a c t u a l t y p e
name. The form " (< v a l u e l i s t >) " , a s i n t h e "day"
d e c l a r a t i o n , i s one k i n d of t y p e d e f i n i t i o n . Other k i n d s of
t y p e d e f i n i t i o n a r e p r e s e n t e d below.

For t h e purpose of a s o f t w a r e d e s i g n , t h e f o l l o w i n g d a t a
t y p e s can be r e g a r d e d a s p r e d e f i n e d :

Texas I n s t r u m e n t s 4-2 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

i n t e g e r (-32768,,32767)
r e a l (= f l o a t i n g p o i n t)
c h a r (= ASCII c h a r a c t e r s e t)
b o o l e a n (= TRUE o r FALSE)

4 , 6 , 2 V a r i a b l e s

Type d e c l a r a t i o n s s imp ly s p e c i f y a k i n d of i n f o r m a t i o n t h a t
i s t o be r e p r e s e n t e d , To d e f i n e a c t u a l d a t a s t o r a g e i t e m s ,
o r v a r i a b l e s , of a p a r t i c u l a r t y p e , a v a r i a b l e d e c l a r a t i o n
i s needed:

v a r s t a r t d a y , endday : day ; -
T h i s s t a t e m e n t d e c l a r e s two v a r i a b l e s , which wSl l u l t i m a t e l y
b e s t o r a g e l o c a t i o n s w i t h i n a computer . These v a r i a b l e s a r e
c a l l e d " s t a r t d a y " and "endday". They are of t y p e "day",
which means t h a t t h e v a l u e s t h e y can t a k e a r e Monday,
Tuesday e t c , Whatever i m p l e m e n t a t i o n i s l a t e r d e c i d e d on
f o r "day", t h a t amount of s t o r a g e and t h a t r e p r e s e n t a t i o n
w i l l be a s s i g n e d t o " s t a r t d a y " and "endday".

The g e n e r a l form of a v a r i a b l e d e c l a r a t i o n i s :

v a r (v a r i a b l e l i s t > = < t y p e > ; -

S e p a r a t i n g o u t t h e t y p e d e c l a r a t i o n from t h e v a r d e c l a r a t i o n -
means t h a t t h e d e c i s i o n on how t o r e p r e s e n t "dayf's i s t a k e n
once and once on ly . T h e r e ' s no need t o t a k e t h i s d e c i s i o n
a g a i n (p e r h a p s d i f f e r e n t l y - p a r t i c u l a r l y i f more t h a n one
d e s i g n e r i s working on t h e same s y s t e m) e v e r y t ime a
v a r i a b l e of t h i s t y p e i s needed , Also , i f t h e r e q u i r e m e n t s
change and i t ' s n e c e s s a r y (s a y) t o i n c l u d e S a t u r d a y and
Sunday, t h i s can be done s imp ly and r e l i a b l y t h r o u g h o u t t h e
s y s t e m s imp ly by chang ing t h e one t y p e d e c l a r a t i o n .

T h i s i s a r e l a t i v e l y t r i v i a l example; b u t m u l t i p l i e d by t h e
t h o u s a n d s of d e c i s i o n s r e q u i r e d d u r i n g i m p l e m e n t a t i o n ,
c l e a r l y t h o u g h t o u t d a t a t y p i n g can make t h e d i f f e r e n c e
be tween manageable programs and i n t r a c t a b l e ones ,

< t y p e > i n t h e v a r d e c l a r a t i o n need n o t be a t y p e name, b u t
c a n be a n e x p l i c i t t y p e d e f i n i t i o n :

v a r s t a r t d a y : (Monday, Tuesday, Wednesday, -
Thursday , F r i d a y) ;

However, i f more t h a n one - v a r d e c l a r a t i o n u s e s t h e same
r i g h t hand s i d e d e f i n t i o n , i t i s p r e f e r a b l e t o d e f i n e a
t y p e , and t h e n u s e t h e t y p e name i n t h e - v a r d e c l a r a t i o n .

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Where the values of a data type follow a predefined
sequence, only the start and end need be enumerated:

type weeknumber = (1..52); -
Suck t y p e s are c a l l e d s u b r a n g e t y p e s b e c a u s e t h e y are
defined as a specific subrange of an already defined type.
The above declaration works because the type "integer1',
consisting of the values -32768, -327&7,.....-1, 0,
1,....32766, 32767 (for a 16-bit processor) is predefined.
"Weeknumber" is a subrange of integer.

It is also possible to define subranges of type "day":

type first - half - week = (Monday..Wednesday);

4 , 6 , 3 Operators

Having defined data items, it's necessary to do something
with them. In a program, variables of particular types can
be combined using operators. In the statement

"+" is an operator. "+" means "add the values of b and c to
give a third value".

In ordinary mathematical. language, the above formula is
simply a statement of fact: "a is equal to b plus c". In
computer language, it's more likely to signify an operation:
"make a equal to the value of b plus c", or, to put it
another way, "a becomes equal to b plus c". This is one of
the most common of algorithm statements, namely the
assignment statement. Here "=" is an operator too - the
assignment operator, whose effect is to assign the value of
whatever expression is on its right to the variable on its
left.

To avoid confusion between the assignment operator and the
mathematical "=" , which mean quite different things, modern . , for languages such as Pascal use a special symbol, "*-"

assignment:

read, "a becomes equal to b plus cl'. This convention will
also be used in the design language. The left hand side of
an assignment statement must always be a variable, because a
value will be assigned to it. However, the right hand side
can be an expression: that is, any combination of variables,
operators and constant values that can be evaluated:

Texas Instruments 4-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

5*a + b - c/2
The general from of the assignment statement is

(variable > : = <expression>;

The expression should evaluate to a type that is compatible
with the variable on the left hand side. It makes no sense
to assign a temperature value to a day of the week.

Some programming languages make no check that the type of
the expression is compatible with the type of the variable:
they simply assign the bit code representing the value of
the expression to the storage location for the variable.

While this can be made use of in special cases, ninety per
cent of the time an unmatched statement indicates that the
programmer has made an error. Programming languages that
check for exact compatibility of types in assignment and
other statements are said to implement strong data typing.

Even when an unmatched statement is written deliberately *,
it is a rather risky operation: it depends on a certain
relationship between the internal bit representations of the
two data types (some examples of internal representations
are given in Chapter 8). If the software is transported to
another machine, or even if the compiler is changed, this
relationship may no longer hold. In developing a software
design, it is wise not to make use of such relationships; or
if they are used, to isolate them to certain routines which
are known to be machine dependent.

In general, an operator will apply only to certain data
types. In developing a software design, all the standard
mathematical operations (+ - * /) (* = multipy, / = divide)
can be regarded as pre-existing for numeric data types. But
multiplying days of the week makes no obvious sense, either
in the real world. or in a software design. Any operations
to he performed on non-numeric data types must be defined,
perhaps as separate procedures (see section 4.10 below).

Types such as "day" and "weeknumber" (and "integer") are
called enumeration types, because their possible values are
specified by enumerating them, in sequence. The order of
values in the sequence is significant. The operators PREC
(preceding) and SUCC (succeeding) can be regarded as
pre-defined for all sequenced data types:

eg PREC(Wednesday)is Tuesday

* Microprocessor Pascal, which is a strongly typed language,
provides a type transfer operator which can be used to
override type checking. However, the programmer nust
explicitly tell the compiler that he is doing something out
of the ordinary, and exactly what he is doing (Section
6.6.14).

Texas Instruments 4-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

SUCC(Thursday) is Friday

The assignment operator can also be applied to all data
types. More complex operations can, of course, be devised,
but they must be specified precisely.

Suhrange types can be used to specify the range and
precision of numbers that will be used in calculations:

type temperature = (-50..+100);
pressure = (0..900);

(Note that the keywords type, var etc need not be repeated - -
for multiple declarations. The declarations are separated
by semicolons.) For Pascal designs, the compiler can
optionally perform automatic checks to ensure that variables
never exceed the bounds specified.

In addition to the type "integer" the numeric type
11 longinteger" (-2147483648. .+2147483647, ie 32 bit signed)

is often useful, and is directly implemented in
Microprocessor Pascal and in some other languages.

Obviously, use of certain facilities of the design language
will he conditioned by what is expected to be available in
the final implementation language - for example, is a
floating point package available? Nevertheless, the freedom
of the design language is useful at least in the early
stages of working out what is needed to implement the
application.

Note that "real" is not an enumeration type. With
enumeration types, it is always possible to identify a
unique predecessor and/or successor for any value (eg with
integers, 5 is preceded by 4 and succeeded by 6). However,
what is the successor of the real number 2.414? Is it 2.415?
2.4141?or2.41401? Given any two real numbers, it is
possible to define a third real number that lies between
them in value (up to the limit of precision of the
computer). The representation of real numbers follows a
completely different principle from the representation of
integers. Real numbers are stored differently within the
computer,* and cannot, for example, be used as an index to
an array (see below, section 4.7.2).

The discipline of data typing makes it much harder to make
mistakes - such as using variables in the wrong place - and
much easier to find mistakes if they are made. Data types,
and variables, can also be given meaningful names (in the
design language at least, and in some implementation
languages). With variables called I, J, K, or even K2RCPLZ,
and all implemented as (say) integers, it's quite easy to
mistake a variable representing a day of the week for one

* The representation of real and other numbers is discussed
in Section 8.13.2

Texas Instruments 4-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

representing (say) the mean of 25 temperature values, and
hence to perform a completely inappropriate operation. Such
errors can easily propogate right through to implementation,
and may only be discovered when the system doesn't work.
For software designs executed in Pascal, the compiler will
automatically check compatibility of data types.

4.6.4 Data Design

Designing good data types and data structures is not easy,
and there is no standard way to go about it. It is perhaps
the biggest challenge of software design.

Some languages (eg Pascal) implement the data type
constructs described here directly. Others implement only a
small range of data types (such as INTEGER and REAL).
Whichever language is to be used for the final
implementation, the software design can be developed using a
design language, as described here. When the design is
complete, each data type can be "mapped" onto a suitable
implementation in the programming language to be used.

One advantage of this approach is that much of the design
work is done in a medium that is not tied to any particular
hardware implementation. This means that the design will be
much more transportable. It also means that details of the
implementation which might sidetrack design thinking at this
stage (such as precise syntax and punctuation, and the
idiosyncracies of a particular programming language) can be
left until a later stage.

Besides documenting the system and the design process, the
software design can be referred to when making changes to
the system. It contains relevant information that may be
lost or obscured in implementation. The design is also a
starting point for implementation using different
programming languages.

4.7 DATA STRUCTURES

Single data items, of whatever type, are of little use in
real applications. Usually, the data required to describe
anything in the real world is much more complex than this.
It is useful to group single data items together into data
structures. As with program algorithms, there is a set of
simple constructs which can be used in a variety of
combinations to represent data structures of any
complexity. The principle data constructs are the record
and the array,.

Texas Instruments 4-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.7.1 Records

The r e c o r d e n a b l e s d a t a i t e m s t h a t a r e a s s o c i a t e d i n some
way t o he grouped t o g e t h e r , and r e f e r r e d t o by a s i n g l e
name. A r e c o r d i s s imp ly a c o l l e c t i o n of (p r o b a b l y
d i s s i m i l a r) d a t a t y p e s .

C o n s i d e r a n a p p l i c a t i o n t h a t c o n t r o l s a number of pumps a t a
s e l f - s e r v i c e f i l l i n g s t a t i o n . A r e c o r d can be d e f i n e d t o
c o n t a i n i n f o r m a t i o n a b o u t a pump a s f o l l o w s :

t y p e pump r e c o r d =
r e c o r d - -

s t a t u s : (o f f , f i l l i n g , comple t ed) ;
g r a d e : (r e g u l a r , premium, u n l e a d e d) ;
g a l l o n s : (0 . .30)

end ; -
v a r pumpl, pump2 : pump r e c o r d ; - -

The t y p e d e c l a r a t i o n d e f i n e s t h e s t r u c t u r e of t h e r e c o r d ;
the v a r s t a t e m e n t d e c l a r e s two r e c o r d v a r i a b l e s , pumpl and -
pump2, of t h e newly d e f i n e d t y p e "pump reco rd" . The r e c o r d
c o n s t r u c t i s a n o t h e r form of < t y p e d e f i z i t i o n) , a s d e s c r i b e d
i n s e c t i o n 4.6.1. "end" - c l o s e s t h e r e c o r d d e f i n i t i o n .
" " i s used t o make pump r e c o r d i n t o one word. - -

The r e c o r d i n t h i s example c o n t a i n s t h r e e f i e l d s (s t a t u s ,
g r a d e and g a l l o n s) , e ach of which h a s a un ique name. The
r e c o r d g roups , i n one p l a c e , t h e s t a t u s of o p e r a t i o n s a t a
p a r t i c u l a r pump (whe the r t h e pump i s o f f , i n t h e p r o c e s s of
f i l l i n g , o r h a s c o m p l e t e d) ; t h e g r a d e d e l i v e r e d ; and t h e
number of g a l l o n s d e l i v e r e d .

The s t a t u s i n f o r m a t i o n f o r t h e f i r s t pump can be r e f e r r e d t o
unambiguously a s "pump 1. s t a t u s " . 11 . s t a t u s 1 ' i s c a l l e d t h e
f i e l d q u a l i f i e r . A l l of t h e i n f o r m a t i o n a b o u t t h i s pump can
be r e f e r r e d t o c o l l e c t i v e l y a s "pumpl". T h i s i s a v e r y
u s e f u l s h o r t h a n d when d e a l i n g w i t h l a r g e and complex
c o l l e c t i o n s of d a t a .

The f i e l d s i n a r e c o r d can be of any t y p e , i n c l u d i n g
s t r u c t u r e d types . T h i s a l l o w s t h e b u i l d i n g of v e r y power fu l
d a t a s t r u c t u r e s .

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Types of f i e l d s i n a r e c o r d c a n be p r e d e f i n e d , eg:

t y p e s t a t u s v a l u e s = (o f f , f i l l i n g , c o m p l e t e d) ; -
t y p e pump r e c o r d =

r e c o r d
s t a t u s : s t a t u s - v a l u e s ;

end :

The a l g o r i t h m f o r t h e f i l l i n g s t a t i o n a p p l i c a t i o n i n v o l v e s
c o n t i n u a l l y c h e c k i n g t h e s t a t u s f i e l d of each pump r e c o r d i n
t u r n . When a s t a t u s of " completed" i s r e a d , t h e program
c a l c u l a t e s t h e c o s t , d i s p l a y s i t a t t h e c a s h desk and r e s e t s
t h e pump:

p u m p l . s t a t u s = comple t ed t h e n
b e g i n
c a l c u l a t e c o s t ;
d i s p l a y - c o s t ;
reset pump-1 -
end -

c a l c u l a t e- c o s t , d i s p l a y c o s t and r e se tpump- 1 a r e a l l
o p e r a t i o n s t h a t a r e expanded e l s e w h e r e i n t h e s o f t w a r e
d e s i g n .

The c o s t c a l c u l a t i o n i s based on t h e "grade" and " g a l l o n s"
f i e l d s of t h e pump r e c o r d and a t a b l e of p r i c e s .
" C a l c u l a t e - c o s t " c a n be expanded a s f o l l o w s :

c o s t := pumpl .ga l lons * c o s t - t a b l e [p u m p l . g r a d e]

" c o s t - t a b l e " i s a n example of a n o t h e r s t r u c t u r e d d a t a t y p e
c a l l e 3 t h e a r r a y .

4.7.2 Ar rays

An a r r a y i s a n o r d e r e d l i s t of d a t a i t e m s of i d e n t i c a l
t y p e . The whole a r r a y i s g i v e n one name; a n i n d i v i d u a l
e l emen t of t h e a r r a y i s r e f e r r e d t o (r e f e r e n c e d) by g i v i n g
t h e a r r a y name and a n i n d e x o r s u b s c r i p t , which i d e n t i f i e s
which e l emen t i n t h e a r r a y i s r e q u i r e d .

t y p e b u f f e r = a r r a y [1 . .80] of c h a r ; -
v a r b u f l : b u f f e r ; -

o r , e q u i v a l e n t l y

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

v a r buf 1 : a r r a y [l , .80] of c h a r ; - -
"char" i s a p r e- d e f i n e d t y p e , The number of e l e m e n t s i n t h e
a r r a y (80 i n t h i s c a s e) i s s p e c i f i e d by l i s t i n g t h e p o s s i b l e
v a l u e s of the indexg i n square b r a c k e t s .

The f o u r t h e l emen t of t h e a r r a y (i e , t h e f o u r t h c h a r a c t e r i n
t h e b u f f e r) c a n t h e n h e r e f e r r e d t o a s " b u f l [4] " ; t h i s
e l emen t i s of t y p e

In t h e des ign language (and in "- rasca l) , - - any e n u m e r a t l o n t y p e
c a n be u sed t o i n d e x a n a r r a y , So " c o s t - t ab l e 1 ' (above) i s
d e c l a r e d :

v a r c o s t t a b l e : a r r a y [r e g u l a r , premium, u n l e a d e d] - -
ef p r i c e ; -

The r e f e r e n c e c o s t t a b l e [p r e m i u m] w i l l t h e n g i v e t h e p r i c e
o f premium g r a d e ("price" i s a t y p e d e f i n e d e l s e w h e r e) .

To g a i n a f e e l f o r t h e n o t a t i o n , and i t s p r a c t i c a l
a p p l i c a t i o n , it"s wor thwhi l e c o n s t r u c t i n g a few t r i a l
examples . Fo r example: d e s i g n a r e c o r d t y p e named
" c a l l - r e c o r d" t o c o n t a i n a l l t h e e s s e n t i a l i n f o r m a t i o n a b o u t
a n i n d i v i d u a l t e l e p h o n e c a l l (o r i g i n a t i n g number,
d e s t i n a t i o n , d i s t a n c e e t c) . D e c l a r e two o r t h r e e r e c o r d
v a r i a b l e s of t h i s t y p e , D e c l a r e a n a r r a y t o h o l d t h e t a r i f f
i n f o r m a t i o n , and w r i t e t h e a l g o r i t h m t o c a l c u l a t e t h e c o s t
of t h e c a l l . D e c l a r e a n o t h e r a r r a y t o h o l d , f o r e v e r y
s u b s c r i b e r , t h e c u r r e n t b i l l , W r i t e t h e a l g o r i t h m s t a t e m e n t
t o add t h e c o s t of a new c a l l , t o t h e b i l l f o r t h e
a p p r o p r i a t e s u b s c r i b e r .

What i s i n s i d e t h e s q u a r e b r a c k e t s of an a r r a y d e c l a r a t i o n
h a s t h e same form a s t h e r i g h t hand s i d e of a t y p e
d e c l a r a t i o n . I n f a c t , a t y p e name can be u sed i n p l a c e of
a n e x p l i c i t l i s t of v a l u e s , An a r r a y c o n t a i n i n g t h e d a i l y
r e c e i p t s of a s t o r e can he d e c l a r e d :

v a r d a i l y t a k i n g s : a r r a y [d a y] of money; - -
(a s suming t h e p r e v i o u s d e c l a r a t i o n of t y p e "day", a s i n
s e c t i o n 4 .6 .1) . The r e c e i p t s f o r Tuesday can t h e n be
r e f e r e n c e d by

d a i l y - t a k i n g s [Tuesday]

Ar rays can he employed f o r any l i s t of i d e n t i c a l items. The
e l e m e n t s can be any d a t a t y p e , i n c l u d i n g r e c o r d s and o t h e r
a r r a y s ,

.A,.. Octobe r IYUI

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

It i s c o n v e n i e n t t o u s e t h e same t y p e t o d e c l a r e a n a r r a y
and any v a r i a b l e u sed t o i n d e x i t :

t y p e buf - s i z e = 1..80;

v a r b u f l : a r r a y [bu f s i z e] of c h a r a c t e r ; - - -
v a r i n d e x : buf s i z e ; - -

T h i s makes changes t o t h e b u f f e r s i z e much e a s i e r , and a l s o
a i d s documen ta t i on . With a n a p p r o p r i a t e c h o i c e of names,
d e s i g n s such a s t h i s can be l a r g e l y s e l f- documen t ing . I f
t h i s d e s i g n i s t u r n e d i n t o P a s c a l , c o m p i l e r checks can be
u s e d t o e n s u r e t h a t t h e a r r a y i n d e x n e v e r e x c e e d s t h e
s p e c i f i e d bounds i n e x e c u t i o n .

Wi th a n i n d e x v a r i a b l e , t h e same p o r t i o n of a program can be
u s e d t o o p e r a t e on different a r r a y e l e m e n t s , a c c o r d i n g t o
t h e v a l u e of t h e i n d e x . T h i s i s r e l e v a n t t o t h e g a s s t a t i o n
example (above) . A s i t s t a n d s , a s e p a r a t e p i e c e of program
n e e d s t o be w r i t t e n f o r e a c h pump. I n s t e a d of d e c l a r i n g
pumpl, pump2 a s s e p a r a t e v a r i a b l e s , d e c l a r e a n a r r a y of pump
r e c o r d s :

t y p e n o o f pumps = 1..10; - -

v a r pump : a r r a y [n o of pumps] of pump r e c o r d ; - - - -

v a r pump no : no of pumps; - - - -

The same s t a t e m e n t s c a n t h e n be u sed f o r any pump, f i r s t
s e t t i n g pump - no t o t h e r e q u i r e d v a l u e , t h e n r e f e r r i n g i n t h e
program t o :

f o r t h e g r a d e f i e l d of t h e pump s p e c i f i e d by pump-no. The
n o t a t i o n works l i k e t h i s :

pump i s an a r r a y
pump[pump n o] i s a n e l emen t of t h e a r r a y , and i s a r e c o r d
pump[pump~no] . g r a d e i s a f i e l d of t h i s r e c o r d , and i s of

t y p e : (r e g u l a r , premium, u n l e a d e d)

Any a r r a y can be i ndexed by a d d i n g " [i n d e x] " ; any r e c o r d c a n
b e q u a l i f i e d by a d d i n g " . f i e l d" . By n e s t i n g d e f i n i t i o n s i n
t h i s way, d a t a s t r u c t u r e s p r o v i d e power fu l t o o l s f o r
managing t h e complex d a t a found i n t h e r e a l wor ld .

It i s n o t n e c e s s a r y t o g r a s p t h e whole of a l a r g e d a t a
s t r u c t u r e a t once. Beyond a c e r t a i n p o i n t , i t i s m e n t a l l y
i m p o s s i b l e . TJsing t h e t e c h n i q u e s d e s c r i b e d h e r e , i f e ach
l e v e l of t h e s t r u c t u r e i s c o r r e c t and w e l l u n d e r s t o o d , t h e
d e s i g n e r c a n be c o n f i d e n t t h a t t h e whole i s c o r r e c t . T h i s
i s t h e p r i n c i p l e on which most modern s o f t w a r e d e s i g n

Texas I n s t r u m e n t s 4-30 Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

t e c h n i q u e s a r e based , and i t a p p l i e s t o a l g o r i t h m s and
programs a s w e l l a s d a t a ,

4 , 7 , 3 Dynamic Data S t r u c t u r e s

R e t u r n i n g t o t h e f i l l i n g s t a t i o n example, one problem
a p p e a r s i n t h e o r i g i n a l des ign . I n o r d e r t o s a v e t h e c o s t
i n f o r m a t i o n , a new customer cannot u s e a pump u n t i l i t s
p r e v i o u s cus tomer h a s p a i d h i s b i l l , S e v e r a l s o l u t i o n s ,
however, a r e p o s s i b l e , For example, an a r r a y of
pump r e c o r d s cou ld be d e f i n e d f o r each pump, one r e c o r d p e r
customer. A d e c i s i o n w i l l t h e n have t o be made a s t o how
many cus tomers w i l l queue a t each pump, I n a n o t h e r
so~ution, "I.- - A * ' *^C^..-..t<*" AO.. I.-

L r l = C U a L LLILuluaCluLl "= s t o r e d in a separa te
d a t a s t r u c t u r e (o r p r i n t e d o u t) a s soon a s i t becomes
a v a i l a b l e , and t h e pump c l e a r e d ,

A t h i r d p o s s i b i l i t y i s t o s t r u c t u r e t h e d a t a n o t by pumps,
b u t by cus tomers -- one r e c o r d p e r cus tomer , A customer
r e c o r d might look something l i k e t h i s :

t y p e customer r e c o r d = - -
r e c o r d

pump number : no of - pumps;
s t a t u s : (o i f , f i l l i n g , comple ted) ;
g r a d e : (r e g u l a r , premium, u n l e a d e d) ;
g a l l o n s : (0,,30)

end;

Each t ime a cus tomer a r r i v e s , a new r e c o r d * i s c r e a t e d . An
a r r a y of cus tomer r e c o r d s cou ld be d e c l a r e d , These r e c o r d s
cou ld be a s s i g n e d t o cus tomers a s they a r r i v e , However,
cus tomers l e a v i n g would c r e a t e " holes" i n t h e a r r a y , Th i s
problem can be s o l v e d (e g , by a " t i d y i n g up" a l g o r i t h m) ,
Such a s o l u t i o n , however, i s messy, I n t h e a r r a y s t r u c t u r e
i n t h i s a p p l i c a t i o n t h e r e seems t o be no obvious meaning f o r
t h e index , T h i s i s one i n d i c a t i o n t h a t an a r r a y i s n o t t h e
r i g h t s t r u c t u r e t o u s e i n t h i s a p p l i c a t i o n ,

A s t r u c t u r e c a l l e d t h e l i s t i s more a p p r o p r i a t e t o t h e
s i t u a t i o n s p e l l e d o u t above, Records and a r r a y s must have
t h e i r s i z e (t h e amount of s t o r a g e a l l o c a t e d t o them) d e f i n e d
when t h e program i s w r i t t e n , These a l l o c a t i o n s cannot be
changed w h i l e t h e program i s runn ing , L i s t s , on t h e o t h e r
hand, c o n s i s t of d a t a e l e m e n t s (u s u a l l y r e c o r d s) which a r e
dynamica l ly a l l o c a t e d from a p o o l , o r heap , of s t o r a g e space
w h i l e t h e program i s e x e c u t i n g . Elements can be d e l e t e d
from anywhere w i t h i n t h e l i s t when no l o n g e r r e q u i r e d , and
t h e s t o r a g e w i l l be r e t u r n e d t o t h e heap, Thus, cus tomers
can be added t o t h e l i s t when t h e y a r r i v e , and d e l e t e d when
t h e y l e a v e , The d a t a s t r u c t u r e s change dynamica l ly t o
r e f l e c t t h e r e a l s i t u a t i o n ,

Texas I n s t r u m e n t s 4 - 3 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

L i s t s , and o t h e r u s e f u l d a t a s t r u c t u r e s such a s trees, a r e
d e s c r i b e d i n more d e t a i l i n t h e r e f e r e n c e s g i v e n a t t h e end
of t h i s c h a p t e r (i n p a r t i c u l a r s e e r e f e r e n c e [l] i n t h e
B i b l i o g r a p h y , s e c t i o n 4.13). L i s t s , and o t h e r dynamic d a t a
s t r u c t u r e s , a r e g e n e r a l l y managed th rough a n o t h e r d a t a t y p e
c a l l e d t h e p o i n t e r . P o i n t e r s and t h e s t r u c t u r e s t h e y can he
u s e d t o implement a r e d e s c r i b e d i n r e f e r e n c e [I] , and i n t h e
M i c r o p r o c e s s o r P a s c a l System User's Manual.

The d i f f e r e n t s o l u t i o n s i l l u s t r a t e a p o i n t made e a r l i e r :
t h a t d a t a can be s t r u c t u r e d i n many ways, and i t i s wor th
e x p l o r i n g t h e a l t e r n a t i v e s . Data d e s i g n d e t e r m i n e s t h e
b a s i c e l e m e n t s w i t h which t h e sys t em w i l l work and a f f e c t s
b o t h a l g o r i t h m s and i n p u t / o u t p u t . The b e s t way t o a r r i v e a t
a n optimum s o l u t i o n i s t o be aware of t h e c h o i c e s t h a t can
be made.

4.7.4 Data Diagrams

The g r a p h i c a l n o t a t i o n d e s c r i b e d above f o r a l g o r i t h m s can
a l s o be used f o r d a t a s t r u c t u r e s . The sequence n o t a t i o n can
b e used t o r e p r e s e n t r e c o r d s , and t h e i t e r a t i o n c o n s t r u c t t o
r e p r e s e n t a r r a y s . Thus, t h e a r r a y 'pump' of 'pump - r e c o r d s '
i n s e c t i o n 4.7.2 c a n be drawn:

The s e l e c t i o n
r e c o r d v a r i a n t ,

P

r e c o r d can have

u
- m -

P

c o n s t r u c t can be r e g a r d e d a s r e p r e s e n t i n g t h e
a r e c o r d s t r u c t u r e i n which p a r t of t h e
a l t e r n a t i v e forms. For example, a p e r s o n n e l

r e c o r d f o r a c o l l e g e might need t o c o n t a i n d i f f e r e n t
i n f o r m a t i o n depend ing upon whe the r i t r e p r e s e n t e d a s t u d e n t ,
f a c u l t y member o r a member of t h e a d m i n i s t r a t i v e s t a f f
(F i g u r e 4-13).

status

Texas I n s t r u m e n t s 4- 3 2 October 1981

r
e
C

0

r
d

grade -
gallons

F i g u r e 4-12 Data Diagram f o r a n Array of Records

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

college

Figure 4-13 The Record Variant

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

I n t h e d e s i g n l anguage , t h i s can be w r i t t e n :

t y p e p e r s o n n e l - r e c o r d =
r e c o r d

name : name r e c o r d ;
a g e : 0.*15-0;
c o l l e g e : (c a s , t e c h , music , j o u r) ;
s t a t u s : (s t u d e n t , f a c u l t y , admin);
c a s e s t a t u s of -

,& t.. ,,dent : (graduate status : s t a t u s t y p e ; -
y e a r : 1..7);

f a c u l t y : (t e n u r e : boo lean ;
r ank : rank t y p e) ;

admin : (p o s i t i o n : p o s i F i o n - t y p e ;
l e n g t h - of - s e r v i c e : 1. ,50)

end -
end -

assuming t h e p r e v i o u s d e f i n i t i o n o f :

t y p e s t a t u s t y p e = (g r a d u a t e , u n d e r g r a d u a t e) ;
r a n k - t y p e = (i n s t , a s s t , a s s o c , p r o f) ;
p o s i i o n - t y p e = (a s s t d e a n , dean , chairman, o t h e r) ;

According t o t h e v a l u e of s t a t u s (c a l l e d t h e t a g f i e l d) ,
o n l y one of t h e v a r i a n t s w i l l be used t o d e t e r m i n e t h e
s t r u c t u r e of t h e r e c o r d i n any p a r t i c u l a r case .

Examples of f u r t h e r c o n s t r u c t s which can be used (i n c l u d i n g
t h e p o i n t e r t y p e and dynamic d a t a s t r u c t u r e s) a r e g i v e n i n
t h e M i c r o p r o c e s s o r P a s c a l System User 's Manual, The
c o n s t r u c t s of P a s c a l a r e des igned t o be " u n i v e r s a l" , and
many of them can be adap ted f o r d i r e c t u s e i n t h e d e s i g n
l anguage ,

4.8 DESIGN APPROACHES

A completed s o f t w a r e d e s i g n c o n s i s t s of a complex
m u l t i- d i m e n s i o n a l mass of i n f o r m a t i o n , r a n g i n g from o v e r a l l
s t r u c t u r e t o d e t a i l s of implementa t ion . When c o n s t r u c t i n g
such an e d i f i c e from s c r a t c h , what i s t h e b e s t way t o
approach i t ?

A t t h e s t a r t , two 'ends ' of t h e problem a r e known:

1) What t h e sys tem i s supposed t o do, and

2) The b a s i c o p e r a t i o n s t h a t t h e p r o c e s s o r i s
c a p a b l e of pe r fo rming ,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

This leads to two approaches to software design:

1) Starting from the problem and working down
towards the details of implementation. This
involves splitting the problem into smaller
segments, considering each in turn and
further subdividing until the basic processor
operations are reached.

2) Starting from the basic processor
instructions, putting them together into
larger units that will perform more complex
operations, and so working up towards a
solution of the complete problem.

The second method is the traditional way of designing
software. It has been called the 'bottom-up' approach. For
example, if it was thought that a system required a keyboard
input routine and a display routine, these functions would
be written, together with other routines, and used as
building blocks to construct larger modules which would then
be put together to make the complete system.

However, it has been found by experience that the first
method, 'top-down' design, produces software that is better,
clearer and easier to maintain. The problem with bottom-up
design is that usually not very much thought is given to the
precise requirements of each function, and the ways in which
functions will fit together, before they are. implemented.
Therefore the designer ends up with .blocks that are of
-5mzmtpatible size or shape, and he either has to reconstruct
the blocks, or make the best of what he has and design some
special pieces of software to overcome the problems of
incompatibility. This does not lead to very robust
systems.

The major problem of software, unlike other technologies, is
not in the actual construction of functions. Once a
requirement has been precisely identified, implementing a
stand alone piece of software to perform it is fairly
straightforward. The problem lies in organizing a
collection of functions so that they will cooperate to
perform a complex task. This is the problem that is
addressed by top-down design. The requirement and the
interface for each function is identified before it is
implemented.

Actually, pure bottom-up design is not possible. The
designer must have given the problem some 'top-down' thought
or he would have no idea what building blocks to construct.
What top-down design does is to make this thought much more
systematic. It provides the designer with some tools to
attack the problem (such as the design language), which are
better than his bare hands. Traditionally, the only

Texas Instruments 4-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

l a n g u a g e s a v a i l a b l e f o r d e s i g n were programming l a n g u a g e s ,
which t y p i c a l l y r e q u i r e d s o much a t t e n t i o n t o machine d e t a i l
t h a t t h e ma jo r i s s u e s were obscu red . Also , e a r l y
programming l a n g u a g e s were u n s t r u c t u r e d , s o t h a t i t was
d i f f i c u l t t o i s o l a t e and f o c u s on p a r t i c u l a r d e s i g n i s s u e s
o r t o l o o k a t t h e sys t em a s a whole w i t h o u t becoming
i n v o l v e d i n a mass of d e t a i l .

Des ign ' l anguages and n o t a t i o n s l i k e t h o s e i n t r o d u c e d above
have largely s o l v e d this problem*

A d e s i g n might be conce ived i n i t i a l l y l i k e t h i s :

F i g u r e 4-14 I n i t i a l Des ign Algor i thm

T h i s c o u l d be a d e v i c e which , a f t e r i n i t i a l i z a t i o n , would
w a i t f o r a n o p e r a t o r command, pe r fo rm t h e a p p r o p r i a t e
a c t i o n , and t h e n r e t u r n t o w a i t f o r t h e n e x t command. The
d e v i c e i s s p e c i f i e d i n v e r y g e n e r a l t e r m s , b u t i t s b a s i c
o p e r a t i o n i s a l r e a d y c l e a r .

The o p e r a t o r i n t e r f a c e might be a t e l e t y p e keyboa rd , on
which t h e u s e r would t y p e a command t e l l i n g t h e sys t em what
t o do. Suppose a command c o n s i s t s of a l i n e e n t e r e d on a
t e l e t y p e keyboa rd , t e r m i n a t e d by a c a r r i a g e r e t u r n (C R) .
The d e v i c e prompts t h e o p e r a t o r f o r a command by o u t p u t t i n g
' ? ' t o t h e t e l e t y p e .

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

"Read Ir.putl ' could then be expanded l i k e t h i s :

F i g u r e 4-15 "Read I n p u t" Algor i thm expans ion

r
e
a
d

The t e r m i n a l boxes of t h i s d iagram can be f u r t h e r expanded
u n t i l a comple te s o l u t i o n i s d e r i v e d ,

I 1

output "?"

Because of t h e s i n g l e e n t r y and e x i t p r o p e r t i e s of t h e
s t r u c t u r e d programming c o n s t r u c t s u sed , t h e d e s i g n e r can be
c o n f i d e n t t h a t however he expands t h e d e s i g n o f , f o r
example, t h e box l a b e l l e d ' t a k e a p p r o p r i a t e a c t i o n ' , i t w i l l
n o t a £ f e c t any of t h e o t h e r boxes i n t h e diagram, o r t h e
s t r u c t u r e of t h e diagram,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

It is this property of structured notation which makes it
possible to hold off consideration of details and to design
from the top downwards (or, more accurately, from
application towards implementation).

In a practical system, top-down design must often be
tempered with bottom-up considerations. It is impossible to
start designing at the top without some idea of what is
possible at the bottom. For example, it may be necessary to
code and try out an 1/0 routine or a critical piece of code,
in order to check the feasibility of the design. With a
complex problem, it may be necessary to attack the
intractable mass in the middle from both ends. However, the
most important progression in design remains from problem
towards implementation.

4.9 BLOCK STRUCTURE

In a software design, the general form of any programming
unit can be expressed as follows:

TYPE DECLARATIONS

VARIABLE DECLARATIONS

PROCEDURE STATEMENTS

Such a program unit is called a block. The type
declarations specify the types of data that will be used in
the program (in addition to predefined types); the variable
declarations specify actual data items of these types; and
the procedure statements define what the program will do
with these data items.

Most modern programming languages are block-structured -
that is they make use of the block construct to modularise
p rograms .
The a d v a ~ t a g a s of b l ~ z k s tec~ i i i e apparent when caaaiderifig
how a large software design can be broken down into smaller
parts for separate implementation (by the same programmer or
by others). Each part can be implemented as a separate
block, with its own types, variables and procedure
statements.

A block encapsulates the complete programming environment
for a particular program unit. The declarations made within
a block apply only to that block. They constitute a local
"language" invented and spoken (or rather written) by the
programmer of that block. This language (the types of data
permitted, the actual data items declared, and the
procedures available for doing things) is designed to be

Texas Instruments 4-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

appropriate to the specific problem to be solved by that
block, and is unknown outside the block,

Thus different parts of the same software design can be
developed separately with no possibility of interference o r
confusion, It's even possible for two programmers to use
the same name for two completely different variables.
("TEMP", for example, could be chosen to represent a
temperature by one programmer, and to represent a temporary
variable by another. While such name duplication should not
be encouraged, it's difficult to ensure that it doesn't
happen among the many separate decisions that are made in
developing a software design,) There are standard and
controlled means by which information is exchanged between
different blocks,

The block construct can be used wherever a self-contained
programming unit is to be defined. A complete program is a
block; so is a subprogram, Blocks can be nested one within
another.

A smaller block nested within a larger can be regarded as
existing within the environment (or context) of the outer
block, Thus, type and variable declarations in the outer
block apply in the inner block, However, local declarations
override global ones: if by chance a variable is declared in
an inner block with the same name as one already declared in
an outer block, the local declaration applies in the inner
block, This is shown in Figure 6-2, Section 6.3.6.

The block structure defines a hierarchy, or tree, of
relationships between programming dnits, These are called
lexical relationships, In Figures 6-2 and 6-3, the lexical
parent of PROCEDURE P is PROGRAM A (both PROCEDURE P and
PROGRAM A are blocks), PROCEDURES P and Q are lexical
brothers; P, Q and A, as well as R and R, have SYSTEM X as a
common lexical ancestor. This lexical relationship simply
describes the (static) context in which the individual
blocks are declared, and the data items, types etc which
they share. It does not determine the (dynamic) order in
which blocks will be executed when the system is running,

Block structure is a way of managing complex logical
entities by splitting them into smaller entities with
clearly defined relationships. From experience, this kind
of structure is required to manage all but the smallest
software systems,

4-10 PROCEDURES AND FUNCTIONS

The most common way of implementing a smaller block within a
larger program is as a procedure or function. A procedure

Texas Instruments 4-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

(sometimes known a s a s u b r o u t i n e) i s a s e p a r a t e b lock t h a t
i s d e c l a r e d w i t h i n a program. A name i s a s s i g n e d t o a
p r o c e d u r e t o e n a b l e t h e u s e r t o r e f e r e n c e i t .

D e c l a r i n g a p r o c e d u r e i s s i m i l a r t o d e f i n i n g a new s t a t e m e n t
o r o p e r a t i o n i n t h e programming language . Once a p r o c e d u r e
h a s been d e c l a r e d i t can be a c t i v a t e d o r c a l l e d from t h e
main program s imply by w r i t i n g i t s name. For example, i f
t h e programmer h a s w r i t t e n a p r o c e d u r e c a l l e d
c a l c u l a t e - mean, t o f i n d t h e mean of a s e r i e s of numbers, he
c a n s i m p l y w r i t e

c a l c u l a t e - mean;

i n t h e main program wherever t h i s o p e r a t i o n needs t o be
per formed. (Some l a n g u a g e s r e q u i r e a keyword, such a s CALL,
t o p r e c e d e t h e p r o c e d u r e name.)

I n a c a s e l i k e t h i s , t h e o p e r a t i o n w i l l p r o b a b l y have t o be
per formed on s e v e r a l d i f f e r e n t s e t s of numbers which a r e
s t o r e d as d i f f e r e n t v a r i a b l e s . T h i s can be accompl ished by
p a s s i n g v a r i a b l e names a s p a r a m e t e r s t o t h e p rocedure i n
o r d e r t o s p e c i f y t h e d a t a o b j e c t s on which i t is t o o p e r a t e :

c a l c u l a t e - mean (a r r a y - of - numbers)

L a t e r t h e same p r o c e d u r e might be c a l l e d by:

c a l c u l a t e - mean (d i f f e r e n t - a r r a y - of - numbers)

When a p r o c e d u r e i s d e c l a r e d , t h e number and t y p e of
p a r a m e t e r s a r e s p e c i f i e d i n t h e p r o c e d u r e heade r . The
v a r i a b l e names w r i t t e n h e r e a r e used i n t h e s t a t e m e n t s i n
t h e p r o c e d u r e body. They a r e t h e f o r m a l pa rame te r s . When
t h e ~ r o c e d u r e i s e x e c u t e d (c a l l e d) , t h e fo rma l p a r a m e t e r s . -
w i l l %e r e p l a c e d by t h e a c t u a l p a r a m e t e r s s p e c i f i e d i n t h e
p r o c e d u r e c a l l .

P r o c e d u r e d e c l a r a t i o n :

- r a n n d . . r n o n e I n . ;rrtnner. ,,..,,,,,, ,,, ., . b : r e a l ; e : a r r a y [I. .8!?]
of c h a r) ; -

b e g i n

(* p r o c e d u r e body *)
a := 5;
b := 6.2;
c [a] := ' p ' ;

end ;
7

F i g u r e 4-16a P rocedure D e c l a r a t i o n

Texas I n s t r u m e n t s 4-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Procedure c a l l :

F i g u r e 4-16b Procedure C a l l

The number and t y p e of t h e a c t u a l pa rame te r s must e x a c t l y
match t h e fo rma l pa ramete r s . Thus, X must be d e c l a r e d a s
11 i n t e g e r " , Y a s " r e a l " and Z a s a n " a r r a y [l . .80] of char" . -
A f u n c t i o n i s a s p e c i a l t ype of p rocedure t h a t r e t u r n s a
s i n g l e v a l u e of a p a r t i c u l a r type . (" f u n c t i o n" u n d e r l i n e d
h a s a s p e c i f i c t e c h n i c a l meaning, a s d e s c r i b e d h e r e .
171 . b l l a S w l l S L S nar.+knrn in this b ~ ~ k , " f u n c t i a n " is used Tn 8 more general

s e n s e .) A f u n c t i o n can be t r e a t e d a s a v a r i a b l e and
i n c l u d e d i n a n e x p r e s s i o n , even though c a l c u l a t i o n of t h e
v a l u e t o be r e t u r n e d i n v o l v e s some a l g o r i t h m i c p r o c e s s . The
t y p e of t h e f u n c t i o n i s s p e c i f i e d i n t h e f u n c t i o n h e a d e r :

f u n c t t o n number <a : boo lean ; - -b : -ch-a-r) : i n t e g e r ;
b e g i n

end ; -
and t h e f u n c t i o n can be w r i t t e n a s p a r t of an e x p r e s s i o n :

p := 5 * number (t r u e , ' x ')

F i g u r e 4-17 Func t ion D e c l a r a t i o n and Refe rence

B e s i d e s v a r i a b l e s , v a l u e s o r e x p r e s s i o n s can u s u a l l y be
p a s s e d as pa ramete r s , p rovided t h e y a r e of t h e r i g h t type.
P r o c e d u r e s can d e c l a r e l o c a l v a r i a b l e s which a r e on ly used
w i t h i n t h e procedure . I n a b lock s t r u c t u r e d language t h e
p r o c e d u r e a l s o has a c c e s s t o t h e v a r i a b l e s of t h e program i n
which i t i s d e c l a r e d , I n P a s c a l , p r o c e d u r e s can be d e c l a r e d
w i t h i n p rocedures .

P r o c e d u r e s form a n a t u r a l method of w r i t i n g modular
programs, p a r t i c u l a r l y i f t hey can be n e s t e d (d e c l a r e d
w i t h i n o t h e r p r o c e d u r e s) t o any d e p t h a s i n P a s c a l , I n
implemen ta t ion , p rocedures save code. An i n s t r u c t i o n
sequence t h a t can he used i n s e v e r a l p l a c e s i n t h e program
o n l y o c c u r s once i n t h e o b j e c t code.

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

CALLING PROGRAM PROCEDURE CODE

.
seq(5,2.4,buf£er);----~procedure s e q (a : i n t e g e r ; b : r e a l ; . c : a r r a y [l . .80] - of c h a r) ;

F i g u r e 4-18 P r o c e d u r e C a l l Mechanism

. .

When a p r o c e d u r e c a l l i s e x e c u t e d , t h e p r o c e s s o r t r a n s f e r s
e x e c u t i o n t o t h e p r o c e d u r e , s a v i n g t h e a d d r e s s of t h e t h e
c a l l i n g i n s t r u c t i o n i n t h e main program. Once t h e c a l l e d
p r o c e d u r e h a s f i n i s h e d , t h e p r o c e s s o r r e t u r n s t o t h e
s t a t e m e n t i n t h e maih program f o l l o w i n g t h e p r o c e d u r e c a l l
and resumes p r o c e s s i n g of t h e main program.

b e g i n
end ;

Q u i t e a p a r t from code s a v i n g , p r o c e d u r e s a r e a u s e f u l way of
s t r u c t u r i n g a program, and may be used even when t h e
p r o c e d u r e i s c a l l e d o n l y once. I n a b l o c k s t r u c t u r e d
l a n g u a g e such a s PASCAL, v a r i a b l e s d e c l a r e d w i t h i n a
p r o c e d u r e a r e c o m p l e t e l y l o c a l t o t h a t p r o c e d u r e , and c a n n o t
i n t e r f e r e w i t h t h e o p e r a t i o n of a p r o c e d u r e t h a t i s
s e p a r a t e l y d e c l a r e d . (P r o c e d u r e s s t i l l have a c c e s s t o t h e
v a r i a b l e s o f t h e program o r p r o c e d u r e t h a t c o n t a i n s them, s o
t h i s h a s t o be c a r e f u l l y c o n t r o l l e d *)

-

Most programming l a n g u a g e s a l l o w a program t o make u s e of
p r o c e d u r e s d e f i n e d elsefwhere i n t h e sys t em, p e r h a p s i n
a n o t h e r program module. ' such p r o c e d u r e s a r e d e c l a r e d w i t h i n
t h e program b l o c k which i s t o u s e them by some -form of
EXTERNAL d e c l a r a t i o n :

p r o c e d u r e s e l e c t (a : i n t e g e r ; b : r e a l) ; e x t e r n a l ;
i

The s t a n d a r d model f o r a program b l o c k (s e c t i o n 4.9) shou ld
t h e r e f o r e be expanded a s follow$,:

TYPE DECLARATIONS

VARIABLE DECLARATIONS

EXTERNAL DECLARATIONS

PROCEDURE STATEMENTS

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.10.1 Parameter Passing

There are two distinct ways of passing parameters to a
procedure or function. Passing by value will simply cause
the value of the actual parameter to be found and assigned
to a new storage location in the procedure or function. Any
changes made to the formal parameter variable in the
procedure will have no effect on the actual parameter
variable in the calling program. In fact, actual parameters
passed by value can be arbitrary expressions (of appropriate

test (5 % ~ t 2 j

Passing by variable reference (sometimes called "passing by
location") transfers not a value. but the address of the
actual parameter variable in the calling program.
Operations in the procedure are performed using the actual
varia6Te -in the calling- program, not a local copy. ResuIts
can therefore be returned from the procedure to the calling
program (by assigning a new value to a parameter). However,
the call to "test" above would be illegal in this case as
the actual parameter must be a variable.

A simple procedure will illustrate the difference:

Declaration:

procedure modify (x : integer),;
beein -
x : = 2 * x
end
-9

Call :

modify (a)

If "xff is passed by value, there will be no effect on "a".
If "x" is passed by variable reference, "a" will be doubled
by the call to modify. However, a call such as "modify
(5*a)" would be illegal. The differences are summarised in
Table 4-1.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Allows expression as
actual parameter

Allows variable as
actual parameter

Modifies value of actual
parameter variable in
calling program
(ie returns results)

METHOD OF PARAMETER PASSING

VALUE VARIABLE
REFERENCE

Table 4-1 Methods of Parameter Passing

When writing a procedure or function, it is important to be
clear about the method of parameter passing, If a value is
to be returned, variable reference must be used, If not,
value passing gives additional security against accidental
modification of the calling program's data.

Some programming languages provide only one method of
parameter passing, or determine the method required from the
context, But problems can arise: in some versions of
FORTRAN it's possible to change the value of a constant by a
call such as "modify (5)". Strongly typed languages avoid
such anomalies by checking the correspondence of parameter
declarations and calls,

Most modern languages allow the programmer to choose the
method of passing for each individual parameter. In the
design language, parameters to be passed by variable
reference should be identified in the procedure declaration
by the prefix "var": -

procedure example (var - x : integer; y : real);

All other parameters are assumed to be passed by value, In
the above, "x" is passed by variable reference and "y" by
value.

4,11 REAL TIME SOFTWARE

Much of what has been described so far applies to sequential
software. An algorithm is a sequential construct,
representing a single thread of logic designed to perform a

Texas Instruments 4- 44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

p a r t i c u l a r f u n c t i o n ,

But p u r e l y s e q u e n t i a l sy s t ems a r e of l i m i t e d u s e i n a
p a r a l l e l wor ld . I n r e a l l i f e , many t h i n g s a r e happen ing
s i m u l t a n e o u s l y , % i c r = p r = c e s s o r a p p l i c a t i c f i s ifi part-culhr

o f t e n need t o be aware o f , and t o c o n t r o l , s e v e r a l t h i n g s
t h a t d o n ' t have a s i m p l e , o n e- a f t e r- t h e- o t h e r r e l a t i o n s h i p
i n t i m e . A sy s t em c o n t r o l l i n g a n i n d u s t r i a l p r o c e s s nay
need t o m o n i t o r s e v e r a l d i f f e r e n t t e m p e r a t u r e s , p r e s s u r e s
and f l o w r a t e s , and t a k e a p p r o p r i a t e a c t i o n t o c o n t r o l t h e
p r o c e s s . It may need t o open and c l o s e v a l v e s and s t a r t
pumps i n a p r e d e t e r m i n e d sequence . And i t may need t o
r e spond t o commands from a n o p e r a t o r , which can come a t any
t i m e .
A microptocessor wrll - - - L - L ~ p L V U Q U ~ y have the c a p a c i t y t o do a T l

t h i s . The problem l i e s i n o r g a n i z i n g i t s t ime and o t h e r
r e s o u r c e s s o t h a t e v e r y t h i n g g e t s done when i t i s r e q u i r e d .
A g e n e r a l s o l u t i o n t o t h i s problem r e q u i r e s someth ing more
t h a n t h e s e q u e n t i a l m o d u l a r i t y d e s c r i b e d above. What i s
r e q u i r e d i s a m o d u l a r i t y based on a p p l i c a t i o n f u n c t i o n , t h a t
comprehends b o t h t h e s e q u e n t i a l and p a r a l l e l n a t u r e of t h e
wor ld .

A p r o c e d u r e c a l l i s a s e q u e n t i a l mechanism: t h e c a l l i n g
program suspends e x e c u t i o n u n t i l t h e p r o c e d u r e h a s
comple ted . But r e a l t ime a p p l i c a t i o n s do n o t s p l i t e a s i l y
i n t o PROCEDURES and FUNCTIONS w i t h a s i m p l e s e q u e n t i a l
r e l a t i o n s h i p . Squeez ing such a p p l i c a t i o n s i n t o a s e q u e n t i a l
package means a d e p a r t u r e f rom n a t u r a l program m o d u l a r i t y ,
and u s u a l l y r e s u l t s i n " b r i t t l e " d e s i g n s which a i e d i f f i c u l t

1

t o t e s t and may be u n r e l i a b l e i n o p e r a t i o n .

It would be much e a s i e r t o d e f i n e i n d i v i d u a l t a s k s t o be
per formed a s s e p a r a t e program b l o c k s , which c o u l d be
c o n s i d e r e d t o be e x e c u t i n g a t t h e same t i m e . Concurrency
p e r m i t s t h i s . S e p a r a t e t a s k s can be w r i t t e n a s i n d i v i d u a l
p r o c e s s e s . When t h e sys t em i s e x e c u t i n g , p r o c e s s o r t ime and
o t h e r r e s o u r c e s w i l l be s h a r e d o u t a u t o m a t i c a l l y between t h e
p r o c e s s e s a c c o r d i n g t o demand and p r i o r i t i e s s e t by t h e
d e s i g n e r . T h i s s h a r i n g o u t of p r o c e s s o r t i m e i s known a s
s c h e d u l i n g .

Each p r o c e s s i s a s e p a r a t e s e q u e n t i a l b l o c k which can be
w r i t t e n s e p a r a t e l y from t h e o t h e r p r o c e s s e s . P r o c e s s e s c a n
s i g n a l t o e a c h o t h e r and exchange messages t o c o o r d i n a t e t h e
o p e r a t i o n of t h e sys tem.

A b r i e f d e s c r i p t i o n of semaphores , e x e c u t i v e s and i n t e r r u p t s
i s g i v e n h e r e . Concurrency and i t s i m p l e m e n t a t i o n i s
d e s c r i b e d i n more d e t a i l i n t h e f o l l o w i n g c h a p t e r .

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.11.1 Semaphores

A semaphore is a signalling mechanism that represents an
explicit event, It can be used for signalling between
individual processes, and between processes and the external
world.

Semaphores can indicate the occurrence of any kind of event
that is of importance to more than one process in a system,
A semaphore may indicate an external event - eg
"character received" from a terminal device - or an event
purely internal to the software of the system - eg
"text huf fer full". - -
There are two primitive operations that can be performed by
a process on a semaphore - signal and wait. A process that
completes an event signals the appropriate semaphore; the
semaphore "remembers" that the event has taken place.
Another process can execute a wait operation on the
semaphore, which means that it will be suspended until the
semaphore is signalled from somewhere else. (If the
semaphore has already been signalled, the waiting process
will be released immediately and can continue.) Thus a
semaphore is a simple signalling mechanism, mutually
understood by two or more processes:

Process # 1 Process 82

a a

for i := 1 to bufsize do •

begin
wait (char-received); wait(buffer-full);

/ r e a d c h a r (a) ; process-buffer;
char- buffer [i] := a
received end ;

signal (buffer-full); •

Figure 4-19 Semaphore Signalling

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

A process can synchronize its operation on an event taking
place anywhere else in the system. A semaphore is a very
simple signalling mechanism that conveys only that some
event (mutually understood by signaller and waiter) has
taken place,

The most useful type of semaphore is a counting semaphore,
which will count and store the number of times it has been
signalled if several signals have been received without a
wait, A counting semaphore will also establish a queue of
-

waiting processes if more than one wait is received without
a signal, Thus semaphores can provide a degree of
flexibility in a system, to cope with temporary "peaks" and
"troughs1'.

The implementation of a semaphore must ensure that a process
can complete its signal or wait operation without being
interrupted by another process, so that the semaphore does
not become corrupted,

Semaphores can be used to construct more powerful
communication and synchronization mechanisms between
processes, that allow for the exchange of messages as well
as signalling the occurence of an event, Such mechanisms
are discussed in Chapter 5, Component Software, and in the
Microprocessor Pascal System User's Manual.

4.11,2 Executives

Because the processor instruction set does not directly
implement concurrency and semaphores, a set of software
routines executing on top of the bare' machine are required
to provide these facilities, This set of routines is known
as an executive.

A "bare" software system can be written to run on a
processor without an executive. This was often done in the
early days of microprocessors, However, a standard
executive makes things considerably easier and can provide
services such as concurrency and standard management of
interrupts and 1/0 (see below), An executive tailored to
the needs of a microprocessor need not be large: Texas
Instruments' Realtime Executive can be configured down to a
size of 3K bytes,

4.11.3 Interrupts

There are two ways that a processor can become aware of
something that is happening in the external world, One is
to execute a software instruction at a particular point in a
software algorithm to read or test an external input, This

Texas Instruments 4-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

t e c h n i q u e i s c a l l e d p o l l i n g , U n t i l t h e a p p r o p r i a t e
i n s t r u c t i o n i s e x e c u t e d , t h e s o f t w a r e i s comple te ly unaware
o f t h e c u r r e n t v a l u e of t h a t i n p u t (i t may have s t o r e d t h e
v a l u e r ead l a s t t i m e t h a t i n p u t was p o l l e d) .

The o t h e r t e c h n i q u e i s t o connect a s i g n a l i n hardware s o
t h a t i t immedia te ly i n t e r r u p t s t h e p r o c e s s o r when a c e r t a i n
c o n d i t i o n o c c u r s (d e f i n e d by e x t e r n a l hardware) . When t h e
p r o c e s s o r r e c e i v e s a n i n t e r r u p t , i t w i l l c a r r y o u t a
c o n t e x t s w i t c h t o comple te ly save wha teve r i t was doing a t
t h e t ime t h e i n t e r r u p t was r e c e i v e d , and w i l l t h e n e x e c u t e
a n i n t e r r u p t s e r v i c e r o u t i n e . (The hardware mechanism
implemented on t h e 9900 and 99000 m i c r o p r o c e s s o r s f o r
i n t e r r u p t s and c o n t e x t s w i t c h e s i s d e s c r i b e d i n Chapter 8).
I n a sys tem c o n t a i n i n g a n e x e c u t i v e , t h e i n t e r r u p t s e r v i c e
r o u t i n e w i l l p robab ly s i g n a l a semaphore a s s o c i a t e d w i t h t h e
i n t e r r u p t r e c e i v e d , and c a u s e a r e s c h e d u l i n g o p e r a t i o n .
T I 'S Rea l t ime E x e c u t i v e i s e v e n t d r i v e n : t h a t i s , o c c u r r e n c e
o f a n e x t e r n a l e v e n t (a n i n t e r r u p t) w i l l c ause t h e p r o c e s s o r
t o immedia te ly r e s c h e d u l e i t s o p e r a t i o n s t o d e a l w i t h t h e
e v e n t , The e v e n t may cause a p r o c e s s t h a t h a s been
suspended on t h e i n t e r r u p t semaphore t o r e a c t i v a t e , and t h i s
i n t u r n may s i g n a l o t h e r p r o c e s s e s , s o t h a t an e x t e r n a l
e v e n t may p r o p a g a t e a c h a i n of a c t i v i t y throughout t h e
sys tem.

Event d r i v e n s c h e d u l i n g i s what i s r e q u i r e d i n r e a l t i m e and
c o n t r o l s i t u a t i o n s , a s i t p r o v i d e s immediate r e sponse t o
e x t e r n a l happenings . The hardware i n t e r r u p t p r i o r i t y scheme
may be used t o p r i o r i t i s e t h e r e s p o n s e t o d i f f e r e n t e x t e r n a l
e v e n t s , i f more t h a n one o c c u r s a t once, The e x e c u t i v e
p r o v i d e s a s t a n d a r d means of managing and c o n t r o l l i n g
i n t e r r u p t s , s o t h a t s y n c h r o n i z a t i o n w i t h e x t e r n a l e v e n t s i s
h a n d l e d i n t h e same s t a n d a r d way a s s y n c h r o n i z a t i o n w i t h
i n t e r n a l p r o c e s s e s , It i s a l s o p o s s i b l e t o w r i t e i n t e r r u p t
s e r v i c e r o u t i n e s t h a t e x e c u t e o u t s i d e t h e e x e c u t i v e
env i ronmen t , s o t h a t v e r y f a s t r e s p o n s e can be provided f o r
t h o s e s i g n a l s which r e q u i r e i t , w i t h o u t i n v o l v i n g t h e
e x e c u t i v e o r o t h e r p r o c e s s e s .

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.12, MAKING TEA

The tea making algorithm (Figure 4-2) can be updated to run
in a real time environment:

begin
fill - kettle;
put - kettle on; -
put teain teapot;
wait (kettie - boiling) ;
C f 1 1 C,.A...AC.
1111 L C a p V L)

delay (5*60*1000) ;
for number := 1 to cups required do - - - -

pourcup
end
7

Figure 4-20 Real Time Algorithm

"kettle boilingf1 is now a semaphore, and the process
containTng this algorithm performs a "wait1' on it. The
semaphore will be signalled, and the process will be
revived, by the external event of the kettle boiling. (A
steam sensor will probably be wired up to generate an
interrupt to the *.processor, which will signal the
semaphore), While this process is suspended, other
processes can be executed. If this is really a domestic
robot, it might have a table laying or washing up algorithm
which could be carried out. Similarly, a concurrent system
is likely to include a standard delay routine which will
suspend the process for the required time. The parameter
for this routine is assumed to be the number of milliseconds
delay required. The other operations (eg fill - kettle) can
be declared as procedures.

This algorithm now conforms to standard Pascal syntax and
can actually be compiled (omitting the underlines, which
Pascal does not require), Figure 4-21 shows the compilation
listing which was obtained from the Microprocessor Pascal
System. "fill kettle" etc are declared as EXTERNAL
procedures, to ?;e defined elsewhere,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

DX Mic roprocesso r P a s c a l System Compiler 3.0 10/23/81 11:41:52

0 PROGRAM make - t e a ;
0

VAR number, cups r e q u i r e d : i n t e g e r ;
k e t t l e - b o i l i n g : semaphore;

PROCEDURE f i l l k e t t l e ; EXTERNAL;
PROCEDURE pu t E e t t l e on; EXTERNAL;
PROCEDURE p u t t e a i n t eapo t ; EXTERNAL;
PROCEDURE f ili t eapoT; EXTERNAL ;
PROCEDURE wait- (sema : semaphore); EXTERNAL;
PROCEDURE d e l a y (m i l l i s e c o n d s : INTEGER); EXTERNAL;
PROCEDURE pour - cup; EXTERNAL;

B E G I N
f i l l k e t t l e ;
p u t F e t t l e on; - -
p u t t e e i n t e a p o t ; - - -

! 104
w a i t (k e t t l e - b o i l i n g) ;
f i l l t e a p o t ;
d e l a y (5*60*1000) ;

7 FOR number := 1 TO cups - r e q u i r e d DO
8 p o u r c u p
8 END,

F i g u r e 4-21 Compi la t ion L i s t i n g f o r t h e
Tea Making Algor i thm

E r r o r 104 i s d e s c r i b e d i n t h e Mic roprocesso r P a s c a l System
User ' s Manual a s ' ' i d e n t i f i e r n o t dec la red" . The compi l e r i s
p o i n t i n g o u t t h a t "put t e e i n t e a p o t" i s m i s s p e l l e d . T h i s
must be c o r r e c t e d i n t F e f T n a i s o f t w a r e des ign . A c o r r e c t e d
c o m p i l a t i o n , w i t h t h e "(* MAP *)" o p t i o n s e t t o show t h e
a c t u a l v a r i a b l e s t o r a g e a l l o c a t e d f o r t h e module, i s
d i s p l a y e d i n F i g u r e 4-22,

F i g u r e 4-23 shows t h e r e v e r s e assembled TMS9900 o b j e c t code
t h a t was o u t p u t from t h e compi l e r , With a l i t t l e more work,
t h i s module cou ld form p a r t of a r e a l sys tem,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE D E S I G N

DX M i c r o p r o c e s s o r Pascal S y s t e m C o m p i l e r 3.0 10/23/81 11:31: 7
0 (* MAP *)
0 PROGRAM m a k e - tea ;
0
0 rr A n v n n n u m b e r , cups r e q u i r e d : i n t e g e r ;
4 k e t t l e - b o i l i n g : s e m a p h o r e ;
6
0 PROCEDURE f i l l k e t t l e ; EXTERNAL;
0 PROCEDURE p u t Fe t t l e on ; EXTERNAL ;
0 PROCEDURE p u t t e a i n t eapo t ; EXTERNAL;
o PROCEDURE f i lT teapot; EXTERNAL;
0 PROCEDURE w a i t- (s e m a : s e m a p h o r e) ; EXTERNAL;
0 PROCEDURE de lay (m i l l i s e c o n d s : I N T E G E R) ; EXTERNAL;
0 PROCEDURE pour - cup; EXTERNAL;
0
1

-- -- --
B E G I N

1 f i l l k e t t l e ;
2 pu t Fe t t le on;
3 * p u t t e a i n t e a p o t ;
4 w a i t (kgt t i e - b o i l i n g) ;
5 fill t e a p o t ;
6 delay (5*60*1000);
7 FOR n u m b e r := 1 TO cups - r e q u i r e d DO
8 p o u r c u p
8 END.

PROGRAM MAKE T E A ;
STACK SIZE = 0006

V A R I A B L E D I S P T Y P E S I Z E
NUMBER 0,o 0 0 I N T E G E R 2
C U P S REQ 0 0 0 2 I N T E G E R 2
KETT~TE - B 0 0 0 4 SEMAPHORE 2

PROCEDURE F I L L - K E T ; EXTERNAL;

PROCEDURE P U T - K E T T ; EXTERNAL;

PROCEDURE P U T T E A ; EXTERNAL; - -
PROCEDURE F I L L - T E A ; EXTERNAL;

PROCEDURE W A I T (SEMA :SEMAPHORE) ; EXTERNAL;

PROCEDURE DELAY (M 1 L L I S E C : I N T E G E R) ; EXTERNAL;

PROCEDURE POUR - C U P ; EXTERNAL;

MODULE - MAKE T E A
R 1 5 - CONTXINS VALUE O F LOCAL V A R I A B L E AT D I S P L A C E M E N T 0006
R 1 4 - C O N T A I N S VALUE O F LOCAL V A R I A B L E AT D I S P L A C E M E N T 0008

* L I T E R A L CODE LENGTH = OOOE, TOTAL CODE LENGTH = 0060

F i g u r e 4- 2 2 C o r r e c t e d C o m p i l a t i o n L i s t i n g

T e x a s I n s t r u m e n t s 4-5 1 O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK

IDT 'MAKE - TEA'

PSEG
EQU $
EQU 7 R7
EQU 8 R8
EQU 9 R9
EQU 10 R10
EQU $
DATA LOOOE-LO
DATA L0054-LO
DATA >0000
DATA >0000
DATA >0006
DATA >0001
DATA >93EO

EQU $
MOV @D0008-LO(CODE),*Sp+
MOV @DOOOA-LO(CODE),*SP+
SET0 *SP+
CLR *SP+
CLR *SP+
DATA CALL$,S$PRCS
DATA CALL$,FILL K
DATA CALL$,PUT ZE
DATA CALLS, PUT-TE
MOV @>ooo~(LF~,*sP+
DATA CALL$,WAIT
DATA CALL$,FILL T
MOV @DOOOC-LO(EODE), *SP+
DATA CALL$,DELAY
LI R15,>0001
MOV @>0002(~~),~14
EQU $
C R15,R14
JGT LO054
DATA CALL$,POUR - C
INC R15

DEF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF

SYSTMS
FILL K
PUT XE
PUT-TE
FILE T
WAIT-
DELAY
POUR C
SSPR~S
ESPRCS
CALL$
EXIT$P

SYSTMS
PR
CODE
LF
SP
LO

DO008
DOOOA
DOOOC
*
LOOOE

SOFTWARE DESIGN

LC HEX CHAR

0004
0006
0008
OOOA
OOOC
LC

OOOE
00 12
00 16
0018
OOlA
OOlC
0020
0024
0028
002C
0030
0034
0038
003C
0040
0044

0048
004A
004C
0050

CEA8 0008
CEA8 OOOA
07 3A
04FA
04FA

CEA8 OOOC

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

JMP LO048
LO054 EQU $

MOV @DOOOA-LO(CODE),*SP+
DATA CALL$,E$PRCS
B @ E X ~ S P
END

SOFTWARE DESIGN

0054 CEA8 OOOA
0058
005C 0460 0000

Figure 4-23 Reverse Assembled Object Code
for the Tea Making Algorithm

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4,13 BIBLIOGRAPHY

The following publications develop and extend the ideas
presented in this chapter,

[I] Niklaus Wirth Algorithms + Data Structures = Programs

Prentice-Hall

[2] E W Di jkstra, O-H Dahl and C A R Hoare

Structured Programming

Academic Press

[3] Peter Freeman and Anthony I. Wasserman

Tutorial on Software Design Techniques

IEEE Computer Society

[4] Michael Jackson Principles of Program Design

Academic Press

[5] Carol A Ogdin Software Design for Microcomputers

Prentice-Hall

Texas Instruments Publications:
-

Component Software Handbook (MP9 18)

Microprocessor Pascal System User's Manual (MP351)

Microprocessor Pascal Executive User's Manual (MP385)

Realtime Executive User's Manual (MP373)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

CHAPTER 5

COMPONENT SOFTWARE

5.1 WHAT IS COMPONENT SOFTWARE ?

Component Software is a means of packaging software to
address what is perceived as the major problem of
microsystems development for the next decade - the "software
crisis".

Studies have shown that up to 90% sf the development esst for
a typical system using programmable hardware will be spent on
software. Micraprocessor hardware is cheap, but software
development is expensive, With software forming the major
investment for users, it is vital to manage software
development effectively, and to make the most effective use
of scarce software skills,

Where the product being developed is to be produced in large
quantities (tens or hundreds of thousands), development &ost
is not significant - divided by a hundred thousand it does
not add much to the selling price, But for an increasing
number of microprocessor products that will be sold only in
tens, hundreds or thousands, development cost is all
important. For a 100-off product a single man-month of
software development (at around $6000) will add $60 to the
cost of each product - before any profit, A typical project
will involve at least 4-6 months of software development,

Component Software is a way of providing packaged functions
that are significantly more powerful than any currently
available, either in software or in hardware, These
functions consist of "encapsulated software" that can be
purchased ready written and tested, and "plugged in" to a
user's application, IJnlike conventional applications
software, the Component Software environment allows packaging
of real time functions that can execute either concurrently
or in sequence with other functions in an application system,
This capability overcomes most of the restrictions of
sequential software for writing real time control systems,
and many other types of application, The framework .ensures
complete security of function packages, so that functions
cannot interfere with one another,

Because of the flexible packaging of Component Software,
systems can be designed and constructed in terms of
ngan iung f u 1 oriented functions, rather , a than

Texas Instruments 5- 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK. COMPONENT SOFTWARE

abstract software routines. Many of these functions can be
purchased off the shelf, or reused from previous systems.

Component Software is the first step in a more radical
approach to systems design using programmable components.
Many functions first identified and packaged in this way will
eventually be "canned" in silicon, as dedicated hardware
functions.

Component Software is supplied as libraries of software
modules stored on magnetic media (such as floppy discs),
together with full documentation. The packages are designed
to be configurable in many different ways, to suit individual
application needs. Configuration involves selecting the
software modules required from the library supplied, and
linking them together with the user's application program.
This semi-automatic process gives the system designer a
higher level of programming capability (he can manipulate
complete functional blocks in a real time environment),
supplementing already available software development tools.

CONFIGURATION OF
SOFTWARE COMPONENTS

Figure 5-1 Configuration of Component Software Packages

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Individual features of the package can be selected or left
out, according to the needs of each application. Packages
are designed to permit several levels of access - from a high
level, trouble-free interface that requires minimum
knowledge, to a low level interface that gives direct csntrol
over the workings of the package, but requires greater
expertise to use effectively. System designers can choose
whichever level is most appropriate for each particular
application,

A typical Component Software package can be used in different
ways in many different applications, A library of common
application functions can be built up, which can supply
component parts for new applications, Users can write their
own Component Software packages - the Component Software
Handbook, MP918, describes haw to do this. Texas Instruments
(TI) encourages the production and sale of Component Software
packages by other companies,

It is expected that configuration from pre-compiled object
modules will supply most application needs, but TI also
supplies source code as standard for all routines, For those
applications which require it, functions can be customised at
the most detailed level using standard Microprocessor Pascal
and/or assembly language development tools,

5.1.1 The Functional Approach

Component Software makes possible a functional, application-
oriented approach to system design, First, an application is
analysed into the individual functions that are to be
performed. This functional analysis can be done in whatever
way is naturally appropriate for the application, Next, the
requirements for each fgnctioa, and the -interaction between
the separate functions, are unambiguously specified, A
precise algorithmic description of the operation of each
function will lead straightforwardly to a high level language
software implementation (which can he optimised in assembly
language if required). The structure of Component Software
means that separately developed, concurrent functions can be
connected together simply and with confidence. Testing can
he carried out on each function individually, and on the
system as a whole. Finally a choice of hardware can be made,
from a range of options, to provide the required cost,
performance and environmental suitability,

Traditional forms of system design rarely start with the
application - they usually require choosing a hardware
configuration, often with barely adequate information, at the
start; and then building up software on top of this to adapt
the hardware to the application requirements.

Texas Ins t rument s October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

, , r , ,
ROM CPU 110

Hardware Sottware

Figure 5-2 The Traditional Approach

Bridging the gap between the chosen microprocessor hardware
and application requirements usually involves major design
effort, with skills that are rare. In addition, the design
produced is likely to be "brittle1' rather than flexible,
because built into it are assumptions about a particular type
of hardware and a particular set of application requirements.
Incorporating new hardware or new requirements usually means
major redesign of both hardware and software, and consequent
problems of testing and reliability.

The functional approach places few arbitrary restrictions on
the development process. Both the software algorithms (which
determine how an application functions) and the hardware
(which determines price and performance) can be varied
independently, with minimal effect on the rest of the design.
The constructs of Component Software are sufficiently
flexible that systems can be structured according to the
nature of the application, whatever it is, rather than being
shaped by the necessities of the technology. Systems built
like this are both more responsive to application
requirements in the first place, and easier to change if the
requirements alter.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Figure 5-3 TI Functional Architecture

How to divide an application into functional parts for
separate development may be immediately obvious from the
nature of the application; or functional "packages" may be
chosen according to the division of available engineering
resource to implement them. Packages may also: Be chosen to
encapsulate areas of a system which may be reused, or areas
which are likely to change. In any case, the ability to
encapsulate real time functions (which may have a concurrent
structure - see below) can be used to advantage.
Systems can be upgraded incrementally ,by changing or
replacing separately developed functions. The Component
Software environment ensures that separate functions are
enclosed, so that changes will have no effect on other parts
of the system.

I %,:Am- V l U W Process

TI'S microprocessor hardware provides a wide range of price,
performance and environment options (available either as
individual LSI and VLSI components, or in a range of
prepackaged board modules), all with a common software
interface. The 9900/99000 instruction set defines a low
level standard interface; the Realtime Executive (Rx) defines
a standard at a higher level of capability - the Software
Function Bus - that incorporates concurrency, standard
management of system resources, and all the features required
to implement Component Software. Versions of Rx will be
available to adapt the standard software interface to
multiple processors and various types of memory
configuration.

Cornmunl-

Video
Graphics

SIW

PID
SIW

-

Texas Instruments

HDLC
S/W

Board Control
Board

Hardware Function Bus

5- 5 October 1981
I

cations
Board

Software Function Bus

TI FUNCTIONAL ARCHITECTURE

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The functional. approach can be seen as a generalisation of
the "Top Down" and "Structured Programming" approaches which
have been successful in achieving reliable software design.
Here, the approach is applied to system design, in particular
to the design of real time systems,

5.1.2 Function to Function Architecture

The functional approach of Component Software forms part of a
broader architectural scheme called Function-to-Function
Architecture, which integrates both hardware and software in
the service of useful functions, Function-to-Function
Architecture (FFA) defines a standard interconnect mechanism
between complex functions, however they are implemented - in
hardware, software, or a combination of both, It makes
possible early definition and implementation of functions in
the flexible medium of Component Software, Once the
usefulness and reliability of a function has been proved, it
can be migrated to progressively "harder" implementations.
Those functions which justify it will eventually end up as
custom VLSI silicon chips, The standard interconnect
mechanism means that systems will be upgraded gradually by
replacing individual functions to give improved cost,
performance or features, without having to redesign the whole
system,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

5.2 THE COMPONENT SOFTWARE ENVIRONMENT

The Component Software Handbook, from which this chapter is
extracted, gives further information on the construction and
use of Component Software packages, and precise terminology.
This section provides an everview of the Component Software
environment. Terms such as "function", "program" etc are
used here in a general rather than a specific technical
sense, except where capitalised.

5.2.1 Concurrency

Component Software supports concurrency - i.e. simultaneous
execution of a number of different software programs.

Conventional programming environments only allow the user to
run one program at a time. However, a typical microprocessor
system may be required to perform a number of different
functions at once.

Sensor monitoring

Motor control

0 Display/operator interface

Concurrent program
'parallel' execution

CONCURRENCY

Figure 5-4 Concurrency

Texas Instruments 5- 7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

For example, 2 system controlling a group of manufacturing
machines may be required to monitor and control each machine,
continuously check safety conditions, select and record
information for costing each job as it appears, and still to
respond immediately to commands from its operator,

Reducing all of this to one sequential list of instructions
(a conventional program) is a very difficult task. The
result (if it turned out to be possible) would be a very
convoluted program that breaks off in the middle of doing one
thing to perform another, halts that to carry out a third,
and so on. Such programs are difficult to understand and
awkward to maintain. They are also nearly impossible to
test,

Conventional software is built on the assumption that
functions will be executed one at a time, in sequence, Each
function must start, execute and terminate before another
function can begin.

But the real world does not always (or even usually) behave
like this. A typical real time application system will need
to do several things "at once". Even though each individual
task may only require periodic attention, the system must
keep track of everything that is going on, carry out each
task when it is required, and must also respond immediately
and correctly if an unexpected event occurs, A control
function, for example, may need to check the status of a
machine or a chemical process continuously over a period of
hours, However, the check may only require a small
calculation every half second (say),

To dedicate a complete processor to this function would be
wasteful; yet conventional application software provides no
standard means of using the processor to perform another
function in the meantime, while ensuring that the check gets
made every half second, and that the two functions do not
interfere.

Demands on the system may occur not only at fixed time
intervals: from the system's point of view, it is completely
impossible to predict when an operator is going to press a
button, or when a temperature will exceed a safe margin - but
it is important to respond quickly and reliably, and without
disrupting the operation of the rest of the system,

For a specific application, it may be possible to solve these
problems in a sequential program. However, to do so would
require a great deal of effort, and would result in an ad hoc
solution, very specific to one application. With software
constructed in this way, it is not unknown for an apparently
simple change in the specification (say, the need to check
the status of a machine every quarter second rather than half
second) to require a complete redesign of the system,
Additional problems arise when trying to test such systems.

Texas Instruments 5-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

What is needed is a standard framework in which this class of
problem is handled autsnat5cally, The system designer can
then specify and write each individual function separately,
and evaluate and test it independently, Applications can be
built up by selecting the required functions and linking them
together (semi-automatically) to construct a complete system
- analogous to the process of connecting together ICs using a
printed circuit board, This standard framework is provided
by Component Software,

In the Component Software environment, functions are
considered to be independent, and may have a sequential
and/or a concurrent relationship with other functions, The
designer may specify that one function must wait for another
function to complete before it executes, but (unlike
conventional software environments) he can also specify that
the two functions should take place concurrently. For
example, a user's program can initiate an 1/0 request (such
as a read from floppy disc), but need not wait for it to
complete before going on to do something else. The system
will automatically complete the transfer, taking care of the
hardware timings and delays sf t h e floppy disc controller azd
the necessary format conversions, in a way that is completely
transparent to the rest of the software,

Explicit support for concurrency is an important element in
the framework, It makes possible the construction of systems
which perform real tasks, easily, cheaply and reliably, and
permits software to be structured in a natural way that
reflects the real world, It allows a functional approach (as
outlined above) to be applied to software - because the
natural analysis of an application will rarely re~ult in
functions that have a simple sequential relationship.

5.2,l.l Packaged Functions

Software libraries have existed before, but they have
generally been libraries of routines that only execute
sequentially, There is a limit to the type of function that
can be placed in a purely sequential package,

Sequential software is well suited to a restricted class of
operations - those operations that can be specified by a
single list of instructions. Unfortunately, by no means all
of the tasks to be performed in the real world can be
specified as simply as this. Microprocessors, by virtue of
their cheapness and effectiveness, are required to perform a
wide variety of tasks which mainframe computers were never
called upon to do. Consequently, a more powerful medium is
needed to program them effectively - a framework which
incorporates concurrency.

A "package" such as a process control function looks quite
different from a sequential software routine. The package

Texas Instruments 5-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

may include a piece cf code to be executed automatically
every (say) half second, plus some routines callable by a
user's program to set up and change the control parameters,
obtain status information etc; and maybe some logging
routines, again executed automatically at fixed intervals, to
record selected data regularly on disc. The package contains
a number of functions which must be executed at different
times and in different ways - some automatically .at fixed
time intervals, some on demand from the user's application
program (perhaps halting the flow of the user's program while
they execute, and perhaps not), and some on detecting a
particular out-of-range condition (say).

&

Component Software is designed to accomodate such complex
"packages" as this. Using the basic constructs provided by
the Software Function Bus, algorithms written in a high level
programming language (or in assembly language) can be
combined in a variety of sequential and concurrent
relationships to build a complete package implementing, say,
a file manager or a machine controller. The simplicity of
the basic constructs means that parts of any package can be
isolated and tested independently, using interactive
debugging tools.

The complete package (or such parts of it as are required)
can be incorporated in a larger system easily and quickly,
with the knowledge that it will not interfere with any other
function in the system.

5.2.1.2 Implementation of Concurrency

Functions which execute concurrently can be regarded as
taking place independently and simultaneously. Functional
design, and the Component Software environment, makes no
fundamental assumptions about how this concurrency is
implemented. The "simultaneity" may involve two or more
separate hardware processors, or may be simulated in software
with a single processor.

In a single processor environment, concurrency is implemented
by switching the processor between the different functions to
be performed, according to the demands of the system and
priorities set by the user. This switching is called
scheduling. More generally, scheduling can be regarded as
the allocation of available system resources to the different
functions competing for them. The statement that "a function
is separately scheduled" means that it competes independently
for system resources, according to priorities set by the
system designer. In a Component Software system, the
designer chooses which functions are actively independent,
and hence need to be separately scheduled. Generally,
functions which have independent timing requirements, or
which take place over long periods of time, should be
separately scheduled.

Texas Ins t rument s October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Functions which are not separately scheduled can be regarded
as "passive

q

', and only execute when called on by an "active"
function. The scheduling policy is designed to ensure that
the task being performed by the processor is always the most
urgent onei and in particular that external events (eg a
signal from a device connected to the system) are responded
to immediately. Scheduling is described in detail in the
Microprocessor Pascal System User's Manual (MP351) and the
Realtime Executive user's Manual (MP373),

With a single processor, concurrency provides the advantages
of increased clarity of system design (which means easier
maintenance, testing and upgrade), functional packaging, and
improved throughput (because the processor need never be
idle, waiting say for a slow output device to respond - it
can switch to performing some other function), Concurrency
means that the system has some degree of dynamic flexibility:
it can respond to changes in the demand for any function by
reallocating resources from less urgent functions,

With multiple processors, throughput will be further
increased because there is more than one active processing
element. Reliability may also be increased, because (with
appropriate design) the whole system need not collapse if one
processor fails. However, a multiple processor system is
likely to be more expensive, It is intended that Component
Software programs can be executed on the same processor or on
a distributed network of processors, with minimal impact on
the programs themselves or their interaction. The system
designer will then choose the hardware to implement his
functional design purely on the basis of cost and performance
tradeoff s. Adding another processor, say, to increase
throughput will no longer be a major design exercise.
Currently, multiple processor systems can be built in which
functions executing in different processors interact through
file level messages across standard communication links (eg
HDLC or EIA), Future versions of Rx will support more
closely coupled multiple processor systems,

5.2a1.3 Levels of Concurrency

The Component Software environment permits concurrency not
only between complete function packages, but within packages
themselves, This means that a complex function, such as the
HDLC Data Communications package, can be designed as a
collection of subfunctions that may execute sequentially
and/or concurrently.

Typically, a users program will pass a data record to the
HDLC subsystem, for transmission over the HDLC communications
network. The HDLC subsystem then performs all the work
needed to transmit the record to its destination. Within the
HDLC package are a number of concurrent functions which
manage the different levels of HDLC protocol, interact with

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

the physical data link, and check t h a t receipt of correct
data is acknqwledged within a specified time interval. If
acknowledgement is not received, or if an error is signalled,
the HDLC subsystem will retransmit the data. Efficient and
reliable implementation of this kind of "intelligent"
operation requires concurrency. The Component Software
environment permits such an intelligent function to be
encapsulated in a single package which has a simple interface
with the users program (for example, it can be accessed
through straightforward sequential procedure calls).

The internal structure of such a function package is
completely invisible to the user, unless he chooses to
interact with the package at that level of detail. The
package can be initialised automatically at power up, and
will perform throughout as an'enclosed operation, complete in
itself.

5.2.2 Code, Data and Re-entrancy

Component Software is designed to make efficient use of the
memory space available in a microprocessor system, and to
maintain strict separation between program code and data.
Separation of code and data improves system integrity (making
accidental modification of code less likely), makes possible
re-entrancy (as described below), and permits easy
partitioning into read only and readlwrite memory (ROM and
RAM), which is often required in a microprocessor system.

The fundamental unit of instruction code in a Component
Software system is the routine. A routine is a sequence of
processor instructions that performs a particular operation.

Component Software provides a set of constructs that group
routines together, define which routines will have access to
which other routines, and determine how routines will
interact (sequentially or concurrently). The Component
Software Handbook describes the detailed structure of a
Component Software package, and how to construct one. Within
a separately compiled Component Software module (which will
probably include several routines), the rules of scope define
exactly which routines and which data structures are
accessible at each point in the software. (See the
Microprocessor Pascal System User's Manual for a complete
discussion of scope,) Between modules, explicit EXTERNAL
declarations in each module specify exactly what connections
are to be permitted with other modules.

The structure of a Component Software system is shown in
figure 5-5.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Real-Time Executive E2r l
I SYSTEM I

PROGRAM PROGRAM

Additional
processes

I

Collections of

& statements

Figure 5-5 SYSTEMS, PROGRAMs and PROCESSes

For implementation as a Component Software package,
application functions must be implemented as groups of
PROGRAMS, PROCESSes, PROCEDURES, and FUNCTIONS. A SYSTEM is
likely to contain a number of independent, separately
scheduled PROGRAMS. However, a PROGRAM may also have a
hierarchy of dependent PROCESSes - separately scheduled, but
related. Strictly, the term PROGRAM applies only to the
single, "top level" routine in the group. The complete
structure of a PROGRAM with all subordinate PROCESSes (and
PROCEDURES and FUNCTIONS - see below) is referred to as a
PROGRAM family. Continuing the analogy, routines further up
the hierarchical tree are referred to as "ancestors"; those
lower down are "descendants". The PROGRAM family is a
convenient package for a complete, independent function
within a system.

PROGRAMs and PROCESSes are independent routines which are
separately scheduled; however the hierarchical relationship
makes it possible to isolate and develop separately not only
single routines, but also complete groups of concurrent
routines implementing a complex function.

PROGRAMs and PROCESSes are the "active" elements in a
Component Software system. "Passive" routines can also be
defined, which may be called on by an active PROGRAM or
PROCESS to perform a specific function. These are PROCEDURES
and FUNCTIONS. (NB "FUNCTION" capitalised has a precise
technical meaning, as distinct from the more general use of

Texas Instruments 5-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

A PROCEDURE o r FUNCTION neve r competes d i r e c t l y f o r system
r e s o u r c e s ; i t a lways e x e c u t e s under t h e wing of a PROGRAM o r
PROCESS, and p r o v i d e s a p a r t i c u l a r " s k i l l " t h a t t h e PROGRAM
o r PROCESS may need a t t h e t ime , PROCEDURES and FUNCTIONS

c a n be used t o e n c a p s u l a t e f u n c t i o n s which a r e s imple enough
n o t t o r e q u i r e t h e power of t h e PROGRAM f a m i l y c o n s t r u c t t o
implement them,

Depending on where a PROCEDURE o r FUNCTION i s d e f i n e d , i t may
be a c c e s s i b l e t o some o r a l l of t h e r o u t i n e s i n t h e system,
PROCEDURES and FUNCTIONS d e c l a r e d a t t h e l e v e l of t h e SYSTEM
a r e a v a i l a b l e t o any r o u t i n e , They may a l s o be d e c l a r e d a t
some p o i n t i n t h e h i e r a r c h y of a PROGRAM f a m i l y , s o t h a t
a c c e s s t o t h e PROCEDURE o r FUNCTION i s r e s t r i c t e d t o t h a t
PROGRAM f a m i l y o r p a r t of t h a t f a m i l y ,

The Mic roprocesso r P a s c a l System Use r ' s Manual (MP351) and
t h e Rea l t ime Execu t ive User ' s Manual (M ~ 3 7 3) g i v e more
d e t a i l s abou t t h e s t r u c t u r e of Component Sof tware sys tems.

5.2.2.1 Memory A l l o c a t i o n

B e f o r e i t i s a c t i v a t e d , a s o f t w a r e sys tem i s s imply a
c o l l e c t i o n of dormant i n s t r u c t i o n code , grouped i n t o
r o u t i n e s , and p robab ly s t o r e d 5n ROM, To per form any u s e f u l
work, a r o u t i n e must be a c t i v a t e d and a l l o c a t e d d a t a space
w i t h which t o work, The s t o c k of dormant r o u t i n e s can be
r e g a r d e d a s t h e " r e p e r t o i r e " of t h e sys tem, which i s c a l l e d
upon a s needed, The t a s k of t h e system d e s i g n e r i s , f i r s t ,
t o e n s u r e t h a t t h e r e a r e a d e q u a t e f u n c t i o n s i n t h e
r e p e r t o i r e ; s econd , t o a c t i v a t e them a s needed t o per form t h e
t a s k r e q u i r e d , When a Component Sof tware SYSTEM i s powered
up, sys tem d a t a s t r u c t u r e s w i l l be i n i t i a l i s e d , any 1 / 0
subsys tems (s e e below) w i l l be i n i t i a l i s e d , and any u s e r
d e f i n e d i n i t i a l i s a t i o n w i l l be per formed, T y p i c a l l y , t h e
PROGRAM(s) p r e s e n t i n t h e SYSTEM w i l l t h e n be s t a r t e d , A l l
a c t i o n beyond t h i s p o i n t i s dependent on t h e sys tem d e s i g n e r .
He may

1. d e s i g n a sys tem t h a t i s a s i n g l e s e q u e n t i a l PROGRAM

2 . u s e two o r more c o n c u r r e n t PROGRAMS, each of which
i s s e q u e n t i a l

3 , w i t h i n a PROGRAM, s t a r t more c o n c u r r e n t PROCESSes t o
c r e a t e a PROGRAM f a m i l y

4 , i n c o r p o r a t e Component Sof tware packages , of which he
h e may o r may n o t know t h e i n t e r n a l s t r u c t u r e

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Each c a l l t o s t a r t a PROGRAM o r PROCESS i s s a i d t o a c t i v a t e a
new s i t e of e x e c u t i o n w i t h i n t h e sys tem, which e x e c u t e s
i n d e p e n d e n t l y of e v e r y o t h e r s i t e of e x e c u t i o n . I n t h e
f o l l o w i n g d i s c u s s i o n , what i s s a i d abou t PROCESSes a p p l i e s
a l s c t~ PROGRAMS: a PROGRAM is a spec ia l case of a " top
l e v e l " PROCESS, Whenever a PROCESS i s a c t i v a t e d , i t i s
a l l o c a t e d by t h e e x e c u t i v e a n a p p r o p r i a t e amount of d a t a
memory from a poo l (known a s t h e heap) . T h i s a l l o c a t e d
memory i s r e t u r n e d t o t h e heap when t h e PROCESS t e r m i n a t e s ,
s o t h a t i t can be a l l o c a t e d t o o t h e r PROCESSes, P r o c e s s o r
t i m e i s a l l o c a t e d t o each PROCESS a c c o r d i n g t o demand and t h e
p r i o r i t y g i v e n t o t h e PROCESS when i t was s t a r t e d ,

PROCEDURES and FUNCTIONS t h a t a r e c a l l e d by a PROCESS borrow
memory from t h a t PROCESS'S a l l o c a t i o n , and u s e p r o c e s s o r t i m e

4-- LU +I... L L ~ Q L t E)WOCESSe The PROCESS gives its l?eSDtIrCP, t Q

e x e c u t e t h a t PROCEDURE o r FUNCTION, and canno t do a n y t h i n g
e l s e u n t i l i t i s complete . Each PROGRAM o r PROCESS can be
though t of a s a n independen t , s i n g l e " th read" of l o g i c w i t h i n
t h e sys tem, w i t h i t s own t i m i n g c h a r a c t e r i s t i c s and s e p a r a t e
e x i s t e n c e . PROCEDURES and FUNCTIONS p r o v i d e a k i n d of
" s t o r e d l o g i c" t h a t can be i n s e r t e d i n t h e t h r e a d of a
PROGRAM o r PROCESS a t a n a p p r o p r i a t e t i m e . PROCESSes may
r e q u e s t a d d i t i o n a l memory from t h e heap w h i l e t h e y a r e
e x e c u t i n g .

5.2.2.2 M u l t i p l e A c t i v a t i o n s

Because t h e i n s t r u c t i o n code f o r a PROCESS i s comple te ly
s e p a r a t e from i t s d a t a s p a c e , and i s neve r changed, i t can be
a c t i v a t e d more t h a n once. For example, a f a c t o r y may c o p t a i n
s e v e r a l i d e n t i c a l machines , a l l c o n t r o l l e d by one sys tem,
The c o n t r o l program f o r each machine i s i d e n t i c a l , and ~ n l y
one copy of t h e i n s t r u c t i o n code need e x i s t , However,
s e v e r a l a c t i v a t i o n s of t h e c o n t r o l program may be p r e s e n t a t
t h e same t ime , u s i n g t h e same i n s t r u c t i o n code b u t d i f f e r e n t
d a t a spaces . There w i l l be no c o n f l i c t , The same a p p l i e s t o
PROCEDURES and FUNCTIONS: a s t h e d a t a space f o r e x e c u t i n g
any PROCEDURE o r FUNCTION i s a l l o c a t e d from t h e d a t a s p a c e of
t h e c a l l i n g PROCESS, s e v e r a l PROCESSes may c a l l a g e n e r a l
pu rpose PROCEDURE (a m a t r i x m u l t i p l i c a t i o n r o u t i n e , f o r
example) a t t h e same t i m e w i t h o u t problems. The r o u t i n e code
need on ly e x i s t once w i t h i n t h e system. Th i s p r o p e r t y of
s o f t w a r e i s known a s r e- en t rancy ,

5.2.3 The Rea l t ime Execu t ive

The Rea l t ime E x e c u t i v e (Rx) i s t h e backbone and a r t e r y of a
Component Sof tware sys tem; i t s u p p o r t s t h e o t h e r f u n c t i o n s
and p r o v i d e s commonly needed s e r v i c e s , Wi th in Rx a r e t h e
r o u t i n e s t h a t a l l o c a t e sys tem r e s o u r c e s (p r o c e s s o r t ime ,
memory, I /O) between t h e d i f f e r e n t PROCESSes, a c c o r d i n g t o

Texas I n s t r u m e n t s 5-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

demznd and priorities. Also within Rx are the standard
procedures that allow one routine to call or start another*
Finally, Rx contains the code that permits concurrent
PROCESSes to synchronise their operation with other PROCESSes
or external events, and allows PROCESSes to pass data to
other PROCESSes.

The most basic synchronisation is achieved using a low level
software mechanism called a semaphore. A semaphore allows
one PROCESS to signal occurrence of an event (eg -
machine - operation - complete) to another,

It is Rx which sets up the Component Software environment,
and maintains it. Rx establishes a "Software Function Bus" -
a standard, concurrent interface into which Component
Software functions can be "plugged".

5 . 2 . 3 , l Channels and Interprocess Files

Data communication between PROCESSes can take place over
channels. A channel is simply a means of passing data from
one PROCESS to another in a way which ensures that the
integrity of the data is preserved (eg that one PROCESS does
not try to read data until the other has finished writing
it), and that the data is placed in an area of memory that
will be accessible to both PROCESSes. Channels can also be
used to provide a higher level of synchronisation.

A further method of communication is the interprocess file
mechanism. This allows a PROCESS to write to another PROCESS
exactly as if it were writing to an input/output device,
using the standard file 1/0 primitives (see below).

The hierarchical system structure defines a clear
relationship between the concurrent PROGRAMS and PROCESSes in
a Component Software application, However, this may not be
sufficient in all circumstances. The channel and
interprocess file mechanisms allow any PROGRAM or PROCESS to
connect to and exchange data with any other PROGRAM or
PROCESS in the system (provided both "ends" prepare for and
understand the exchange). These connections are made
dynamically while the system is running. Connections of this
kind can be "hard coded" into the routines when they are
written, in which case they cannot be altered. However, it
is also possible to write systems in which the connections
can be modified at run time, either by an operator or by a
piece of "intelligent" software , in response to changing
requirements, or perhaps in response to failure of part of
the system. With a system constructed using interprocess
files, connections can be rerouted from a local PROCESS to an
external device, or perhaps via a data link to a PROCESS in a
completely different computer system. Requests for dynamic
connections of this kind are made via executive routines
which ensure that system integrity is preserved in making the

Texas Instruments 5-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

connection.

5.2.3.2 Rx vs Operating Systems

Many of the functions performed by the Realtime Executive
(Rx) would be handled in a mainframe computer by an Operating
System, Early computers suffered from the problems outlined
above in the section on concurrency - namely, how to adapt a
basically sequentially machine to a range of independent,
probably simultaneous requirements. However, the scale of
the problem for mainframe computers was different - requiring
solutions to problems typically within hours or days rather
than milliseconds. So human operators were introduced to
share out the resources of "mainframett computers between
different users , L a t e r , =oftware n n n ~ ~ t ; n m

v,,La,Au, S y s t e m (OSs)
were designed to partially automate the process.

For mainframe computers, the tasks of programming and
operating the computer remained very separate, Separate
disciplines evolved, and people were trained to perform one
job or the other,

A microsystem designer needs .to have direct control over both
the programming of the functions to be performed, and the
operation of the system. Typically, operation of the system
(as regards controlling the execution of different functions)
needs to be completely automatic in the final system, but the
system designer should have a good measure of control over
how this operation takes place - that is, just how the
computer makes its millisecond-to-millisecond decisions on
what to do next.

The requirements of an Operating System for a large general
purpose computer, and an executive for a dedicated
microcomputer system, are very different.

Traditional Operating Systems were designed to maximise the
use of the computer's hardware resources - which at the time
represented a huge capital investment. With cheap,
distributed microcomputer power, the balance has shifted, and
other factors - such as development, support and maintenance
costs, and software correctness - are now more important than
keeping the processor occupied 100 per cent of the time. In
addition, a large, centralised general purpose computer has a
complete set of resources, hardware and software, on hand at
all times. There is no incentive for selecting the minimum
set of resources required to implement a particular
application, Where a product is to be produced in large
quantities, the tradeoffs are quite different.

Operating Systems can afford to be large, monolithic
structures that are always present for every application. An
executive needs to be small, and tailored for each
application (by configuring from a standard "kit of parts").

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Thus
of
dif f

, although Rx draws ow techniques iearnt from the design
operating systems, its structure is significantly

erent in many respects.

An Operating System is usually pictured as a set of
concentric circles, centred on the (single) mainframe
processor.

Figure 5-6 Conventional Operating System Structure

This structure is large, monolithic, and difficult to get
inside (the shell is "hard"). An Operating System tends to
be a union of all possible system requirements, and is
difficult to split apart. Rx looks more like a "bus":

Software Function Bus

Figure 5-7 Software Function Bus

Texas Instruments 5-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The Rx Software Function Bus establishes a set of conventions
which are expected by the Component Software functions, This
set of conventions can be implemented on virtually any
hardware architecture, Versions of Rx will implement the
standard Seftware Function Bus across a range of different
single- and multiple-processor configurations, and memory
schemes, Different Component Software functions can be
"plugged into" the standard bus to expand the total
capability of the system,

The requirements that led to the adoption of Component
Software for application programs apply equally to systems
software, Rx is itself a Component Software package - a "kit
of parts" for constructing an executive customised to each
application,

The Rx executive is "built" for each particular application
by selecting (automatically) the functions actually used by
the application, from a library of executive functions,

5.2.4 File I / O Standards

The Component Software environment standardises input and
output so that systems can be built up using any combination
of 1/0 devices without danger of conflict. Systems can
incorporate a wide range of standard hardware and software,
and can also include custom I/O,

The concurrent nature of the Component Software environment
permits many asynchronous devices to be handled
simultaneously. An independent process is assigned to each
device, associated with an appropriate interrupt. The
execution of this device process is synchronised with the
device, and the process is activated according to the needs
of the device, 1/0 routines called by the user's process
will be synchronised with the user, and will respond to the
user's needs, The two will interact via channels, The
concurrent structure thus manages automatically the timing
and synchronisation between user program requests and
hardware I/o operations.

5.2,4,1 I/o Subsystems

1/0 software is grouped into subsystems, each subsystem
handling a particular class of devices - rotating mass store
(magnetic discs), for example, or HDLC data communication
devices,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

I

Process code 3

Process code 2

Process code 1 -
Pascal I/O

Primitive RTS -
File I/O Decoder

I
Synchronous
with caller code

I/F Mgr 2.1

Synchronous
with device
interface

F i g u r e 5-8 I / O Subsystems

Many Component S o f t w a r e packages w i l l t a k e t h e form of a
c o m p l e t e 1 / 0 Subsystem. The 1 / 0 s t a n d a r d s d e f i n e a common
s e t of h i g h l e v e l o p e r a t i o n s on f i l e s (r e a d , w r i t e , open,
c l o s e e t c) , s o t h a t programs can be w r i t t e n w i t h o u t knowledge
o f t h e p a r t i c u l a r t y p e of d e v i c e t h e y w i l l be u s i n g , I n t h i s
c a s e , a l l dev i ce- dependen t d e t a i l s w i l l be h i d d e n w i t h i n t h e
1 / 0 subsys tem.

The 1 / 0 s t a n d a r d s a l s o s p e c i f y lower l e v e l s of i n t e r f a c e , so
t h a t u s e r s c a n i n t e r f a c e w i t h 1 / 0 d e v i c e s a t a d e v i c e
dependen t l e v e l , T h i s w i l l r e d u c e t h e code s i z e of t h e f i n a l
a p p l i c a t i o n , b u t r e q u i r e s knowledge of t h e s p e c i f i c
c h a r a c t e r i s t i c s of t h e d e v i c e , and of c o u r s e means t h a t
a p p l i c a t i o n programs must be r e w r i t t e n f o r u s e w i t h a
d i f f e r e n t d e v i c e , I n a l l , 5 l e v e l s of I f 0 i n t e r f a c e a r e
d e f i n e d , D e s i g n e r s c a n choose t o i n c l u d e a s much o r a s
l i t t l e of t h e 1 / 0 s t r u c t u r e a s r e q u i r e d ,

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Pascal 110 Traditional
Verbs Language Support

File I10 File-level, device
Decoder independent

File-level within
Subsystem device

I iriieriace Asynchrcn~us
Device Interface

Interface Handler Je-]S$;hronized Data I
I

Figure 5-9 5 Levels of Interface to 110 Subsystems

The I/O standards provide for grouping of all hardware
related details (I/O addresses, interrupt levels etc) in one
system configuration module, for ease of system design. A
standard method is provided for initialising I/O subsystems
and for handling device interrupts. The I/O Standards and
1/0 Subsystems are discussed in more detail in the Component
Software Handbook, MP918, and in the Device Indepedent File
I/O User's Manual, MP355.

Texas Instruments supplies standard Component Software 1/0
subsystems for use with TM990 board modules and TMS99XX
peripheral components. The I/O subsystems supplied by Texas
Instruments are extensively documented and supplied with
source code (as are all TI Component Software packages), and
can be modified or used as templates to write I/O subsystems
for custom hardware devices.

5.2.5 Configuration

Microcomputer systems typically differ in two respects from
general purpose mainframe and mini computers. First, a
microcomputer application is likely to be more cost
sensitive. Second, a microcomputer system is likely to be
dedicated to a specific application or range of applications,
and will often be embedded in another piece of equipment.

Texas Instruments 5-2 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

These two requirements dictate the need for configuration. A
microcomputer system cannot afford to include features
(hardware or software) not actually used by the application.

A Component Software package is supplied as a library of
software functions and subfunctions stored on a magnetic
medium - such as a floppy disc. To build a system, the
designer will write an application program that makes use of
some of these functions, select the functions from the
Component Software Library, and then link them together with
his application program to build a target system. The
process of selection and linking is largely automatic, and is
called configuration.

COMPONENT
SOFTWARE
LIBRARIES

LlNK
EDITOR LlNK

EDIT
CONTROL
Fl LE

USER'S
APPLICATION
PROGRAM

CONFIG
MODULE

APPLICATION
LOAD
MODULE

Figure 5-10 Configuration

Success of this approach depends on the division between
functions being well chosen, so that a designer is not faced
with having to include a software module only part of which
he wants to use. This must be a prime consideration in the
design of Component Software packages; the concurrent
structure makes it easier.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

5.2.6 Customisation

For the great majority of applications, configuration alone
will he sufficient to tailor Component Software packages to
particular needs. A range of different requirements have
been foreseen in developing each package, and comprehended in
the division of each package into functional modules,

However, for cases where configuration is insufficient,
source code is included in Component Software packages,
together with sufficient documentation to allow complete
customisation. For example, the device service routines
(DSR's) of an 1/0 subsystem package can be rewritten for non-
standard devices, retaining the higher level routines.
Csmpsnent Software is written in most cases in concurrent
Microprocessor Pascal, and supplied with documentation which
fully describes the structure of the package, so that
customisation is relatively easy.

The Component Software environment supports TI'S
Microprocessor Pascal. Pascal was designed as a high level,
application oriented language in which the sequence of steps
required to perform a particular task (an algorithm) can be
expressed easily and naturally. Writing a Pascal program
requires little more than a precise specification of what the
program is to do. This means that programs can be developed
easily, quickly and reliably. Complex programs can be
written much more quickly than in assembly language, and with
fewer errors. It also means that the program developed is
independent of any particular set of hardware.

TI's Microprocessor Pascal extends the original Pascal
definition by incorporating within the language the
constructs of Component Software. PROGRAMS, PROCESSes,
PROCEDURES and FUNCTIONS can be declared directly in the
language. Synchronisation and communication mechanisms (eg
semaphores) are also directly available. Microprocessor
Pascal extends the scope of the Pascal language to the area
of real time systems, retaining the original philosophy of
the language and developing it for the real time environment.

Using Microprocessor Pascal, results can be achieved more
quickly with less resource and less headaches. Management of
projects becomes simpler and more rewarding, because Pascal
programming is easier to schedule and control, These points
have been proved by software projects undertaken within Texas
Instruments (TI). TI has adopted Pascal as a corporate
standard language, and trained thousands of programmers to
use it, (Contact TI for details of courses on Microprocessor
Pascal programming, and other subjects.)

Texas Instruments 5-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK
*

COMPONENT SOFTWARE

Because Micr~processor Pascal can be "read" like English it
is partly self documenting. Comments can be inserted to
explain anything which is not made clear by the code itself.
With a well written program, paper documentation can be
reduced to a description of the program and data structures
and of the routine functions, and, where appropriate, a Users
Guide.

5.2.7.1 Code Efficiency

Use of a high level language inevitably produces code that is
larger than a custom, hand crafted assembly language
solution. However, the code produced by the Microprocessor
Pascal code generator is efficient (a great deal of
optimisation is performed automatically). Studies have shown
that the code is, typically, slightly less than 1.5 times the
size that would be expected from an experienced assembly
language programmer. The compiler may well produce better
(and certainly more reliable) code than an inexperienced
assembly language programmer. Design tradeoffs are such that
in most cases the extra memory cost, for all the systems that
will be produced, works out less than the extra man months of
software development time that would be needed in assembly
language. When the further considerations of reliability,
maintainability and development time are added, it is not
difficult to justify the use of high level language.

The Microprocessor Pascal system includes a reverse assembler
which turns the output of the code generator into assembly
language source code. This code can be hand optimised in
critical areas to squeeze the last ounce of performance from
the system. Where code size is critical, Microprocessor
Pascal programs can be executed interpretively instead of in
native machine code. Interpretive execution is slower, but
optimises use of memory.

5.2.7.2 Programming Support Environment

Microprocessor Pascal provides not only a language, but a
complete design system for the development of microprocessor
software. It provides a range of interlinked software tools,
including a syntax checking text editor and extensive testing
facilities within both host and target microcomputer systems.
These tools make up a Programming Support Environment which
guides software development from initial design through to
final implementation and testing.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Editor n u j, Pascal \
syntax 2

:: checker j

Pascal
source

n Native

Microprocessor
Pascal

compiler

Inter-
mediate

/ \

Interpretive
execution

on host

Link edit '74 0 module

I

EPROM

EPROM

Native code
execution in Compiled code

target system code

THE MICROPROCESSOR PASCAL SYSTEM I

Figure 5-11 The Microprocessor Pascal System

Texas Instruments 5-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The Microprocessor Pascal system is available on a wide range
of single and multi-user, floppy and hard disc-based
development computers, according to the needs of each user.

i

5.2.7.3 Microprocessor Pascal and Component Software

Pre-written Component Software functions (sequential or
concurrent) #can be accessed from within a user's
Microprocessor Pascal program simply by declaring them
EXTERNAL within the user's application program.

The Component Software packages themselves have been written
in Microprocessor Pascal, for reliability, ease of
understanding, and ease of customisation. A few have been
recoded in assembly language to optimise performance in
critical areas.

5.2.8 Other Languages

Although Component Software packages will generally be
written in Microprocessor Pascal, the Software Function Bus
(and hence the Component Software environment) is language
independent. The low level "housekeeping" functions provided
by Rx do not depend on any particular language. Application
programs, and Component Software packages, written in
assembly language interface directly with Rx. Microprocessor
Pascal programs interface with Rx through an intermediate set
of run time support functions. With the addition of suitable
run time support, the Software Function Bus is capable of
supporting any application language. Run time support
functions and development tools for other languages will be
added as the need becomes apparent.

Candidates for such addition may be not only the standard
programming languages, but also special purpose languages and
operator interfaces designed for specific application needs,
such as process control. A range of programming languages is
possible, permitting software development both "off line" in
a separate development system and "on line" in the
application microcomputer system itself.

5.2.9 Hardware

The Software Function Bus permits flexible selection of
hardware implementations. Rx will adapt a standard software
interface to a variety of hardware configurations, built from
board modules or LSI components. TI'S adoption of a standard
instruction set for its 16-bit microprocessors (and
minicomputers) has made this much easier.

Texas Instruments 5-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

For several years now, a range of compatible 16-bit
microprocessors has been available from TI (the 9900 family).
These processors have been designed to meet a wide range of
price/performance goals. The recently announced 99000 family
shares the same instruction set, with a number of advanced
architectural features (such as storage of frequently used
software functions in on-chip macrostore). The Software
Function Bus provides a "cushion" against hardware changes,
and protects software investment against potentially
disastrous architectural changes.

The architecture of the 9900/99000 family is perfectly suited
to the Component Software environment. The fast "context
switch'' efficiently implements both concurrency, and the
program modularity required' by all modern high level
l ~ n n r * a o n c -
A L.b-...bbL- Memory-to-memory architecture provides great
flexibility in implementing independent, cooperating software
functions.

At the board level, many special purpose Component Software
packages correspond exactly to prepackaged microcomputer
board modules. For example, the F i l e hnager package
corresponds with the TM990/303 Floppy Disc controller board.
Matching software and hardware modules are designed to form
complete Electronic Function Packages (EFPs) that can be
incorporated directly in a system.

Figure 5-12 Software/Hardware Correspondence

Texas Instruments 5-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

5.2.10 Component Software Products

The first Component Software packages supplied by TI provide
I1 sys tem management" functions such as file storage and data
communication between different systems. Later products will
be designed for more specific application areas - process
control and video graphics output, for example.

The Realtime Executive is available separately for assembly
language users (it is supplied as a standard part of the
Microprocessor Pascal package). The Microprocessor Pascal
run time support functions will also be available as separate
Component Software packages (Data Pack, Maths Pack, and
Device Independent File 1/0 Pack), These functions can be
called from assembly language programs to provide features
such as floating point arithmetic, device independent files
and structured data types*

Component Software packages will be available from other
vendors as well as TI. The framework of Component Software
is available to any manufacturer or software house that
wishes to write and sell Component Software packages.

Contact Texas Instruments for a list of the Component
Software packages currently available.

5.2.11 Silicon Functions

Taking a wider perspective, Component Software can be
regarded as a development ground for functions which will
eventually find their way into VLSI silicon, as dedicated
hardware Microfunctions, VLSI integration will reduce the
cost and increase the performance of Electronic Function
Packages, so that future systems will be built from
distributed networks of silicon Microfunctions,
interconnected via a standard Function Bus*

This functional architecture is far more flexible than
conventional microcomputer architectures, based on the
mainframe model. Within a functional system, individual
function packages can be incorporated that have a specialised
architecture designed for particular needs,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Customer Defines
Application Functions

Process Data Video
Coniroi Communications 1 Graphics

.

TI Component Software
and Microsystems

TI Microfunctions

Function Bus

Figure 5-13 The Funct iona l Approach

Texas Instruments 5-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Function-to-Function Architecture defines a standard set of
interconnection mechanisms for functions, hardware or
software, This will permit replacement of software functions
by their hardware equivalents, and vice versa. Software
provides flexibility and fast development, hardware gives
performance and cheapness (when it can be produced in
quantity). In future, it will be possible to choose whether
software or hardware (and what type of software or hardware)
is appropriate at each point in a system, and to use the
technology most exactly suited to the needs,

Component Software permits the development and tailoring of
new functions in a flexible medium, quickly and cheaply,
Such a development ground is needed if the potential of VLSI
is to be exploited effectively.

New functions will be initially provided as Component
Software libraries, permitting many different configurations
from a standard "kit of parts". TI will eventually "can"
particular configurations of these functions in silicon.

5,3 Bibliography

Texas Instruments Publications:

Component Software Handbook (MP918)

Device Independent File 1/0 User's Manual (MP386)

Microprocessor Pascal System User's Manual (MP351)

Microprocessor Pascal Executive User's Manual (MP385)

Realtime Executive User's Manual (MP373)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

MICROPROCESSOR PASCAL

6.1 INTRODUCTION

Pascal was originated in the early 1970's by Professor
Niklaus Wirth and Kathleen Jensen of ETH University, Zurich,
Q,-- ,,w;tzerlazd (see r n f n r n n ~ o IwLILILIII [I! i~l the Bibliography). Like

the majority of modern programming languages, it is derived
from ALGOL (ALGOrithmic Language).

Previous 'high-level' languages, such as FORTRAN, were
designed to take advantage of a particular computer's
instruction set (FORTRAN was designed around the IBX 3360)
and can more properly be regarded as high-level assemblers.
For example, standard FORTRAN makes certain restrictions on
the form of array subscripts, DO loop expressions, and so
on, because this makes the code particuiariy easy to
implement on the 360. However, these res.trictions also made
the language difficult to remember (it has a lot of
'quirks'), and the restrictions quickly lost their
significance when .the language was implemented on later
generations of computers with different instruction sets.

ALGOL was the first serious attempt to design a language
that was independent of any particular machine's instruction
set. The aim of the ALGOL designers was to construct a
language that would make it easy to write clear, correct and
maintainable programs. In this they largely succeeded,
However, while ALGOL became popular with academic users, it
was never very widely used in industry. This was partly
because the ALGOL designers were uncompromising in refusing
to consider implementation efficiency, and partly because
ALGOL did not gain strong backing from computer
manufacturers.

But ALGOL was the inspiration for a completely new
generation of languages, of which Pascal is probably the
most successful.

Pascal corrects most of the failings of ALGOL, while still
retaining its ease of use. It leaves out some of the
little-used but expensive (in code and time) features of
ALGOL, and is designed with efficiency of implementation in
mind, Therefore it is possible to implement Pascal
efficiently on a small computer or a microcomputer, It is a
very practical language. Pascal was developed principally

Texas Instruments 6- 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

by one man so it has a coherence that some
commit tee-designed languages lack. Pascal is very regular
(orthogonal): it has few 'quirks', and so is easy to learn.
The features of Pascal make it equally suited for systems
and applications work, so that there is no need to use two
different languages,

Not only does Pascal have powerful program structures,
directly implementing the constructs described in Section
4,5, but it also has extremely flexible data structures
which are very necessary for manipulating complex
applications, In fact, the Pascal language is very close to
the design language described in Section 4,4 because they
both come from the same root. Turning a software design
into Pascal should involve little more than "tightening-up"
the syntax and turning English-language descriptions into
precise Pascal statements.

With rapidly decreasing hardware costs and increasing labor
costs, software has become the major investment in
developing a computer-based product. This cost trend has
led to the move from low-level to high-level languages,
necessitating standardization within high-level languages,
At least as important as the investment made in existing
software is the cost of retraining programmers to use a new
language, and to use it efficiently,

One of the greatest advances in Pascal is the data
structuring facilities that are an integral part of the
language. The concept of the data type has been greatly
expanded to allow not only the usual types (eg INTEGER,
REAL, CHAR, ARRAY, etc) but also more complex structures
based on these types (eg SET and RECORD). Further, the user
is able to define his own data types that totally satisfy
his own requirements,

To ensure that these data structuring facilities are
properly managed and controlled, the language encompasses a
feature that is known as strong type-checking. This means
that when a variable is defined it is declared to be of a
particular type, As variables are used, the compiler checks
that they are used correctly and consistently. This strong
type-checking increases program reliability,

Pascal provides a high-level standard that protects software
(and the programming skills to implement that software) from
future obsolescence due to the introduction of new
hardware. This form of standardization has now become more
important than standardization on a particular low-level
machine architecture,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Several years ago, Texas Instruments recognised that a
single programming language was required as as a corporate
standard for all software, whether for mainframes or
minicomputers. The selected language would be used to cover
the following areas:

o Sys tems programming

o Applications programming

o Industrial real-time control

This led to in an in depth study of the 20 most prominent
languages (including ALGOL68, BCPL, BLISS, C, CLU, Pascal,
PL/I, etc) to determine which, if any, could satisfy these
requirements.

After exhaustive tests, it was decided that a programming
language based on Pascal (which was designed primarily as a
teaching language) but having adequate extensions to operate
in a teal-time environment most suited the requirements.
This resulted in Texas Instruments Pascal (TIP) which was
designed to compile and execute on large machines (the Texas
Instruments DS 990/10 and the IBM 370). TIP provides 'large
machine' features such as dynamic arrays and extended
precision reals. It also includes some extra compiler
options allowing, for example, optimization probes to be
inserted in the program to identify the most frequently
executed paths.

After the release of the TIP compiler, it soon became
apparent that the language would be extremely useful for
programming microprocessors for industrial and control
applications. For this reason, a variant called
Microprocessor Pascal was developed. This has fewer
extensions than TIP and is therefore more easily implemented
on small computers. In fact the compiler runs on a floppy
disc based system that uses the TMS9900 microprocessor as
its central processing unit.

The two languages are fundamentally the same, but provide
slightly different features to support their different areas
of application.

Because microcomputer systems usually have to operate in
real-time, concurrency is an integral part of the
Microprocessor Pascal language. A concurrent system
consists of a number of independent processes executing in a
single environment. Each process is a separate sequential

Texas Instruments 6-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

program, and the processes are written as if they were
executing simultaneously. In fact, the processor can only
do one thing at a time; the executive divides processing
time between the processes so that the effect is of
simultaneous execution. Using this approach, a programmer
can identify the various tasks that a real-time system has
to perform, with their inputs and outputs, and write a
separate process for each: the executive will do the rest.
This can greatly simplify a complex problem.
Synchronization of processes is accomplished by signalling
devices called semaphores. Higher level communication
between processes can be handled by interprocess files.
Further information on concurrency is presented in section
6.8 and also Section 5.2.1.

During the design of Microprocessor Pascal, it was
recognised that a language on its own (no matter how good)
is not enough. What is also required is what has become
known as a 'programming support environment' - that is a
collection of 'tools' that aid and simplify the design of
complex application systems. The Microprocessor Pascal
System (see section 6.4) was designed for this purpose.

6.3 MICROPROCESSOR PASCAL LANGUAGE OVERVIEW

6.3.1 Features

Microprocessor Pascal has structured statements which allow
the user to produce a readable, maintainable, and easily
checked program algorithm with mimimum effort. These
structures, if used as intended, automatically generate
hierarchical, nested code resulting in more easily
understood, and better, more reliable software.
Microprocessor Pascal's structured statements include IF,
CASE, FOR, WHILE and REPEAT: they are described in section
6.7.

Microprocessor Pascal provides extensive data structuring:
RECORD and ARRAY data structures can be combined and nested
to any level. The POINTER data type permits powerful
structures such as linked lists and trees. It also permits
dynamic storage allocation. These data structures are
described in section 6.6.

In addition to the standard data types, Microprocessor
Pascal allows the user to define his own data types, which
can have values represented by meaningful names. The type
concept was introduced in Section 4.6. Its implementation
in Microprocessor Pascal is described in section 6.6.

Data typing allows data to he grouped according to use. It

Texas Instruments 6-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

can clarify the design of a program so that, for example, it
is easier to change at a fate stage in devefopment.
Compiler checks on type compatibility can reduce the risk of
undetected errors in program code.

Microprocessor Pascal allows the user to define meaningful
names for h-is identifiers (there are no arbitrary length
restrictions), By using these identifiers and standard
keywords (IF...THEN..~ELSE) the programmer can create a
program that is largely self-documenting.

Microprocessor Pascal is a block structured language, which
means that procedures (and processes) can be nested to any
depth. It is therefore a natural language for writing
modular software. Block structure and scope rules are
described in section 6 - 3 - 6 .

The concurrent structure of Microprocessor Pascal allow a
new approach to software design, particularly for
microcomputers. A real-time problem can now be divided into
separate parallel processes, each of which can be simply
specified and coded (a powerful extension of the concept of
modular software). Concurrency was designed into
Microprocessor Pascal from the start; all the development
tools that make up the Microprocessor Pascal System were
designed to support it. (However, if the user wishes to
develop a conventional sequential program in hicroprocessor
Pascal, he can do so without incurring any extra overhead.)
The mechanisms involved in concurrency are described later
in more detail (see section 6.8) and also in Section 5.2.1.
Additional information can be obtained from the
Microprocessor Pascal System User's Manual.

6.3.2 Stack and Heap

Like the majority of modern high-level languages,
Microprocessor Pascal has a stack architecture. The stack
is an area of read/write memory from which sections (called
stack frames) are allocated to a routine (procedure or
function) at the time it is invoked. When the routine has
finished executing, its data storage area is returned to the
stack for use by other routines, The workspace register
concept of the 9900 (see Section 8.4,4) forms a natural
basis for implementing stack frames,

Data is completely separated from program code, so that
Microprocessor Pascal adapts naturally to the ROM/RAM
environment of a microcomputer. This means that
Microprocessor Pascal code is automatically re-entrant. If
a routine is simultaneously invoked from different parts of
a system (as can well happen in a concurrent system) both
invocations can use the same program code; it is only
necessary to create different stack frames.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

When the target system is initially started, all available
RAM is in a common pool called the heap, As programs and
processes are activated they are allocated their stack space
from the heap, This is returned to the heap (for re-use)
when the program or process terminate.

In addition to the storage provided in the stack,
Microprocessor Pascal is able to dynamically allocate areas
of memory (known as heap packets), under program control,
from the heap. This is accomplished using the standard
procedures NEW and DISPOSE, and the pointer variable
described in section 6.6.13, (NEW and DISPOSE are described
in the Microprocessor Pascal System User's Manual,)

6,3.3 Systems and Programs

The largest unit in the Microprocessor Pascal language is a
SYSTEM. A system may contain a number of processes,
apparently executing in parallel, A Level 1 (highest level)
process is declared, in Microrprocessor Pascal, by the
keyword PROGRAM, A conventional sequential program can be
regarded as a special case of a system with only one
PROGRAM,

6.3.4 Processes and Procedures

Each PROGRAM can contain within it subordinate processes
that are declared by the keyword PROCESS, The keyword
PROGRAM is used at the highest level because processes at
this level have special properties. This also maintains
compatibility with standard Pascal,

A system, program or process can contain within it
procedures (and functions). Processes and procedures look
similar but, in practice, are quite different. A procedure
is, logically, a part of the sequential program that calls
it, whereas a process is a separate sequential task that
executes concurrently with all the other processes in the
system, including the one that calls, or STARTS it,

6.3,5 Declarations and Statements

For the programmer there are two principal parts to any
Microprocessor Pascal system, program, process, procedure,
or function: the declarations, and the statement body.

Declarations define identifiers that can later be referred
to by name (instead of by repeating the declaration). These

Texas Instruments 6-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

identifiers specify the data that the program is to work
with; the statements specify exactly what is to be done with
this data*

The statement body is a collection of Microprocessor Pascal
statements that is enclosed by a BEGIN,,,END compound
statement,

PROGRAM factorial; (* PROGRAM DECLARATION * >
VAR i,j,n : INTEGER; (* VARIABLE DECLARATIONS *)

(* Declare variables named *)
(* I, J, N of type integer *)

BEGIN (* factorial *) (* PROGRAM BODY *)
Reset(1NBUT);
Read(n) ; (* Read in a value for N
i 0 -

) .- 1; j := 1; (Set I and J to 1 *)
WHILE i <> n DO
BEGIN
i := i + 1; (* Use I and J to compute
j := f * *)

j (* factorial W *)

END;
Writeln(j) (* Output value of factorial N *)

END, (* factorial *)

The declarations also specify any subordinate processes,
procedures, etc, and assign identifiers to them so that they
can be referred to in the statement body.

Figure 6-1 Program Structure Diagram

C
0
M
P
U
T

Texas Instruments October 1981

. RESET (INPUT)
READ (N)

E

I: = 1
J : = 1

F WHILE
A l o N I: =I+!

C
T
0 . J:=lxJ

U -
WRITE LN (J)

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

M i c r o p r o c e s s o r P a s c a l programs a r e f r e e f o r m a t ; t h e program
c a n be l a i d o u t i n any manner on t h e page. S t a t e m e n t s , f o r
example , need n o t s t a r t i n a p a r t i c u l a r column; n o r a r e t h e y
r e s t r i c t e d t o one p e r l i n e , though t h i s i s u s u a l l y good
p r a c t i c e ,

M i c r o p r o c e s s o r P a s c a l g i v e s t h e programmer a f r e e hand i n
f o r m a t t i n g h i s program. However, f o r r e a d a b i l i t y , i t i s a
good i d e a t o l a y o u t t h e program t o r e f l e c t i t s s t r u c t u r e ,
T h i s can be done by u s i n g i n d e n t a t i o n , I n t h e example
above , t h e s t a t e m e n t s w i t h i n t h e BEGINaaoEND compound
s t a t e m e n t f o l l o w i n g t h e WHILE c l a u s e a r e i n d e n t e d t o show
t h a t t h e y are one l e v e l down i n t h e program h i e r a r c h y . I n
f a c t , t h e i n d e n t a t i o n r e f l e c t s t h e a p p e a r a n c e of t h e
s t r u c t u r e d i ag ram f o r t h e program (F i g u r e 6-1). (See
S e c t i o n 4.5 f o r a d e s c r i p t i o n of s t r u c t u r e d i a g r a m s ,)
F o r m a t t e d i n t h i s way, t h e program i s much more r e a d a b l e and
t h e s t r u c t u r e c a n be s e e n a t a g l a n c e .

6.3.6 Block S t r u c t u r e

One of t h e key f e a t u r e s of M i c r o p r o c e s s o r P a s c a l i s i t s
b l o c k s t r u c t u r e , The b a s i c i d e a s of b l o c k s t r u c t u r i n g a r e
d i s c u s s e d i n S e c t i o n 4 . 9 .

A b l o c k i s a s e l f c o n t a i n e d a r e a of program t h a t c o n t a i n s
b o t h a s t a t e m e n t body and t h e d e c l a r a t i o n s (t y p e , v a r i a b l e ,
p r o c e d u r e , e t c) r e l a t i n g t o i t . A M i c r o p r o c e s s o r P a s c a l
program c o n s i s t s of a h i e r a r c h y of b l o c k s , n e s t e d one w i t h i n
a n o t h e r . A sys t em b l o c k , which i s a complete M i c r o p r o c e s s o r
P a s c a l sy s t em, c o n t a i n s a number of program b l o c k s , which i n
t u r n can c o n t a i n p r o c e s s b l o c k s , p r o c e d u r e and f u n c t i o n
b l o c k s , e t c . T h i s h i e r a r c h y i s d i s p l a y e d i n F i g u r e 6-2.
(The l e x i c a l h i e r a r c h y i s shown i n F i g u r e 6-3, and t h e
c o r r e s p o n d i n g c o n c u r r e n t s t r u c t u r e i n F i g u r e 6-4.)

The d e c l a r a t i o n s made a t t h e s t a r t of a b l o c k a p p l y t o t h a t
b l o c k and t o any b l o c k s n e s t e d w i t h i n i t , T h i s i s c a l l e d
t h e s cope of t h e d e c l a r a t i o n , Scope can be f o r m a l l y d e f i n e d
a s t h e r a n g e of sys t em t e x t o v e r which t h e d e c l a r a t i o n i s
v a l i d . I d e n t i f i e r s c a n n o t be r e f e r e n c e d o u t s i d e t h e i r
s c o p e , i e o u t s i d e t h e b l o c k i n which t h e y a r e d e c l a r e d . For
example , i n t h e sys t em of F i g u r e 6-2, t h e d e c l a r a t i o n s i n
PROGRAM A c a n n o t be r e f e r e n c e d i n PROGRAM B o r PROCESS R ,
b u t c a n be r e f e r e n c e d i n b o t h PROCEDURE P and PROCEDURE Q o

The d e c l a r a t i o n s i n PROCEDURE P canno t be r e f e r e n c e d i n
PROCEDURE Q o r i n PROGRAM A.

I f a r e f e r e n c e i s made t o a d e c l a r a t i o n (v a r i a b l e , t y p e ,
p r o c e d u r e , e t c) t h a t i s n o t i n s c o p e , t h e c o m p i l e r w i 1 1
g e n e r a t e a n e r r o r message,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

SYSTEM X;
<declarations> (* System X's declarations *
PROGRAM A;
<declarations>

- - - -- --

(* Program A's declarations *)
- --

PROCEDURE P;
<declarations> (* Procedure P's declarations *)
BEGIN

(* Procedure body *
END ;

PROCEDURE 0;
<declarations> (* Procedure Q's declarations *)
BEGIN

(* Procedure body * >
END;

BEGIN
(* Program body

PROCESS R;
<declarations> (* Process R's declarations *)
BEGIN

(* Process body *
END;

PROGRAM B;
<declarations> (* Program B's declarations *)

BEGIN
(* Program body *

END;

BEGIN

END,

(* System body *

Figure 6-2 System Structure

Block structure and scope rules are powerful tools for
managing program structure, Procedure P, for example, can
be written without worrying whether it will interfere with
procedure Q. A variable can even be declared in P with the

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

same name a s a v a r i a b l e d e c l a r e d i n Q: t h e y w i l l be
c o m p l e t e l y d i f f e r e n t v a r i a b l e s because t h e y a r e i n d i f f e r e n t
a r e a s of scope . I f a v a r i a b l e i s d e c l a r e d i n P w i t h t h e
same name as a v a r i a b l e d e c l a r e d i n A, t h e c o m p i l e r w i l l
c r e a t e a new v a r i a b l e w i t h t h i s name, and r e f e r e n c e s t o i t
i n P w i l l a lways a c c e s s t h i s l o c a l d e f i n i t i o n . Where t h e r e
i s a p o s s i b l e a m b i g u i t y , t h e c o m p i l e r a lways chooses t h e
most l o c a l d e c l a r a t i o n .

F i g u r e 6-3 L e x i c a l H i e r a r c h y

SYSTEM X

PROGRAM A

I PROGRAM A 1) I PROGRAM B 1)

PROGRAM B

I /

F i g u r e 6-4 Concur ren t S t r u c t u r e

SYSTEM X

Note t h a t i n t h e example, b o t h P and Q can a c c e s s t h e
d e c l a r a t i o n s made a t t h e s t a r t of program A; t h e i n t e r a c t i o n
w i t h d a t a d e c l a r e d i n h i g h e r l e v e l modules needs t o be
c l e a r l y d e f i n e d when w r i t i n g a sys tem. T h i s shou ld be p a r t
o f t h e module s p e c i f i c a t i o n .

-
PROCEDURE P PROCEDURE O

b -

/

Texas I n s t r u m e n t s 6-10

PROCESS R

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

As well as assisting program structure, biock structuring
(combined with Microprocessor pascal's stack architecture)
can save memory space, Data area is not allocated to a
procedure from the stack frame until it is actually called.
This means that if, say, procedure P is called foiiowed by
procedure Q, the space taken up by the variables of
procedure P is returned to the stack when it has finished
executing, and the same memory area can be used for the
variables of procedure Q. The system only allocates data
space to the routines currently executing.

A variable has an extent as well as a scope. Extent is the
time during system execution for which storage space is
allocated to the variable. Apart from dynamically allocated
variables, this extent is the duration of execution of the
biock in which t h e variabie is deciared. In a concurrent
system, a variable's extent continues as long as any of the
processes declared in the same block are executing. The
reason for this is that the variable is in scope in such a
process and might be referenced.

6.4 MICROPROCESSOR PASCAL SYSTEM - PROGRAMMING SUPPORT
ENVIRONMENT

The Microprocessor Pascal System is a powerful integrated,
software development tool set that provides a development
environment for the design, coding, and debugging of
Microprocessor Pascal applications for microcomputers,

This system was designed from the start to execute
efficiently on the 'small' single-user floppy disc based
FS 990/4 and TMAM 9000 minicomputers. The system is also
supported on the much larger, hard disc multi-user DS 990/10
and /12 computers.

Currently there are four major components in the
Microprocessor Pascal System to assist in software
development :

o An 'intelligent', interactive, screen-based editor for
source preparation, with syntax-checking capability,

o A compiler that produces interpretive code.

o An interactive host debug interpreter.

o A code generator that transforms interpretive code
into TMS9900 native object code.

Two executives support the execution of the user's system on
a target microcomputer. One supports the interpretive code

Texas Instruments 6-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

produced by t h e c o m p i l e r (MPIX - M i c r o p r o c e s s o r P a s c a l
I n t e r p r e t i v e E x e c u t i v e) ; t h e o t h e r s u p p o r t s t h e o b j e c t code
produced by t h e code g e n e r a t o r (MPX - M i c r o p r o c e s s o r P a s c a l
E x e c u t i v e) . These e x e c u t i v e s a r e f u n c t i o n a l l y i d e n t i c a l , s o
t h a t t h e u s e r h a s a c h o i c e of r u n n i n g e i t h e r i n t e r p r e t e d o r
compi led code on h i s t a r g e t system.

6.4.1 M i c r o p r o c e s s o r P a s c a l E d i t o r

The M i c r o p r o c e s s o r P a s c a l System f e a t u r e s a n i n t e r a c t i v e ,
s c r een- based e d i t o r t h a t a l l o w s t h e u s e r t o c r e a t e and
modi fy Mic rop rocesgd r P a s c a l s o u r c e f i l e s . Some
' i n t e l l i g e n c e ' h a s , ' been b u i l t i n t o t h i s e d i t o r t o a l l o w i t
t o r e c o g n i s e ce r t a$h M i c r o p r o c e s s o r P a s c a l l anguage keywords
and t o au tomat ic i f l l ly i n d e n t t h e s o u r c e t e x t b e i n g e n t e r e d
i n t o e a s i l y c l $ k t i n g u i s h a b l e b l o c k s of code t h a t show t h e
program s t r u c t h r e .

When e d i t i n g , a page of t e x t i s d i s p l a y e d on a v i s u a l
d i s p l a y u n i t (VDU s c r e e n) . The t e x t may be m o d i f i e d s imp ly
by positioning t h e c u r s o r and t y p i n g new i n f o r m a t i o n .
C h a r a c t q k s can be i n s e r t e d and d e l e t e d anywhere on t h e
screen.,! The d i s p l a y e d page can he p o s i t i o n e d anywhere
w i t h i q ' t h e t e x t f i l e (page b o u n d a r i e s a r e n o t f i x e d) .

A l t e r n a t i v e l y , t h e u s e r c a n p r e s s t h e command (CMD) key and
e n t e r a r a n g e of e x p l i c i t e d i t commands, i n c l u d i n g f i n d
s t r i n g , r e p l a c e s t r i n g , etc.

b - n creat ing a--sar-a---ELIe, t h e - e d i t o r assists line--by-tine
program l a y o u t by a u t o m a t i c a l l y p o s i t i o n i n g t h e c u r s o r f o r a
new l i n e . The c u r s o r c a n be moved fo rward o r b a c k w a r d , u s i n g
t h e TAB keys . T h i s h e l p s i n i n d e n t i n g t e x t t o r e f l e c t t h e
program s t r u c t u r e . The t a b i n c r e m e n t (number of columns f o r
e a c h i n d e n t a t i o n) can be se t by t h e u s e r .

Most e d i t o r s (even sc reen- based o n e s) u s e a l i n e numbering
mechanism t o a c c e s s a p a r t i c u l a r s o u r c e l i n e w i t h i n t h e
s o u r c e f i l e . The f i r s t l i n e i n t h e f i l e i s " l i n e 1" (o r 10
o r l o o) , t h e second l i n e i s " l i n e 2" (o r 20 o r 200) and s o
on. Such mechanisms c a n be cumbersome t o u s e , e s p e c i a l l y
when i n s e r t i n g s o u r c e l i n e s and a l s o when g o i n g back t o
p e r f o r m m o d i f i c a t i o n s on a n a l r e a d y p a r t i a l l y m o d i f i e d
s o u r c e f i l e . To overcome t h e s e problems, t h e M i c r o p r o c e s s o r
P a s c a l sy s t em e d i t o r i s c o m p l e t e l y c u r s o r d r i v e n and does
n o t u s e a l i n e numbering mechanism.

A number of e d i t commands (MOVE, COPY, DELETE and PUT)
o p e r a t e on b l o c k s of code. The r e q u i r e d b l o c k i s i n d i c a t e d
by:

o P o s i t i o n i n g t h e c u r s o r t o t h e f i r s t l i n e i n t h e b l o c k
and p r e s s t h e f u n c t i o n key F5.

Texas I n s t r u m e n t s 6- 12 Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

o P o s i t i o n i n g t h e c u r s o r t o t h e l a s t l i n e of t h e b lock
and p r e s s t h e f u n c t i o n key F6.

o I f a d e s t i n a t i o n p o s i t i o n i s r e q u i r e d (MOVE and COPY)
t h e n r e p o s i t i o n t h e c u r s o r t o t h e r e q u i r e d s o u r c e
l i n e , (The b lock of code w i l l be i n s e r t e d i n t o t h e
program immedia te ly a f t e r t h i s l i n e .)

(The f u n c t i o n keys a r e t h e g rey keys , numbered F1 t o F8,
t h a t a r e l o c a t e d above t h e normal 'QWERTY' keyboard on t h e
911 VDU,)

The HELP command (p r e s s t h e CMD key and t y p e t h e word HELP
fo l lowed by t h e r e t u r n key) d i s p l a y s a f u l l l i s t of t h e
available e d i t commands, a long w i t h t h e meaning of each
f u n c t i o n key,

A f t e r t h e program h a s been e n t e r e d , t h e u s e r can per form a
Mic roprocesso r P a s c a l s y n t a x check w i t h o u t l e a v i n g t h e
e d i t o r , by e n t e r i n g t h e CHECK command, The e d i t o r i s no t
equipped t o d e t e c t s eman t i c e r r o r s (such a s u n d e c l a r e d
i d e n t i f i e r s) , b u t w i l l per form a comple te s y n t a x check t h a t
w i l l f i n d such e r r o r s a s m i s s p e l l e d o r m i s s i n g keywords,
i n c o r r e c t p u n c t u a t i o n , i n v a l i d c o n s t r u c t s , e t c .

When t h e e d i t o r f i n d s an e r r o r , i t o u t p u t s an a p p r o p r i a t e
E n g l i s h language e r r o r message t o t h e s c r e e n , d i s p l a y s t h e
r e l e v a n t a r e a of t e x t and p o s i t i o n s t h e c u r s o r ove r t h e
e r r o r s o t h a t t h e n s e r can e d i t i t immedia te ly , When t h i s
h a s been done, t h e CHECK command can be r e e n t e r e d and
check ing w i l l resume from t h e e a r l i e s t p o i n t a t which t h e
t e x t was changed. (The s y n t a x checke r on ly 'backs up' a s
much a s i s n e c e s s a r y ; i t does n o t need t o r e s t a r t from t h e
b e g i n n i n g of t h e f i l e .)

The s y n t a x checke r speeds up and s i m p l i f i e s t h e p r o c e s s of
c o r r e c t i n g s y n t a x e r r o r s , It e l i m i n a t e s t h e need t o e x i t
t h e e d i t o r , e x e c u t e t h e compi l e r , p r i n t t h e l i s t i n g , and
r e - e d i t t h e s o u r c e f i l e f o r each m i s t a k e , The e n t i r e
p r o c e s s becomes a s i n g l e i n t e r a c t i v e s t e p .

The CHECK f a c i l i t y i s e n t i r e l y o p t i o n a l . The Mic roprocesso r
P a s c a l System E d i t o r can be used f o r t e x t f i l e s o t h e r t h a n
Mic roprocesso r P a s c a l s o u r c e ,

The a v a i l a b l e e d i t commands a r e :

ABORT E x i t t h e e d i t o r
INPUT Change t h e e d i t f i l e
QUIT Save t h e e d i t e d f i l e and ABORT
SAVE Save t h e e d i t e d f i l e and INPUT

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

BOTTOM Position the cursor to the end-of -f ile
TOP Position the cursor to the top-of-file
+/- int Position the cursor up/down "int" lines

CHECK Check syntax of edit file
HELP Display edit commands available
INSERT Insert the specified file
SHOW Show the specified file

COPY Copy the specified block to current cursor posn
DELETE Delete the specified block
MOVE Move the specified block to current cursor posn
PUT Write the specified block to the specified file

FIND(tok,n) Find the "nf'th occurrence of "tok"
REPLACE(tok1 ,tok2 ,n) Replace "tokl" by "tok2" "n" times
TAR(inc) Set the tab increment to "inc"

The function key operations are:

F1 Roll down the file
F2 Roll up the file
F4 Duplicate this line
F5 Start block delimiter (<------- in cols 7 2 to 80)
F6 End block delimiter (------- > in cols 7 2 to 80)
F7 Compose/Edit
F8 Split line from the current cursor position
CMD Go into command mode (+------ + in cols 7 2 to 80)

6.4.2 Microprocessor Pascal Compiler and Code Generator

The Microprocessor Pascal Compiler generates interpretive
code from a Microprocessor Pascal source file, This code
can be executed directly using the interpretive debugger or
the Microprocessor Pascal Interpretive Executive (MPIx).
Passing this interpretive code through the Microprocessor
Pascal Code Generator produces native 9900 object code that
will run under the Microprocessor Pascal Executive (MPX).

Thus, Microprocessor Pascal gives the user a choice of
executing either interpretive or native code. Interpretive
code and native code for the same Microprocessor Pascal
source file will be functionally identical, apart from
considerations of speed and code size.

Interpretive code executes several (approximately five)
times slower than native code; but (beyond a certain size,
which accounts for the overhead of the interpreter) an
interpreted system is smaller, Interpretive code only takes
up about three quarters of the memory required by the
equivalent native code. Therefore, for a large application,
interpretive code can represent a great saving in memory.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CROSS OVER AROUND
4 100 STATEMENTS

2
I I I I I I

500 1000 1500 2000 2500 3000
NO. OF MICROPRESSOR PASCAL (2.1) STATEMENTS

Figure 6-5 Interpretive vs Compiled Characteristics

In selecting whether to use native or interpretive code, the
user can trade off speed against memory size. One example
of such a trade-off is the Microprocessor Pascal Compiler
itself. On the FS 99014 floppy disc based system, the
compiler executes interpretively so that it will fit into
the available memory space (it still runs at an acceptable
speed, processing approximately 100 lines of source code per
minute). On the DS 990/10, where there are no memory
restrictions, it executes as native code to maximize the
speed.

Various compiler options are available. These options
include:

LIST
MAP
STATMAP
DEBUG
ASSERTS
CKINDEX
CKPTR
CKSET
CKSUB

Produce source listing
Produce variable map
Produce statement displacement map
Include debug information in code
Generate code for ASSERTS statement checks
Generate code for array index checks
Generate code for NIL pointer checks
Generate code for set expression checks
Generate code for subrange assignment bounds
checks

The host debugger can be used to check the functionality of
the application program. When satisfied that the program
works correctly it can be transferred to the actual target
hardware where any hardware dependent parts of the program

Texas Instruments 6-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

can be verified using the AMPL in-circuit emulator, The
Microprocessor Pascal System is supplied with two sets of
AMPL procedures (one for MPIX, the other for MPX) that
present the same user interface as the host debugger, Any
necessary 'fine tuning' or customisation can also be
performed at this stage,

6 . 4 . 3 Microprocessor Pascal Host Debugger

The Microprocessor Pascal Host Debugger is an interactive
interpreter that allows the user to control and monitor
execution of a Microprocessor Pascal target application
system, This greatly simplifies the task of finding errors
in a system (debugging),

The debugger is designed for use with a concurrent (multiple
process) system, The user can monitor the execution of a
single process, or examine and control process scheduling
and communication, Debugging usually proceeds with one
aspect of a system at a time.

The user can set breakpoints at any Microprocessor Pascal
statement by specifying the routine and the statement number
(printed on the source listing), The system can be executed
in single-step mode (one Microprocessor Pascal statement at
a time), or continuously until a breakpoint is reached,
Three modes of tracing - trace process scheduling, trace
routine entrylexit and trace statement flow - are possible.
The contents of a routine's stack frame (pata area), heap,
and common areas, can be displayed and modified, The
scheduling algorithm can be overridden by holding
(suspending) a particular process until an explicit release
command is given,

The user can also connect interprocess files (discussed in
section 6,8,5.4) using the Connect Input Pile and Connect
Output File commands. The new file that results can be sent
to an external file or to the terminal, The process
concerned will then input or output to the device
specified, If it is a terminal, the system will prompt for
input, and send a message identifying the source in the case
of output

Interrupts can he simulated using the SIMulate Interrupts
command ,

The system has three ways of dealing with CRU 1/0 (for a
description of the CRU see section 8,9), CRU statements can
be directly executed, ignored, or simulated by the user,
The "CRU" command is used to specify which option applies to
a particular process. When simulated 110 is specified, the
CRU address and value are displayed for output, and the user

Texas Instruments 6-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

is prompted for input. This feature can be useful when
debugging software for a target system, which is iikeiy to
have a different CRU configuration from the development
system.

The Microprocessor Pascal debugger is a very powerful
high-level tool for verifying the detailed execution of a
piece of software. It is designed to integrate closely with
the other components of Microprocessor Pascal and to form a
complete system in which designs can be smoothly carried
through to implementation.

6.5 MICROPROCESSOR PASCAL LANGUAGE

Before describing the maJor features of the Microprocessor
Pascal language (data types, control structures,
concurrency, etc) it is first necessary to explain some of
the basics of the language.

6.5.1 Basic Language Elements

A Microprocessor Pascal application program is made up of
symbols from a finite vocabulary. The vocabulary consists
of identifiers, numbers, strings, operators and keywords.
These in turn are composed of sequences of characters from
the underlying character set.

6.5.2 Character Set

The Microprocessor Pascal character set is:

the letters A-Z, a-z
the digits 0-9
and the special characters :

+ - * / " . , ; : = $ ' < > () [I {) # e -

6.5.3 Keywords

Keywords are reserved words with a fixed meaning; they may
not be used as identifiers. Although they are written as a
sequence of letters, they are interpreted as a single
symbol. A full list of these keywords is given below.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

ACCESS
ASSERT
CHAR
DO
ESCAPE
FOR
IF
LABEL
NOT
OUTPUT
PROCESS
RECORD
START
TO
VAR

AND
BEGIN
COMMON
DOWNTO
EXTERNAL
FORWARD
IN
LONGINT
OF
PACKED
PROGRAM
REPEAT
SYSTEM
TRUE
WHILE

MICROPROCESSOR PASCAL

ANYFILE
BOOLEAN
CONST
ELSE
FALSE
FUNCTION
INPUT
MOD
OR
PASCAL
RAND OM
SEMAPHORE
TEXT
TYPE
WITH

ARRAY
CASE
DIV
END
FILE
GOT0
INTEGER
NIL
OTHERWISE
PROCEDURE
REAL
SET
THEN
UNTIL

In program text, it is convient to write keywords in upper
case to distinguish then from user-defined identifiers in
lower case, Microprocessor Pascal does not require this
distinction, but it is helpful in making programs more
readable.

6.5.4 Identifiers

Identifiers are names denoting user defined or predefined
entities, An identifier consists of a letter or $ followed
by any combination of letters, digits, $ or " -
(underscore), A lower case letter is treated as if it were
the corresponding upper case letter. For example, the
identifier Data Size is the same as the identifier
DATA SIZE. he-convention followed in this chapter is that
all identifiers are written in lower case when they appear
in examples, but they will be in upper case whenever they
appear in the text,

A maximum length is imposed by the restriction that
iclentif iers must not cross line boundaries, so that they may
not be more than 72 characters long, All characters in an
identifier are significant, Process, routine and common
names should be unique within the first 6 characters,

Legal Identifiers:
X
$VAR
LONG IDENTIFIER
NUMBER - 3
RE AD

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Illegal Identifiers:
ARRAY (Reserved word)
ROOT3 - (Cannot start with)
3RT)VAL (Cannot start with number)
M-AX VALUE (Cannot contain blank)
TOTAL-SUM (Cannot contain -)

Some identifiers are standard, that is they are predefined
with a given meaning. They can be redefined by the user, in
which case the standard meaning no longer applies. For
example, if the standard routine name READ is redefined, the
standard routine READ cannot be called.

6.5.5 Language Element Separators

At least one separator must occur between two constants,
identifiers, keywords or special symbols. No separators can
occur within these elements (except spaces within strings).
Separators include spaces, end of lines, comments or
remarks. For example, in the statement:

WHILE X<10

a space separates WHILE and X. This is not equivalent to:

as WHILEX could be a legal identifier. However, a space is
not necessary between X and '<' because '<' is not permitted
within an identifier and thus serves to delimit it.

6.5.6 Comments

A comment is any sequence of characters beginning with (or
(* and ending with) or *) (except within a string). A
remark is any sequence of characters beginning with I' and
extending to the end of the line (except within a string).
Comments and remarks are ignored by the compiler, and can be
used to annotate program text.

6.5.7 Constants

Part of the declaration section for a program, process, etc,
consists of the (constant declaration part>. This allows an
identifier to be used as a synonym for a constant and can
make a program more readable. These constants are defined
by:

CONST <constant declaration list>

Texas Instruments 6- 19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

where (constant declaration list> is one or more of the
following:

where <constant> may be a signed real constant, string
constant, character constant, integer constant expression or
a previouly defined constant identifier, An integer
constant expression may consist of: integer constants and/or
constant identifiers along with any of the integer
arithmetic operators, For example:

CONST max = 500;
asterisk = '*';
one half = 0,s;
halF max = max DIV 2; -

"Application parameters1' that are liable to change between
systems (eg the number of capstan lathes in an engineering
shop) are best handled by defining them as constants. Doing
this would mean changing only a few statements right at the
begining of the application program instead of having to
search the whole program for instances where the parameter
values are used (and possibly even missing some of them),

6.5,8 Variables

Variables are used to reference areas of storage within a
module, A variable declaration associates an identifier to
a location which can hold a value of a specified type, The
form of a variable declaration is:

VAR <variable declaration list)

where (variable declaration list> is one or more of the
following:

<identifier list> : (type definition) ;

<identifier list> is a list of identifiers separated by
commas. <type definition) (described in section 6.6) can be
a standard type (INTEGER, REAL, etc), the name of a type
defined in a type declaration statement, or a new type
definition which can take any of the forms allowed in a type
declaration, In the last case, the new type will not have
any name associated with it (the declaration of PROFIT below
is an instance of this), For example:

VAR nyears : INTEGER;
amount,value,rate : REAL;
tenyears : vector;
prof it : ARRAY [l, . l o] OF BOOLEAN;

Texas Instruments 6-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(Type VECTOR is defined tn section 6.6.1.)

A variable can either be a simple identifier which
references the e n t i r e variable, or may be a qualified
variable which is used to reference part of a structured
variable - for example a record or an array.

6.5.9 Expressions

Expressions combine the values of variables and constants
using operators to generate new values. Expressions consist
of operands, operators and function calls.

6.5.9.1 Operands

Operands reference the values of constants or variables. An
operand may be one of the following:

<integer constant)
<real constant)
<string constant)
<character constant)
<constant identifier)
NIL
<set>
<variable>
<function call)

6.5.9.2 Operators

An operator specifies an operation that is to be performed
on one or two operands. An operator can only be applied to
two operands if their types are compatible. Some operators
accept mixed mode operands: if an INTEGER value is added to
a REAL, the INTEGER is first converted to REAL and then
added to give a REAL result.

Operators have a precedence, which specifies the order of
their evaluation in a complex expression.

The operators are:

Group 1: Multiplying operators: * Multiplication; set intersection

/ Real division
DIV Integer division (divide and truncate)
MOD Modulus

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Group 2 : Adding o p e r a t o r s :
4- A d d i t i o n ; una ry p l u s ; s e t un ion
- S u b t r a c t i o n ; u n a r y minus ; s e t d i f f e r e n c e

Group 3 : R e l a t i o n a l o p e r a t o r s : - - Equa l
<> Not e q u a l
< L e s s t h a n ; p r o p e r se t i n c l u s i o n
> G r e a t e r t h a n ; p r o p e r s e t i n c l u s i o n
<= Less t h a n o r e q u a l ; s e t i n c l u s i o n
>= G r e a t e r t h a n o r e q u a l ; s e t i n c l u s i o n
I N S e t membership

L o g i c a l o p e r a t o r s :
Group 4 : NOT Nega t ion
Group 5: AND C o n j u n c t i o n
Group 6: OR D i s j u n c t i o n

The l i s t of o p e r a t o r s i s i n o r d e r of p r e c e d e n c e , w i t h g roups
o f h i g h e r p r e c e d e n c e l i s t e d f i r s t , I n an e x p r e s s s i o n ,
o p e r a t o r s of h i g h e s t p r e c e d e n c e a r e e v a l u a t e d f i r s t ;
o p e r a t o r s of e q u a l p r ecedence a r e e v a l u a t e d from l e f t t o
r i g h t w i t h i n t h e e x p r e s s i o n , P a r e n t h e s e s may be used t o
a l t e r t h e o r d e r of e v a l u a t i o n ,

Examples :

E x p r e s s i o n Value
2 + 3 * 5 17
15 D I V 4 * 4 12
NOT (5 + 5 >= 20) TRUE
6 + 6 D I V 3 8
3 < 5 OR 2 >= 6 AND 1 > 2 TRUE

I n a BOOLEAN e x p r e s s i o n of t h e form:
x AND y

i f X i s f a l s e , Y i s n o t e v a l u a t e d and t h e v a l u e of t h e
e x p r e s s i o n i s FALSE, S i m i l a r l y , i n a BOOLEAN e x p r e s s i o n of
t h e form:

i f X i s TRUE, Y i s n o t e v a l u a t e d and t h e v a l u e of t h e
e x p r e s s i o n i s TRUE, T h i s i s c a l l e d s h o r t c i r c u i t
e v a l u a t i o n ,

6,5,9,3 F u n c t i o n C a l l s

A f u n c t i o n i s a s u b r o u t i n e t h a t r e t u r n s a s i n g l e v a l u e of a
s p e c i f i c t ype . It i s invoked by a f u n c t i o n c a l l :

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(function identifier) ((parameter list>)

eg sqrt (max)

where <functfon identifer) is the name of t h e function to be
called. <parameter list> is one or more <parameter>s,
separated by commas, as specified by the function
definition. <parameter> may be any variable, constant or
expression so long as it matches the declared type.

6.5.10 Assignment Statement

The assignment statement specifies an expression that is to
be evaluated and assigned to a variable. Its general form
is r

The symbol ':=' can be read 'becomes equal to'. The type of
<expression> must be compatible with the type of <variable>,
except that an INTEGER expression is automatically converted
to LONGINT or REAL, and a LONGINT expression is
automatically converted to INTEGER or REAL. Direct
assignments can be made to variables of any type (including
records, arrays, etc) except files and semaphores.

6.5.11 Routine Declaration

A PROCEDURE declaration packages a self contained sequence
of operations that performs some action, and also associates
this action with a particular identifier. This action can
then be performed from anywhere within the program (so long
as it is in scope - see section 6.3.6) by simply invoking
the appropriate procedure.

The general form for a PROCEDURE declaration is:

PROCEDURE <identifier> (<parameter list>) ;
<declarations>

BEGIN .

END ;

where <parameter list> is one or more of the following:

VAR (identifier list> : <type definition) ;

(identifier list> is one or more identifiers separated by

Texas Instruments 6-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

commas, <type definition) is described in section 6e6e If
no parameters are required then the "(" and ")" can be
omitted, VAR is optional (see below),

<declarations> can be one or more:

LABEL declaration refer to manual
CONST declaration section 6,5,7
TYPE declaration section 6,6
VARS declaration section 6,5.8
COMMON declaration refer to manual
ACCESS declaration refer to manual
PROCEDURE declaration
FUNCTION declaration below

There are two methods of parameter passing. Call by value
will cause a copy of the actual parameter's value to passed
over to a new storage location in the procedure. This
parameter can then be modified by the called procedure
without affecting the value of the actual parameter variable
in the caller's stack, Call by reference will cause the
address of the caller's actual parameter variable to be
passed over to the procedure, Modifying a call by reference
parameter modifies the contents of the caller's actual
parameter variable, (More detail on the parameter passing
mechanisms is given in Section 4,10,1,)

If a parameter is to be passed by reference then the keyword
VAR should be included before the appropriate
<identifier list>:

PROCEDURE add - five - plus - inc (VAR update : INTEGER;
inc : INTEGER);

CONST five = 5;

BEGIN
(Modify the caller's actual parameter by INC+5)
update := update + five + inc;
(Modify local variable INC - does not affect
the caller's actual parameter 1

inc := inc +3

END ;

<declarations> and the BEGIN ... END; can be replaced by the
keyword EXTERNAL, which informs the compiler that that
particular procedure is defined outside this program
module.

A FUNCTION declaration is similiar to a PROCEDURE
declaration, The only difference is that the first line is
of the form:

FUNCTION <identifier> (<parameter list>) :
<type definition) ;

Texas Instruments 6-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The function's result is returned by assigning the required
value to the function identifier, ie:

PUNCTION retnrn 5x (value : INTEGER) : INTEGER; -
BEGIN

return 6x := value * 6 -
END;

Microprocessor Pascal implements additional structures that
can be used to package concurrent statement blocks (PROGRAMS
and PROCESSes). These are defined in a similiar way to
procedures and can have parameters in a simfliar way (but
parameters must all he passed by value). However, programs
and processes are STARTed r a t h e r than called and once
started exist as separate concurrent "sites of execution"
within the system.

A PROGRAM or PROCESS declaration is identical to a PROCEDURE
declaration, except that the first line is:

PROGRAM <identifier> (<parameter list>) ;

PROCESS <identifier> (<parameter list>) ;

The <declarations> can include other PROCESS declarations.
The (parameter list> cannot contain variable parameters (ie
the keyword VAR is not allowed in (parameter l'ist>).

See sections 6.3.3 to 6.3.6, 6.9 and Section 5.2.2 for the
concurrent structures of Microprocessor Pascal.

6.6 DATA TYPES

A data type defines the set of values a variable of the type
specified may assume, and the set of operations that may be
performed on these values. Each variable is associated with
one and only one type.

In Microprocessor Pascal, data types can he split into three
distinct classes. These are:

Simple types INTEGER, LONGINT, REAL, CHAR,
BOOLEAN, SEMAPHORE, Subrange and
Enumeration

Structured types ARRAY, RECORD, SET, POINTER and
FILE

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

User defined types Specified by the TYPE statement

The symbol PACKED may precede a record or array type
definition. If a structure is declared to be PACKED,
several unstructured components of the structure, if
possible, are stored in one word. Packing may economize the
storage requirements of a data structure, at the expense of
efficiency of access of the components.

One example of a packed array is a string, which can be
defined as:

PACKED ARRAY [<index type>] OF CHAR

In this structure, characters are stored one per byte
instead of the usual one per word. <index type> is
described in section 6.6.9.

Details of the packing algorithm are given in the
Microprocessor Pascal System User's Manual.

6.6.1 User Defined Types

A type declaration introduces an identifier as the name of a
new data type. The identifier can later be used to refer to
that type; for example, to define variables, or to define
structured types in which that type is included. The form
of a type declaration is:

TYPE <type declaration list>

where <type declaration list> is one or more of the
following:

<identifier> = <type definition) ;

For example:

TYPE vector = ARRAY [1..10] OF REAL;
days = (m~n,tue,wed,thu,fri,sat,sun);
digits = '0'..'9';
complex = RECORD

re,im : REAL
END ;

The various forms of <type definition) are described in
subsequent sections.

The TYPE declaration does not declare any actual variables
(storage locations); this is performed by the variable (VAR)
declaration, as described above (section 6.5.8).

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.6.2 I n t e g e r and Long in t Type

A v a l u e of t y p e INTEGER i s a whole number i n t h e range
-32768 t o 32767 (s i g n e d 16 b i t q u a n t i t y) . A v a l u e of t y p e
LONGINT r a n g e s from -2147483648 t o 2147483647 (s i g n e d 32 b i t
q u a n t i t y) .

The o p e r a t o r s d e f i n e d f o r INTEGER and LONGINT operands a r e :

+ Unary p l u s o r add
- Negate o r s u b t r a c t
* M u l t i p l y
DIV Divide and t r u n c a t e r e s u l t
MOD Modulus [a MOD x = a - ((a D I V x) * x)]

The o p e r a t o r / (d i v i d e) can be a p p l i e d t o i n t e g e r s , bu t
a lways p roduces a REAL r e s u l t . The r e l a t i o n a l o p e r a t o r s =,
<>, <, >, <=, >= c a n be a p p l i e d t o i n t e g e r s and produce a
BOOLEAN r e s u l t . S t anda rd f u n c t i o n s a p p l y i n g t o INTEGER and
LONGINT a r e d e s c r i b e d i n s e c t i o n 6.13.6.

6.6.3 Boolean Type

A v a l u e of t y p e BOOLEAN i s one of t h e l o g i c a l v a l u e s TRUE o r
FALSE. The f o l l o w i n g o p e r a t o r s a r e d e f i n e d f o r BOOLEAN
operands and y i e l d BOOLEAN r e s u l t s :

NOT L o g i c a l n e g a t i o n
AND L o g i c a l c o n j u n c t i o n
OR L o g i c a l d i s j u n c t i o n

TRUE and FALSE a r e p r e d e c l a r e d keywords such t h a t FALSE i s
l e s s t h a n TRUE. Thus t h e r e l a t i o n a l o p e r a t o r s can be used
w i t h BOOLEAN operands t o p r o v i d e a d d i t i o n a l o p e r a t i o n s . For
example :

= Equiva lence
<> E x c l u s i v e OR

6.6.4 Char Type

Values of t y p e CHAR a r e o r d e r e d a c c o r d i n g t o t h e i r ASCII
v a l u e . A c h a r a c t e r c o n s t a n t can be w r i t t e n e i t h e r a s a
s i n g l e c h a r a c t e r between s i n g l e q u o t e s , o r by s p e c i f y i n g i t s
hex v a l u e , preceded by { I :

'A' ASCII c h a r a c t e r A
'#OD' ASCII c h a r a c t e r ' c a r r i a g e r e t u r n '

Texas I n s t r u m e n t s 6-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6 e 6 e 5 Enumeration Type

INTEGER, LONGINT, BOOLEAN and CHAR are special cases of the
enumeration type. An enumeration type is any simple type
except REAL, The characteristics of an enumeration type
are:

o There is a distinct set of values which a
variable of that type can take,

o The values have a unique linear order, in which
each value (except the first and last) has a
single predecessor and a single successor,

The integers

clearly follow these rules; so do the characters, which have
a unique order (A, B, C, etc) defined by their ASCII
representation. However, the user can also define his own
enumeration types in a TYPE declaration, simply by
specifying a type name and an ordered set of values:

TYPE days = (mon,tue,wed,thu,fri,sat,sun);

The values are represented by identifiers (which must be
unique), These can he regarded as primitive values, just
like '7' or '125': it is not necessary to translate them
into hit patterns, or know how they are represented within
the computer, any more than it is necessary for most
purposes to work out the internal bit pattern used to
represent '125', MON, TUE, etc are values in their own
right,

These user defined types are called scalar types, The
relational operators (> <, etc) are defined for all
enumeration types, The BOOLEAN expression MON < WED is TRUE
because the values form an ordered set in which MON precedes
WED. However, the arithmetic operators (+, -, etc) are only
defined for the standard types INTEGER and LONGINT (and
REAL) ; it is meaningless to write MON + WED, The following
standard functions apply to enumeration types:

SUcC(x) Successor of X
PRED(X) Predecessor of X
ORD(X) Integer ordinal value of X within the set of

values (not defined for INTEGER or LONGINT)

eg ~ucC(wed) = thu, PRED(wed) = tue, ORD(wed) = 3

Scalar types are useful for counting purposes. For example,

Texas Instruments 6-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

t o i n d e x i n t o a n a r r a y o r c o n t r o l t h e number of i t e r a t i o n s
of a FOR l o o p (s e e s e c t i o n 6.7*5):

FOR t o d a y := mon TO f r i DO
t o t a l - t a k i n g s := t o t a l- t a k i n g s + t a k i n g s [t n d a y] ;

The v a r i a b l e TODAY i s d e c l a r e d t o be of t y p e DAYS; t h e a r r a y
TAKINGS i s d e c l a r e d t o be i ndexed by t y p e DAYS*

6.6.6 Subrange Type

A t y p e c a n be d e f i n e d as a s u b r a n g e of any p r e v i o u s l y
d e f i n e d enumera t ion t y p e by s p e c i f y i n g t h e s m a l l e s t and
l a r g e s t v a l u e s i n t h e sub range :

TYPE weekdays = mon. . f r i ;
a r r a y - i n d e x = l e e 2 5 ;

T h i s i s a u s e f u l f e a t u r e , b e c a u s e a c o m p i l e r o p t i o n can
i n s e r t r u n t i m e checks t o e n s u r e v a r i a b l e s do not exceed
t h e i r s p e c i f i e d sub range . T h i s can be a g r e a t h e l p i n
debugging . Subrange t y p e s c a n a l s o be u s e d i n d e c l a r i n g
a r r a y bounds , f o r example:

VAR t a b l e : ARRAY [a r r a y i n d e x] OF INTEGER;
s i c k d a y s : ARRAY [days]-OF BOOLEAN; .\

% \

f '.
't ,

T h i s p e r f o r m s t h e doub le f u n c t i o n of s p e c i f y i n g {he s i z e oz 'x,_. ,
, t h e a r r a y , and t h e t y p e of t h e i n d e x v a r i a b l e . j C o n s t r u c t s

such a s t h i s makes i t e a s y t o change t h e s i z e bf a n a r r a y a t
' a l a t e s t a g e i n 'development, s iniply by a l t e r i n g one o r two

TYPE s t a t e m e n t s . (Ar rays are d i s c u s s e d i n s e c t i o n 6.6,9.)

6.6.7 Rea l Type

The t y p e REAL can be used t o r e p r e s e n t r e a l v a l u e s w i t h 6-7
d e c i m a l d i g i t s of p r e c i s i o n . The range of a b s o l u t e v a l u e s
t h a t can be r e p r e s e n t e d i s a p p r o x i m a t e l y 1.OE-78 t h r o u g h
laOE75.

The f o l l o w i n g o p e r a t o r s a c c e p t ope rands of t y p e REAL and
y i e l d a REAL r e s u l t :

+ Unary p l u s o r add - Negate o r s u b t r a c t
* M u l t i p l y

/ D i v i d e

The r e l a t i o n a l o p e r a t o r s a r e d e f i n e d f o r REAL ope rands and
y i e l d a BOOLEAN r e s u l t * The s t a n d a r d f u n c t i o n s TRuNC,
ROUND, LTRIJNC, LROUND w i l l t r u n c a t e o r round a REAL v a l u e t o

Texas I n s t r u m e n t s 6-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

give an INTEGER or LONGINT result.

6.6.8 Semaphore Type

The type "semaphorelI is used for process synchronisation and
communication (more about this later, see section 6.8).
Operations on variables of type semaphore are performed by
functions and'procedures which must be declared EXTERNAL to
the program. Arithmetic operations are not valid for
semaphore variables.

6 . 6 . 9 Array Type

An array type consists of an ordered group of components
which are all of the same type. The form of an array type
definition is:

ARRAY [<index type list) 1 OF <component type)

<component type> can be any type except FILE. This means
that it is possible to have arrays of arrays, of records or
of any other structured type. <index type list) is a list
of <index type>s separated by commas. These can be either
explkcit subrange definitions (such as 1..5) or the name of

enumeration type (such as DAYS). The number of
>S in the declaration determines the number of

dimensions \of the array. There is no limit to the number of
dimensions an array may have. Each <index type) definition
determines both the size of that dimenqion of the array, and
the type of khe vaaable that will be usgd to index it. An
<index type) can be any enumeration kype; the types of
different dimensions need ndt be the same. For example:

VAR holidays : ARYY [1..52*, days] OF BOOLEAN

An exactly equivalent detinition is:

VAR holidays : ARRAY ![lo .52] OF
ARRAY [days] OF BOOLEAN

The assignment operator can be used between arrays of
compatible type. For example:

VAR a,b : ARRAY [1..20, 25..50, 1 . . 2 1 ; . .
a :== b;

This causes every element in the array A to be assigned the
value of the or responding element in the array B.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

An indexed v a r i a b l e i s used t o r e f e r e n c e an e lement of an
a r r a y . I ts form is:

e g VECTOR r 5]

The e x p r e s s i o n s a r e used t o s u b s c r i p t i n t o , each of t h e n
d e c l a r e d dimensions. I f an a r r a y v a r i a b l e i s d e c l a r e d t o
have n d imens ions , t h e n t h e indexed v a r i a b l e may have from 1
t o n s u b s c r i p t e x p r e s s i o n s . For example, i f an a r r a y i s
d e c l a r e d

a : ARRAY [1..10, 1..20] OF INTEGER

t h e n A [5] i s a l e g a l indexed v a r i a b l e ; i t i s an

ARRAY [1..20] OF INTEGER

T h i s a r r a y can i t s e l f be indexed, eg A [5] 161

which i s e x a c t l y e q u i v a l e n t t o A [5 , - 6 1

The t y p e of t h e s u b s c r i p t e x p r e s s i o n must co r re spond e x a c t l y
w i t h t h e d e c l a r e d < index type>. There i s a compi l e r o p t i o n
t o check t h e v a l u e of a s u b s c r i p t t o make s u r e i t i s w i t h i n
t h e d e c l a r e d bounds.

6.6.10 Record -Type

A r e c o r d type c o n s i s t s of a group of components of p o s s i b l y
d i f f e r e n t t y p e s c a l l e d f i e l d s . Each f i e l d i n a r e c o r d t y p e
i s g i v e n a d i s t i n c t name. A f i e l d of a r e c o r d can be of ahy
t y p e (i n c l u d i n g a r r a y , r e c o r d , e t c) e x c e p t FILE. The form
o f a r e c o r d t y p e d e f i n i t i o n i s :

RECORD < f i e l d l i s t > END

A < f i e l d l i s t) i s an a r b i t r a r y number of (r eco rd s e c t i o n > s
s e p a r a t e d by semicolons . Each (r e c o r d s e c t i o n) i s of t h e
form:

< f i e l d i d e n t i f i e r l i s t > : <type>

< f i e l d i d e n t i f i e r l i s t> is a l i s t of f i e l d i d e n t i f i e r s
s e p a r a t e d by commas. For example:

TYPE complex = RECORD
r e , i m : REAL

END;

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

date = RECORD
month : (jan,feb,mar,apr,may,jun,jul,

aug,sep,oct,nov,dec);
day : 1..31;
year : INTEGER

END;

The assignment operator (:=) can be applied to records of
exactly the same type.

A field of a record is referenced by specifying the name of
the record variable and the field name, separated by a
period. For example:

VAR start, finish : date;
cl, c2, c3 : complex;

start.day := 20;
f inisheyear := 1978;
cl.re := 3.4;
c3.im := 5.8;

and
start := finish;

which is equivalent to

start-month := finishemonth;
start.day := finisheday;
start.year := finisheyear;

A record variable is used to reference a field within a
record. Its form is:

<variable> . <field identifier)
where <field identifier) is one of the fields declared in
the record type definition.

pump onesgrade -
cl.re
start.day

Any record can be qualified; any array can be subscripted.
Since it is possible to construct arrays of records and
records containing arrays, variables such as

arr [5] . field [4]
are possible. Here,

arr is an array
arr [5] is a record
arr [5] . field is an array
arr [5] . field [4] is an element

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Very powerful and esrnpPex data structures can be built in
this way.

Pascal also allows record variants, which means that part of
a record can be interpreted in more than one way. This
would allow, for example, a personnel record for a college
to contain different information (different fields)
according to whether it described a student or a member of
staff (see Section 4.7.4). Record variants are described in
detail in the Microprocessor Pascal System User's Manual.

6.6.11 Set Type

Pascal allows a set type, in which the possible values are
subsets of the base type, which can be any enumeration
type. For example, with the base type 1..5, possible values
of a set variable include:

11,2931
t2,3,51
[1,2,3,4,51
[1 (the empty set)

A full range of operators is defined for sets - union,
intersection, inclusion, etc.

6.6.12 File Type

A file type is a structure which consists of a sequence of
components (of unspecified length) which are all of the same
type. A file is usually associated with a mass storage
medium, such as tape or disc. However, this is not
necessarily the case as file variables can be used as a
means of communicating between concurrent processes. One
process can write information to a logical file and another
can read it. The MPX or MPIX executive performs the
transfer in internal memory without involving any external
storage devices.

The form of a file type definition is:

RANDOM FILE OF <component type)

FILE OF <component type>

TEXT

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The component type of a file can be any type except pointer
or file. The number of components (ie the length of the
file) is not specified and can grow to any size, depending
on the storage medium with which the file is associated.

The prefix RANDOM denotes a random file in which components
are accessible by their component number. This numbering is
defined to be the natural ordering of the sequence of
components, with the first component being number zero.

A TEXT file is a sequential file of type CHAR which is
divided into lines by end-of-line markers. INPUT and OUTPUT
are standard predeclared TEXT files.

TYPE rec = RECORD
name : PACKED ARRAY [1. .15] OF CHAR;
id num : INTEGER -

END;

VAR f : FILE OF INTEGER;
employee : RANDOM FILE OF rec;
temp : TEXT;

The following standard procedures and functions are
available for file manipulation:

CLOSE Close the file
EOF Check for EOF (end-of-file)
EOLN Check for EOL (end-of-line)
READ Read components of the file
READLN Read components from a text file until EOL
RESET Open file for input
REWRITE Open file for output
WRITE Write components to the file
WRITELN Write components and EOL to a text file

See the Microprocessor Pascal System User's Manual for
further details.

6.6.13 Pointer Type

Variables may be referenced indirectly by means of a
pointer, which can be thought of as the address of a
variable. The form of a pointer type definition is:

@ <type identifier)

read as ''pointer to a (type identifier)".

A pointer variable can only point to the type for which it
is declared. This goes a long way to 'taming' the
potentially dangerous pointer type, which in languages such
as PL/I is allowed to roam freelv throughout memory, and can

Texas Instruments 6-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

cause chaos if the prsgramner makes a srna11 error in
manipulating it. (In Microprocessor Pascal it is always
possible to do such things using the type transfer function,
for instance, but the programmer is obliged to tell the
compiler that he is doing something risky.)

The <type identifier) need not be defined before the pointer
type is defined, provided it is declared later in the
declaration section. This is a forward type declaration,
which is only permitted with pointer types.

TYPE ptr = @list;
list = RECORD

value : REAL;
~ O C : O..FF

END;

PTR is declared to ''point to the type LIST" and variables of
type LIST can only be used to point to records of type
LIST.

A pointer variable is used to reference the varfable pointed
to by a pointer type. Its form is:

where <variable> is a pointer type. The value of a pointer
variable is undefined until either a value is assigned to it
or a NEW is performed on it to allocate an area of dynamic
storage (see section 6.3.2). The constant NIL can be
assigned to any pointer variable, which. means it points to
nothing at all. A compiler option (CKPTR) is available to
check if -a reference is made to a NIL pointer.

(Declare NEXT and TEMP as pointers to records of
type LIST)

VAR next,temp : ptr;

(Set TEMP to point to the NIL record of type LIST)
temp@ := NIL;
(Allocate new record of type LIST from the heap, and
set NEXT to point to it)

new(next);
(Set VALUE field of record pointed to by NEXT to 2.5)
next@.value := 2.5;

The operators that can be applied to pointer variables with
compatible types are:

: = Assignment
- - Equal (TRUE if the, operands point to the

same address)
<> Not equal

Pointers allow storage to be dynamically allocated from a

Texas Instruments 6-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

s t o r a g e a r e a c a l l e d t h e heap , u s i n g t h e s t a n d a r d p rocedure
NEW, P o i n t e r s can a l s o be used t o c o n s t r u c t "advanced" d a t a
s t r u c t u r e s (s e e r e f e r e n c e [2] i n t h e B i b l i o g r a p h y) such a s
l i n k e d l i s t s and b i n a r y t r e e s . A l i n k e d l i s t i s e a s i l y
c r e a t e d by d e f i n i n g a r e c o r d t y p e which c o n t a i n s one f i e l d
t h a t i s a p o i n t e r t o t h e n e x t r e c o r d i n t h e l i s t .
S i m i l a r l y , a b i n a r y t r e e of r e c o r d s can be c o n s t r u c t e d by
d e f i n i n g a ' r i g h t l i n k ' and ' l e f t l i n k ' p o i n t e r w i t h i n t h e
r e c o r d ,

6 . 6 . 1 4 Type C o m p a t i b i l i t y and T r a n s f e r

Mic roprocesso r P a s c a l h a s s t r i c t r u l e s f o r c o m p a t i b i l i t y
between types . I n g e n e r a l , i n c o m p a t i b l e t y p e s cannot appea r
on o p p o s i t e s i d e s of an a s s ignmen t s t a t e m e n t , o r a s operands
of t h e same o p e r a t o r .

Two t y p e s a r e d i s t i n c t i f t h e y a r e e x p l i c i t l y o r i m p l i c i t l y
d e c l a r e d i n d i f f e r e n t p a r t s of t h e program, A t y p e i s
e x p l i c i t l y d e c l a r e d u s i n g a TYPE d e c l a r a t i o n , A t y p e may be
i m p l i c i t l y d e c l a r e d i n a VAR d e c l a r a t i o n o r i n o t h e r p l a c e s
where a name i s n o t a s s o c i a t e d w i t h t h e t y p e (eg i n
s p e c i f y i n g a n a r r a y i n d e x t y p e) ,

Two t y p e s a r e compa t ib l e i f one of t h e f o l l o w i n g i s t r u e :

o They a r e i d e n t i c a l t y p e s ,

o Roth a r e subranges of t h e same enumera t ion t y p e ,

o Roth a r e s t r i n g t y p e s w i t h t h e same l e n g t h ,

o Both a r e p o i n t e r t y p e s which p o i n t t o i d e n t i c a l
t y p e s ,

o Both a r e s e t t y p e s w i t h compa t ib l e base t y p e s ,

o Both a r e f i l e t y p e s w i t h compa t ib l e e lement
t y p e s ,

Arrays o r r e c o r d s a r e compa t ib l e o n l y i f t h e y a r e d e c l a r e d
t o be of t h e e x a c t same type ,

The re i s no i m p l i c i t c o n v e r s i o n of t y p e s e x c e p t from INTEGER
and LONGINT t o REAL and between INTEGER and LONGINT,

The s t r i c t c o m p a t i b i l i t y r u l e s g i v e t h e programmer a means
o f check ing t h a t he i s n o t u s i n g a v a r i a b l e i n t h e wrong
p l a c e (f o r example, u s i n g t h e wrong v a r i a b l e t o i n d e x an
a r r a y , o r s p e c i f y i n g t h e i n d i c e s of a mul t i- d imens iona l
a r r a y i n t h e wrong o r d e r) , It i s p o s s i b l e t o comple te ly
i g n o r e t h i s f a c i l i t y by, f o r i n s t a n c e , n o t d e c l a r i n g any new
t y p e s and s p e c i f y i n g a l l a r r a y i n d i c e s a s unnamed subr2nges

Texas I n s t r u m e n t s 6- 36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

of integer, However, intelligent use ~f the TYPE concept
can greatly reduce the possibility of errors, and make a
program more readable and easier to change.

TI L L is p o s s f b l e to override t he compatfhilfty check by usizg

the type transfer facility, which temporarily changes the
type of a variable, The form of a type transfer is:

<variable> :: <type identifier)

The variable is temporarily treated as if it were the type
specified after the double colon, No conversion is
performed; only the apparent type of the variable is
altered, Use of this facility transfers responsibility from
the compiler to the programmer; therefore he needs to be
sure he knows what he is doing,

It is also possible to override the type structure by using
variants in record structures without checking the tag
fields (see the Microprocessor Pascal System User's
Manual),

6 7 CONTROL STRUCTURES

This section is primarily concerned with the Microprocessor
Pascal statements that implement the control structures
which were introduced in Chapter 4 of this book (Section
4e5)e

6.7.1 Procedure Statement

The procedure declaration (see section 6.5,11) defines a
subprogram which can be called up simply by writing its name
in a procedure statement, A procedute statement corresponds
to one of the terminal boxes on the right hand side of a
structure 'diagram (see Figure 4-14), which is expanded as a
separate algorithm in the procedure declaration (Figure
4-15).

The general form of a procedure statement is:

(procedure name> ((parameter list>)

eg calculate - mean (a, 5, 4*x)

Parameters must match in number and type with those declared
with the procedure, If the procedure has no parameters then
only (procedure name> is required,

Texas Instruments 6-37 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.2 Compound Statement

A compound statement is a sequence of statements enclosed by
the keywords BEGIN and END, A compound statement is treated
as a single statement in all higher level constructs,

BEGIN <statement list> END

(statement list> is a list of Microprocessor Pascal
statements, simple or structured, separated by semicolons.
The statements making up the list are executed one by one in
the order that they appear, but the entire list is treated
as a single statement,

BEGIN
exchange : = x 1 ;
xl := x2;
x2 := exchange

END

The semicolon is used to separate Microprocessor Pascal
statements and is not part of any individual statement.
Therefore a semicolon is not needed following the last
statement in the list. If one does occur, the compiler
simply assumes that there is an empty statement between the
semicolon and END,

The empty statement is quite legal and can occur in many
places without causing any harm, However, the presence of
an extra semicolon can sometimes change the meaning of a
statement:

IF A = B THEN x := 1;
ESLE y :=1

The IF statement is terminated prematurely by the semicolon;
ELSE is treated as a new statement and will be flagged as an
error (because there is no statement beginning with the
keyword ELSE),

This particular error is easy to find because it will be
picked up by the compiler, Other cases of extra or missing
semicolons may be more subtle: code may be generated that is
logically wrong but syntactically correct, so that the
compiler will not find it, Therefore it is as well to know
exactly where semicolons are needed, and why.

The compound statement implements the sequence construct
described in Section 4,5.1.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.3 IF Statement

The IF statement specifies execution of one of two
alternative statements, depending on a condition. The
second alternative may be the empty statement. The form of
the IF statement is:

IF <expression> THEN <statement>

IF <expression> THEN <statement> ELSE <statement>

where <expression> must be of type BOOLEAN.

If the expression evaluates to TRUE the first <statement>
alternative, the THEN clause, is executed; otherwise the
second <statement> alternative, the ELSE clause, is executed
if it is presenti The <statement>s can be any
Microprocessor Pascal statement, including compound
statements and further IF statements.

Examples :

IF count >= 0 AND count <= length THEN read(x[i]);

IF x < y THEN max := y
ELSE max := x;

In nested IF statements, there is a possible ambiguity with
regard to ELSE clauses. This is resolved by always
associated an ELSE with the most recent unmatched THEN.

IF a > b THEN IF b > c THEN min := c
ELSE min := b;

is equivalent to:

IF a > b THEN
BEGIN
IF b > c THEN min := c
ELSE min := b

END;

In cases such as this, it is wise always to use explicit
REGIN..,ENDs to make the logical structure perfectly clear.

6.7.4 CASE Statement

The CASE statement is an extension of the IF statement to

Texas Instruments 6-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

allow more than two choices. A CASE statement allows a
statement to be selected for execution depending on the
evaluation of an expression at run time. The form of a CASE
statement is:

CASE <expression> OF
<case label list> : <statement> ;

0 . .

<case label list> : <statement>
OTHERWISE <statement list>
END

<expression> must be of an enumeration typeo
<case label list> is a list of one or more <case label>s
separated by commas. The <case label list> : <statement>
combination may be repeated any number of times within the
CASE statement; each occurence must be separated from the
previous one by a semicolon. The OTHERWISE clause is
optional.

A (case label) is either a constant value or a subrange
value of the same enumeration type as the <expression>,
Each <case label list) specifies the list of values of
<expression> for which the corresponding <statement>
alternative will be executed.

The value of <expression> at run time is used as thc
selector into the CASE statement. If the <case label:
indicated by the selector is present in the CASE statement
the corresponding <statement> is executed; otherwise thc

(statement list> following the OTHERWISE clause is
executed, If the selected <case label> is not present and
there is no OTHERWISE clause, a run time error will occur.

Examples :

CASE num OF
0..3,8 : total := total + num;
4,6,7 : total := total - num;
5 9 9 : total := total DIV 2

END ;

CASE alfa OF
'A'..'M' : ch := SUCC(a1fa);
'N'..'Z' : ch := PRED(a1fa)

OTHERWISE
writeln('not in alphabet');
int := ORD(a1f a)

END;

The IF and CASE statements implement the selection construct
described in Section 4.5.2.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7 .5 FOR Statement

The FOR statement provides for the repeated execution of a
given statement for a progression of values which are
assigned to the control variable of the FOR statement, This
statement should be used if the number of repetitions
required is known before the statement is executed, The
form of the FOR statement is one of the following:

FOR <identifier> := <initial value> TO <final value>
DO <statement>

FOR <identifier> := <initial value> DOWNTO <final value>
DO <statement>

where <identifier> is the control variable, and
<initial value> and <final value> are of the same
enumeration type, which may not Be a set type,

The control variable is implicitly declared by its
appearance in the FOR statement, and therefore may only be
referenced within the FOR statement. If a variable of the
same name has previously been declared, that variable will
be temporarily inaccessible within the FOR statement, The
value of the control variable may not be changed within the
FOR statement.

The control variable is assigned the <initial value> prior
to the first execution of the <statement>, If the
<initial value> is greater (less) than the final value in
the TO (DOWNTO) clause, the <statement> is never executed,
Otherwise after each execution of the <statement> the
control variable is incremented (decremented) by one until
the value of the control variable is greater (less) than the
<final value>. Both <initial value> and <final value> are
only evaluated once, on entering the FOR statement, so that
the total number of repetitions is determined at this time.

Examples :

FOR i := n DOWNTO 1 DO
sum := sum + a[i];

FOR day := mon TO fri DO
BEGIN

read(hrs, rate);
pay[day] := rate * hrs

END;

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.6 WHILE Statement

The WHILE statement allows for the repeated execution of a
given statement as long as a specified condition remains
true. The form of the WHILE statement is:

WHILE <expression> DO <statement>

where <expression> is of type BOOLEAN.

<expression> is evaluated before each execution of
<statement>. If <expression> is false initially,
<statement> is not exe'cuted at all; otherwise it is executed
repeatedly as long as <expression> evaluates to true.

The WHILE statement is used where the number of repetitions
cannot easily be predicted in advance. For example,
<expression> might represent the state of an external
input.

Example :

i := 1;
WHILE i <= max DO
BEGIN
value := amt[i] + tax[i+2];
i : = i + l

END;

There is an alternative form of WHILE statement called the
REPEAToooUNTIL:

REPEAT
<statement list>
UNTIL <expression>

where <expression> is ROOLEAN.

The difference is that <expression> is evaluated after each
execution of <statement list>, so that even if it is false
<statement list> is always executed at least once.

It is a good idea to standardize either on WHILE or REPEAT
to avoid confusion on what happens when <expression> is
false initially. In general, the WHILE construct is more
flexible because it includes the important special case of
zero iterations. REPEAToo..UNTIL can then be used as an
optimization technique for the rare cases when an action
must always be performed at least once.

The structure diagram iteration symbol (see Section 4 . 5 . 5)
is intended to be a WHILE (or a FOR), and is best kept as

Texas Instruments 6-42 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

szchs A REPEAT- . . .UNTIL constITuct can then be written
explicitly as:

Figure 6-6 Repeat Until Construct

This is often a truer reflection of the situatfon, because
in a case like this there is usually something special
associated vith the first iteratian,

With the sequence, selection and iteration constructs
described, Microprocessor Pascal programs can be written
directly from the software design:

BEG l N
A ;

Figure 6-7 A Sample Program

4

Texas Instruments 6-43

WHILE COND 1 DO
BEGIN

I F COND 2
THEN B
ELSE C ;

IF COND 3
THEN E
ELSE

BEGIN
F ;
G

END
END

END

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

If the Microprocessor Pascal code is indented to reflect the
structure, there is a strong visual resemblance between the
program and the structure diagram, which can he used as a
check,

When the control structures are used in conjunction with the
data typing features it is possible to produce a program
that is clear, uncomplicated (but never the less complex)
and largely self-documenting. Although the following
program lines are a little whimiscal, they do illustrate the
point.

CONST number of people = 50;
expectgd - ;umber - of-legs = number - of - people DIV 2;

VAR animal : (lion, tiger, cat, dog, rhino);

BEGIN
CASE animal OF
doe: at it on the head: u .

cat: strzke-its - - baFk; '

OTHERWISE
IF life is not worth - living THEN hang - around
ELSE ruK - for - it

END
END ;

6.7.7 ESCAPE Statement

The ESCAPE statement is a 'structured jump'. It is used for
premature termination of a structured statement, procedure,
program or process, It allows an orderly exit to be made
through the normal exit point of the structure. Its form
is:

ESCAPE <identifier>

where <identifier> may be an escape label, procedure name,
program or process name.

An escape label, followed by a colon, may prefix any
structured statement, (The structured statements are:
compound statement, IF, CASE, FOR, WHILE and REPEAT
statements.) Each escape label is implicitly declared by
its appearance in the program, and can only be referenced
within the structured statement it precedes, Unlike GOT0
labels (see below), ESCAPE labels need not be declared at
the start of the program.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

loop: WHILE i <= n DO
BEGIN
IF eof THEN ESCAPE loop;
read (val);
sum : = sum + val;
i : = i + 1

END ;

6.7.8 GOT0 Statement

The GOT0 statement is an unstructured jump:

It transfers system execution directly to the statement
having the specified label.

A statement label is an unsigned fnteger which must be
declared in a LABEL declaration at the start of the block in
whf ch it is used,

PROGRAM sample ;
LABEL 2;

.
BEGIN .

2 : i : = i + 1 ;
IF vector [i] < 100 THEN GOT0 2;

.
END.

GOT0 statements should be used as little as possible, if at
all, because they tend to lead to 'spaghetti code' which is
difficult to follow and prone to error. In some languages
(eg FORTRAN), GOTOs are necessary because the constructs
necessary to implement control structures directly are not
available. This is not the case in Microprocessor Pascal,
which has a complete set of sequence, selection and
iteration constructs that are sufficient to implement any
program algorithm. In almost every case where a GOT0 might
be used, an ESCAPE statement can be used instead, or the
program can be restructured to eliminate the need for any
jump at all. This will result in clearer code.

Although the GOT0 statement has been included in
Microprocessor Pascal it has deliberately not been made easy
to use. All labels used must be declared in advance.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDROOK MICROPROCESSOR PASCAL

6 , 8 CONCURRENCY

Concurrency is an integral part of the Microprocessor Pascal
language and an understanding of this concept is built into
the Microprocessor Pascal System tools (in particular, the
compiler and the host and target debuggers), In a target
environment, concurrent execution of a multiple process
system is supported by the MPX and MPIX executives.

Concurrency is the simultaneous execution of a number of
different software programs, or processes. Further
information on concurrency is given in Section 5.2.1,

This section describes some of the functions performed by
the executive, and also the mechanisms provided for
synchronization and communication between processes,

6.8.1 Processes

The term "process" as used in this section applies to all
concurrent units in Microprocessor Pascal (implemented using
the keywords SYSTEM, PROGRAM or PROCESS - see section 6.3,3
and section 6,9),

When a SYSTEM is first executed, the <system body) is
automatically started, However, all other processes, must
be explicitly activated using the START statement, The
<system body> should only contain the code to initialise the
system, which will typically consist of a series of START
statements,

On process activation, stack space is allocated to the
process from the heap, The amount of stack space to be
allocated to a process is set using the concurrent
characteristic:

(# STACKSIZE = required stack size) - -
which is part of the process declaration,

A process can be in one of three states:

o Ready - the process is able to run (but there is
a higher priority processes currently
executing),

o Active - the process is being executed, Under
Microprocessor Pascal, the active process (there
can only be one) is always the ready process with
the highest priority,

Texas Instruments 6-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

o Blocked - the process is suspended (waiting for
an event from another process to occur) and
unable to run until the event has occurred.

6.8.2 Process Record

Each process has a unique process record. This is used by
the executive to access information particular to a given
process (where its stack is located, its identity, its
priority, etc). The process record is also used for storing
a process's volatile environment: display, program counter
(PC), workspace pointer (WP), and status register (ST).
(For an explanation of PC, WP and ST see section 8.4.3.)

The display is a 16-word area containing addresses of the
stack frames which can be accessed by the currently
executing routine (ie data areas of other blocks which are
in scope). The display is a 'short cut' means of access to
remote stack frames that is quicker than tracing back
through the stack frame linkage.

6.8.3 Process Scheduling

The executive Run-Time Support (RTS) determines which of
several concurrent processes is to be executed next based on
process readiness and process priority. The scheduling
policy used is known as pre-emptive priority scheduling.

Every process in a SYSTEM has a priority in the range 0
(highest or most urgent) to 32766 (lowest or least urgent).
This is specified by the concurrent characteristic:

{ # PRIORITY = required - priority - level)

which is part of the process declaration. Priorities 0 to
15 are reserved for interrupt device handling processes.

Through the process records, the executive maintains two
queues: one is a circular list of all the processes known in
the system; the other, the ready queue, is a priority
ordered queue of processes that are in the ready state. The
scheduling algorithm takes the first process in the ready
queue and makes that the active process. This process is
allowed to continue its execution until either it
terminates, it becomes blocked, or a higher priority process
that was blocked becomes ready.

When a process becomes blocked, it is removed from the ready
queue and the active process becomes the next process in the
ready queue. If a process's state is changed form blocked

Texas Instruments 6-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

to ready, it is inserted into the ready queue according to
its priority, (The process will be inserted into the ready
queue after processes with the same priority, Interrupt
device handling processes are inserted into the queue before
processes with the same priority,) If the process which has
just become ready is inserted into the ready queue in front
of the active process, then the processor is pre-empted and
the new process becomes the active process.

To ensure that there is always at least one process in the
ready state, the executive RTS automatically creates the
'idle process' (with the lowest priority possible - 32767)
on system initialisation,

6 , 8 , 4 Process Synchronization

Processes are independent but it is often necessary for them
to synchronize their actions. The simplest way of doing
this is via the semaphore and its primitive operations wait
and signal. Although these operations are implemented as
routines (ie a collection of instructions) they must be
executed as though they are single machine instructions.
IJntil the routines have completed, nothing must access the
semaphore, the queues operated on, or the wait and signal
operations themselves, This indivisibility is assured by
setting the interrupt mask to zero on entry to the routines,
and then resetting it back to its previous value on exiting
them, The basic idea of a semaphore is described in Section
4 e l l e l e

6,8.4.1 Semaphores

The semaphore is considered to be so fundamental to process
synchronization that it is a predefined Microprocessor
Pascal type (like an INTEGER or REAL), Although the
compiler recognises the type semaphore (and allocates one
word for each semaphore variable), a semaphore variable is,
in fact, a pointer to a structure that is allocated from the
heap at run-time by the INITSEMAPHORE procedure,

The required Microprocessor Pascal statements to create a
semaphore are:

PROCEDURE initsemaphore(VAR sema : SEMAPHORE;
value : INTEGER) ; EXTERNAL;

VAR semaphore name : SEMAPHORE; -
ini tsernaphore(semaphore - name,initial-value);

After executing the INITSEMAPHORE routine, the variable
SEMAPHORE - NAME will reference the newly created semaphore,

Texas Instruments 6-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

which will have its counter component set to INITIAL VALUE,
For most applications INITIAL - VALUE will be set to zero.

A semaphore consists of three elements:

o A non-negative counter of unserviced events.

o A queue (possibly empty) of suspended
processes, This queue uses First In First Out
(FIFO) ordering.

o A check word that allows the executive to ensure
that semaphore operations are actually being
performed on semaphores,

The Microprocessor Pascal RTS gives greater flexibility in
handling semaphores by providing routines in addition to the
basic WAIT and SIGNAL operations (a full list of these can
be found in section 6,13,9,3),

6 , 8 , 4 , 2 Wait Operation

A WAIT operation decrements the semaphore's non-negative
counter if it is non-zero, otherwise the issuing process
(the active process) is put into the blocked state, (The
process is removed from the scheduling ready queue and
inserted into the semaphore queue,)

6 . 8 . 4 . 3 Signal Operation

A SIGNAL operation increments the semaphore's non-negative
counter if the semaphore queue is empty, otherwise the first
process in the queue is put into the ready state. (The
process is removed from the semaphore queue and reinserted
into the scheduling ready queue,)

The classic producer/consumer situation is an obvious
example of process synchronisation, In this, one process
produces an item (eg a buffer full of text) while another
one consumes it, A simplified version of this is shown
below,

PROCESS producer PROCESS consumer

, (make item)

Texas Instruments

. (use item)

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CONSUMER must WAIT for ITEM to be made before it attempts to
use it. If PRODUCER has already made ITEM, the semaphore
DONE (initialised to zero) is SIGNALed and CONSUMER will be
able to continue. Otherwise CONSUMER will be suspended
which will allow PRODUCER to make ITEM. When ITEM has been
made, the SIGNAL will cause CONSUMER to be removed from the
semaphore queue and inserted back into the scheduling ready
queue.

If the CONSUMER and PRODUCER processes are cyclic, then the
above example cannot be relied upon as there is no guarantee
that CONSUMER has finished with ITEM before PRODUCER
replaces it with a new one. A more complete example is:

PROCESS producer PROCESS consumer
BEGIN BEGIN
WHILE TRIJE DO WHILE TRUE DO
REGIN BEGIN
wait(availab1e); wait(done);

. (make item)

signal(done)
END

END;

. (use item)

signal(availab1e)
END

END ;

The semaphore AVAILABLE is initialised to one so that on the
first time around the loop, PRODUCER does not get
suspended,

When semaphores are used to ensure exclusive access to two
or more resources, extreme caution must be exercised to
prevent a condition known as deadlock. This takes place
when two or more processes are suspended, awaiting a
condition that can not happen because there is no active
process to cause the needed event to occur.

For example, if two simultaneously executing processes (A
and B) both require exclusive access to resources (X and Y),
the following sequence may result:

A g e t s X .. ArequestsY
B gets Y .. R requests X

In the above example, neither A nor B will ever resume
execution, as A will be waiting for Y (which B has) and B
will he waiting for X (which A has). One possible way to
ensure that this does not happen is to force both processes
to request the resources in the same order. However, in
some situations this might not be practical or efficient.
Here either (or both) processes must check the availability
of succeeding resources and, if unavailable, release those
already acquired.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.8.5 Interprocess Communication

To implement a practical function it is usually necessary
for a process to be able to communicate with other processes
in the system. Microprocessor pascal supports four
mechanisms for interprocess communication. These are
described below.

6.8.5.1 Shared Variables

The simplest form of interprocess communication is
accomplished through the sharing of variables. A nested
process can access all its parent's variables. (Heap
variables can also be accessed since it is possible to pass
pointers as parameters to a process.)

However, it is essential that only a single process is
allowed to operate on any shared variable at a time, This
can be achieved by representing the shared variable as a
record structure containing a mutual exclusion semaphore
(the semaphore is initialised to one), and enclosing any
code sections referencing the variable with wait and signal
operations on the semaphore. For example:

VAR b: RECORD
mu t ex : SEMAPHORE ;
shared - variable: any-type;

END ;

WITH b DO
BEGIN

wait(mutex);
(access/modify shared - variable)

signal(mutex);
END;

The WITH statement above is used to simplify references to
components of a record structure. This allows BOMUTEX and
B.SHARED VARIABLE to be referred to by the identifiers MUTEX
and SHAR~D - VARIABLE respectively .
6.8.5.2 Message Buffers

A message buffer is a shared data structure through which
interprocess communication is possible. It allows a process
to send messages to another process without the sender
having to wait until the receiver is ready for the message
(ie the messages are buffered). In this context a "message"
is any structure which can be copied from one process to
another .
Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

A message buffer is of the form:

CONST max messages = (* some number *)
TYPE message - index = 1. .max messages ;

message = some user defined structure; - - -
VAR message - buffer:

RECORD
mutex,not empty,not full: SEMAPHORE;
next in,next out: message index;
buf fFr : ARRAY [message - inzex] OF message ;

END ;

mutex - Ensures mutual exclusion (initialized to 1)

not empty - Indicates how many messages are in the buffer -
(initialized to 0)

not - full - Indicates how many vacant elements in the buffer
(initialized to max messages)

next in - Where the next message is to be stored
nextout - Where the next message is to be taken from -
Initially, .NEXT - IN and NEXT - OUT are set to zero.

To deposit a message into the buffer

WITH message buffer DO -
BEGIN

wait(not full);
wait (mu tex) ;

next in:=next in MOD max messages +l; -
s ignal (mu t ex)i
signal(not - empty)

END;

To remove a message from the buffer

WITH message - buffer DO
REGIN

wait(not empty);
wait (nutex) ;
message - out:=buffer[next out]; -
next out:=next out MOD max messages +l; - -
sign;hl(mutex);
signal(not - full)

END;

Note: Deadlock could result if the order of the wait
operations is reversed in either routine.

Updating the buffer element pointers, NEXT IN and NEXT OUT,
by MODing them with MAX MESSAGES and thenadding one ailows
the message buffer to be- used in a circular fashion (a

Texas Instruments 6-52 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

buffer managed in thfs way is known as a circular or
ring buffer).

Note: MESSAGE - IN and MESSAGE - OUT must be variables of type
XESSkGE.

6.8.5.3 Channels

The channel mechanism permits communication between any two
(or more) concurrent routines (PROGRAMS or PROCESSes) in a
system, Channel data structures are not pre-defined in the
program code, but are allocated dynamically from the system
heap as required, Channels provide a standard, pre-written
set of routines for exchanging messages, .
Channels also provide more flexibility, The two previous
mechanisms do not allow communication between PROGRAMS, or
between PROCESSes defined within different PROGRAMs (as
variables cannot be defined at the SYSTEM level),

Figure 6-8 Channel Mechanism

SENDER CHANNEL X

PROCESS *
s -

Channels are referenced by channel names (in fact, channel
names are 16 bit numbers). There is a system-wide directory
of channel names, maintained by the executive, which is
referenced whenever a PROCESS or PROGRAM wishes to "connect"
to a channel, It is also possible to allocate channels
which are specific to an individual software package (for
example, the Interprocess File Subsystem makes use of a
locally defined set of channels for internal operations),

RECEIVER
PROCESS

In order to use the channel mechanism:

o All participating concurrent routines must agree
on the channel name to be used, This is
hard-coded into the routines,

o Each participating routine requests the
executive to allocate and initialise the data
structures for a particular channel name using

Texas Instruments 6-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

t h e CSPNIT p rocedure ,

o A r o u t i n e t h a t wants t o send d a t a a l o n g t h e
c h a n n e l a l l o c a t e s a message b u f f e r u s i n g
CSALLOCATE. The r e q u i r e d message i s w r i t t e n
i n t o t h e a p p r o p r i a t e f i e l d s of t h e message
b u f f e r which i s then " t r a n s m i t t e d" u s i n g
CSSEND, A c a l l t o CSWAIT e n s u r e s t h a t t h e
t r a n s m i t t i n g r o u t i n e does n o t a c c e s s t h e message
b u f f e r u n t i l t h e r e c e i v i n g r o u t i n e h a s f i n i s h e d
p r o c e s s i n g i t , When p r o c e s s i n g h a s comple ted ,
t h e message b u f f e r can e i t h e r be re- used o r
r e t u r n e d t o t h e sys tem heap u s i n g CSDISPO'SE,

o A r o u t i n e t h a t w i shes t o r e c e i v e d a t a c a l l s t h e
p r o c e d u r e C$RECEIVE, Th i s r o u t i n e w i l l w a i t
u n t i l a message h a s been s e n t , i f one i s n o t
a l r e a d y a v a i l a b l e , m e n the message h a s been
p r o c e s s e d , CSACKNOWLEDGE i s used t o inform t h e
s e n d i n g r o u t i n e t h a t t h e message b u f f e r i s no
l o n g e r be ing used ,

A t y p i c a l d a t a d e c l a r a t i o n sequence i s :

CONST channe l no = any u s e r r e q u i r e d - number;
TYPE msg bufTer p t r = CdmsgbufTer;

msg-buf - f e r - = RECOKD
(Any r e q u i r e d s t r u c t u r e)

END;
c h a n n e l - i d - p t r = @INTEGER;

VAR b u f f e r : msg b u f f e r- p t r ;
c h a n n e l - i d : c h a n n e l - i d - p t r ;

The send ing r o u t i n e is :

(A l l o c a t e channe l CHANNEL NO from
t h e heap and r e f e r e n c e iF th rough
t h e v a r i a b l e CHANNEL I D - 1

CSINIT(channe1 - no ,channe l i d) ;
(~ l l o c a t e a message b u f f e r and r e f e r -

e n c e i t through t h e v a r i a b l e BUFFER)
~ $ ~ ~ ~ ~ ~ A ~ ~ (s i z e (b u f f e r) , b u f f e r) ;

, (F i l l t h e message b u f f e r)

(Send t h e f i l l e d message b u f f e r
r e f e r e n c e d by BUFFER 1

C$SEND(channel - i d , b u f f e r) ;
(Wait f o r t h e r e c e i v e r t o f i n i s h

p r o c e s s i n g t h e message b u f f e r 1
C$WAIT(buffer);

(Return t h e "used" message b u f f e r
back t o t h e sys tem heap 1

C$DISPOSE(huffer);

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The receiving routine is:

{ Allocate channel CHANNEL NO from
the system heap and reference it
through the variable CHANNEL-ID 1 -

CSINIT(channe1 - no,channel id);
(Wait for the next message buffer
sent via the channel CHANNEL NO
and reference it through the-)
variable BUFFER

CSRECEIVE(channe1 - id,buffer);
, (Process the message)

{ Inform the sender that the message
buffer is no longer in use 1

C$ACKNOWLEDGE(buffer);

A concurrent routine can "disconnect" itself from a channel
by cal ldng CSTERM, When all toutines have been disconnected
from a channel then the channel data structures will be
returned to the system heap,

Other channel procedures available include CSNOTIFY (signal
the calling process whenever a message arrives on the
specified channel), CSCRECEIVE (check to see if a message
has arrived hut do not wait if none has), and C$,CWAIT (check
if' the message has been processed but do not wait if it has
not) ,

6.'6.5.4 Interprocess Files

The fourth communication mechanism is implemented using file
variables (see section 6,6.12) that communicate through -

interprocess files. Interprocess files allow concurrent
routines to write to other concurrent routines exactly as if
they were writing to external devices, However, the
communication mechanism is handled entirely in internal
memory (by the Interprocess File Subsystem), The standard
file I/o procedures (READ, WRITE, etc) are used in exactly
the same way as for external files.

Each interprocess file has a character string name which is
identical to the names of all file variables connected to
it,

A fife variable has a ch-aracter s t r i ~ g name. T n l t i a l l y this
is the same as the variable's identifier, but it can be
changed using the procedure SETNA?!E,

Texas Instruments 6-55 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

FILENAME

t

r

FILE
VARIABLE

&

PROCESS

WRITE ,

Figure 6-9 Interprocess File Mechanism

READ+

Files must be opened by calling the procedure REWRITE for
write operatipns and RESET for read operations, before any
110 can be performed. (If the file is already open then it
is automatically closed before it is reopened in the
appropriate mode.) This also causes the file variable to be
connected to a file channel with the same name as the file
variable. If no file channel exists by that name, one is
created and given the appropriate characteristics.

FILE
VARIABLE

&

PROCESS

C,losing an open file (using the procedure CLOSE, or by
exiting a routine in which a file variable is declared) also
diqfconnects the file variable from the file channel. A file
clyannel is normally destroyed when all file variables have
been dis'connected from it,

The following allows processes A and B to communicate with
each other via the interprocess file TRANSFER, Process A
opens the interprocess file TRANSFER for writing, while
process I3 opens it for reading.

PROCESS a(.....); PROCESS b(.) ;
VAR transfer: TEXT; VAR transfer: TEXT; . .
rewrite(transfer); reset(transfer);
writeln(transfer,...); readln(transfer,...);

A similar effect would be produced by:

PROCESS a(OUTPUT:TEXT;...); PROCESS b(INPUT:TEXT;,..); . b

reset(input);
~riteln(,...~); readln(,....); . .

where these two processes are activated by

START a(filenamed('transfer'),...);
START b(filenamed('tran~fer')~.~~~:

Texas Instruments 6-56 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The function FILENAMED results in a file with the initial
name equal to the specified string,

-
lt is not necessary to p e r f o r m a REWRITE operation in the
second example for process A as this is automatically
performed on the default output text file OUTPUT,

6.9 MODULARITY

One of the most important features not addressed by Wirth's
original definition of Pascal is that of modularity,
Modularity allows a problem to be defined in terms of a
number of separate, self-contained, sub-problems (each of
which has a clearly defined interface). A sub-problem can,
in turn, be broken down into further sub-problems,
Typically, this decomposition continues until each
sub-problem is of a manageable size,

In Microprocessor Pascal, the language constructs SYSTEM,
PROGRAM and PROCESS enforce a modular approach to program
development, This hierarchical concurrent structure permits
the construction of complex concurrent functions which can
be encapsulated in a single package,

The fundamental unit of modularity is the PROGRAM; this
represents an independent function which has its own unique
"site of execution1', Although functions execute
concurrently with each other (with no possibility that one
will interfere with another), the code that the function
consists of typically executes sequentially,

However, in a complex function, it may be necessary to
create the function from a number of independent concurrent
sub-functions, This situation is catered for by the PROCESS
construct. Like PROGRAMS, PROCESSes are separate "sites of
execution" which are activated by being STARTed; they are
not simply "called1' like PROCEDURES and FUNCTIONS,

The complete structure of a PROGRAM with all subordinate
PROCESSes (and PROCEDURES and FUNCTIONS) is referred to as a
PROGRAM family, The PROGRAM family is a convient package
for a complete, independent function within a system. The
concurrent structure is described in Section 5,2,2,

If, for example, a function was to be designed to control a
lathe, sub-functions required might be 'monitor the chuck
speed', 'control the cutting depth' and 'control the cutter
position',

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

PROGRAM Control lathe; -
declarations;

PROCESS Monitor chuck speed; - -
declarations;
BEGIN (Monitor chuck speed) - -
END; (Monitor chuck speed) - -
PROCESS Control cutter depth; - -
declarations;
BEGIN (Control - cutter depth) -
END; (Control - cutter - depth)

PROCESS Control - cutter - position;
declarations;
BEGIN (Control - cutter - position)

END; (Control cutter position) - -
BEGIN (Control lathe)
START oni it or-chuck speed;
START Controlcutte'F: de~th:
START control-cutterpo$ition

END; (control-lathe - T
As each function, and sub-function, are separate "sites of
execution" and, once STARTed, execute totally independently
of the system, the user is able to specify the c9ncurrent
characteristics (heapsize, stacksize and priority) to be
used for each, These are defined by:

BEGIN (program or process body)
{ b STACKSIZE = amount-of stack;

HEAPSIZE = amount-ofIheap;
PRIORITY = program or process priority) - - -

END; (program or process body)

Under Microprocessor Pascal, an application is put together
from functions to form a system. A SYSTEM consists of a
number of declarations (constants, types, commons, PROGRAMS,
procedures and functions) and a <system body), The

(system body) contains the instructions that are first
executed when the system is initialized; it also specifies
the concurrent characteristics to be used while this
initialization is being performed,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

SYSTEM Look after shop - floor;
CONST declzrat ioFs ;
TYPE declarations;
COMMON declarations;

PROGRAM Control lathe; -
declarations;
BEGIN (Control lathe) -
END; (Control lathe) -
PROGRAM Control - miller;
declarations;
BEGIN (Control miller) -
END; (Control - miller)

BEGIN (Look after shop floor)
(/ I system concurrent yharacteristics)

START Control lathe;
START control-miller - ;

(system body)

END. (Look - after - shop - floor)

Modularity is further enhanced by allowing the user to
develop and compile modules in complete isolation from each
other and to link them together into a consistent system at
II configuration time". These modules may contain PROCEDURE,
FUNCTION and/or PROGRAM definitions (along with any
necessary data declarations). In this case, only one module
must have a real system body. The others must have a "null
system body", declared by:

SYSTEM System - dummy - name;
declarations;

PROCEDURE definitions;
FUNCTION definitions;
PROGRAM definitions;

BEGIN (System dummy-name)
($ nullbody T

END. (System dummy name) - -
When the modules are linked together to form the system,
there will be only one <system body). PROCEDURES,
FUNCTIONS, PROGRAMS or PROCESSes that are not defined in a
module but are used within it are accessed by declaring them
as EXTERNAL.

Further development of this modular approach, to encompass
hardware as well as software, leads to a functional approach
(see Section 5.1.1).

Texas Instruments 6-59 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Note: "FUNCTION" capitalised has a precise technical
meaning, as distinct from the more general use of
"function",

6 1 O INTERRUPTS

The 990 range of processors recognize 16 distinct interrupt
levels, numbered 0 (highest priority interrupt) to 15
(lowest priority interrupt), A full description of the 990
interrupt structure is given in section 8,10,

A device process is a process that has been written to
service a particular interrupt level, These processes are
identified by their priorities, All processes in a
Microprocessor Pascal system are assigned a priority, in the
range 0 to 32,766, The first 16 priorities, 0 to 15, are
reserved for use by device processes,

A process with a priority of (eg) 5 may service level 5
through level 15 interrupts, A process's priority is set
using the concurrent characteristic:

{ # PRIORITY = interrupt - level)

If a number of devices all use the same interrupt level,
then that level's device process must first determine which
device actually caused the interrupt before it can start
servicing it ,

All interrupts except the level 0 interrupt (RESET) are
disabled by calling the procedure MASK, The procedure
UNMASK enables interrupts which are more urgent than the
priority of the calling process,

The procedure EXTERNALEVENT is used to associate a semaphore
with a particular interrupt level, A device process
executes a WAIT on the semaphore associated with its
interrupt level. When an interrupt occurs, the executive
performs a SIGNAL on the semaphore associated with the
interrupt level, thus activating the suspended device
process,

The procedure ALTEXTERNALEVENT allows the user to specify an
alternative process that will be executed if the primary
process is not suspended on the interrupt's semaphore (eg if
it has not finished processing the last interrupt). This
procedure is intended to be used to service unexpected or
spurious interrupts,

The correspondence between a semaphore and an interrupt
level can be broken using the NOEXTERNALEVENT procedure,
while the alternative process correspondence can be broken

Texas Instruments 6-60 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

by the NOALTEXTERNALEBENT procedure,

PROGRAM level - 7 - handler(..,,);
VAR level - - 7 sem,spurious - level - 7: SEMAPHORE;

PROCESS interrupt - 7(level: SEMAPHORE);

BEGIN (interrupt - 7)
(d pri0rity=7;....~.);
WHILE TRUE DO -
BEGIN (do forever)
wait(leve1);
(process interrupt level 7)

END (forever loop)
END; (interrupt - 7)

PROCESS spurious - 7(level: SEMAPHORE);

BEGIN (spurious - 7)
(# priority=7;......);
wait(leve1);
(process spurious interrupt)

END; (spurious - 7)

BEGIN { level 7 handler) - -
initsemaphore(leve1 - 7 - sem,O);
initsemaphore(spurious level 7,O);
externalevent (level - - 7 ;em, 7)i
altexternalevent(spurious level - 7,7);
START interrupt 7 (level - - 7sem) ;
START spurious - T(spurious - level - 7)

END; { level - 7 - kandler)

If a fast device is incorporated into the system, the
Microprocessor Pascal interrupt handling mechanism may be
too slow and it may be necessary to write an assembly
language interrupt handler, To cover this eventuality, the
user can "hook" the assembly language routine into the
sys tern in two ways ,

o Using the ASSEMBLYEVENT procedure,

o Setting the appropriate interrupt vector (in the
"RXINIT" module) to reference the assembly
language routine and its workspace, In this
case the interrupt is handled totally outside
the Microprocessor Pascal run-time environment,

The ASSEMBLYEVENT procedure is used as follows:

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CONST level = required - interrupt level value; - -
TYPE workspace = ARRAY [1 a a 161 OF INTEGER;

VAR asm - wp : workspace;
PROCEDURE assemblyevent(VAR wp : workspace;

entry point : INTEGER;
level : INTEGER); EXTERNAL;

PROCEDURE asm idt ; EXTERNAL; -

assemblyevent(asm wp, location(asm idt), level 1; - -
where ASM IDT is the entry point label of the assembly
language ixterrupt handler. LOCATION returns the address of
ASM IDT. -
Note: The host debugger does not support assembly language
routines.

611.1 CRU Operations

Microprocessor Pascal supports direct 9900 CRU operations
(for those unfamiliar with the CRU concept see Section 8.9)
via the following standard procedures:

CRUBASE (base)
LDCR (width, value)
SRO (disp)
SBZ (d'isp)
STCR (width, value)

and the BOOLEAN function:

TB (disp)

Although these are writ ten as procedure calls, the
Microprocessor Pascal compiler actually transforms the calls
into in-line code.

6.11.2 Memory-Mapped 1/0

Communication to a memory-mapped device is performed by:

o Describing the structure of the device's
dedicated memory space in a type declaration (if

Texas Instruments 6-62 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

t h e device has a c o n t r o l register it will be
necessary to describe the individual control
flags in a packed record structure), In the
example below, this is the type identifier
CNTL REG, -

o Declaring a pointer variable that points to this
type (CNTL - REG - PTR below),

o Initialising this pointer variable to point to
the actual address of the memory-mapped device
via a "type transf er" (see section 6.6.14).

Having done this, assigning a value to the pointer variable
(or the appropriate field of it, if it is a packed record)
causes the value to be "written" to the device.

Referencing the variable on the right hand side of an
assignment statement, or anywhere an expression is required,
will cause the device to be "read",

For example: If an 8 bit digital to analogue rcnverter is
located at hex address >FC06, then the following
Microprocessor Pascal statements will cause the value 127 to
be written to the device,

CONST address of the device = #FC06;
value to be our~ut = 127:

TYPE cntl - reg ptr = @cntl reg;
cntlmreg - = INTEGER;

VAR dac : cntl - reg - ptr;
dac::INTEGER := address of the device; - - -
dac@ := value to be output; - - -

As the D/A only has an 8 bit resolution, CNTL - REG could be
defined as:

TYPE cntl reg =
P~CKED RECORD
fill : 0,.255; "8 unused bits
output : 0,,255 "8 bit output value

END;

The output operation now becomes;

dac@.output := value-to - be output;
If a sequence of operations is to be perforaed on the
memory-mapped device then the Microprocessor Pascal keyword
WITH can be used to "shorten" the variable name (see section
6e8,5,1),

Texas Instruments 6-63 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

For a 12 bit analogue to digital converter, located at hex
address COlA, the following Microprocessor Pascal statements
will cause the device to be read,

TYPE bits12 = O,,#FFF;
a to d cntl reg ptr = @a to d cntl reg; - - 0 - - - -
a to d cntlreg-=
- PXCFED RTCORD

start conversion flag : BOOLEAN;
end - OF - conversion - flag : BOOLEAN;
input - bits : bitsl2;

END;

VAR a to d - - : a to d cntl reg ptr; - -
input - reading : bTtsi2:

a to d::INTEGER := #COlA; { Set a to d address) - 0 - -
WITH a to d DO - -
BEGIN

(If another reading is available then get it,
then initialise the A/D for the next reading)

IF end - of - conversion flag THEN -
REGIN
input reading := input bits;
start-conversion := T R ~ E ; { Set start conversion }
start-conversion - := FALSE (pulse 1

END;

END;

6.11,3 Files

The standard procedures READ and WRITE are provided for
input from and output to files. In addition, the procedures
READLN and WRITELN (read and write line) apply to text
files, File types are described in section 6.6,12 above,and
in the Microprocessor Pascal System User's Manual,

Texas Instruments 6-64 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

6.12 DIGITAL VOLTMETER (DVM) EXAMPLE

MICROPROCESSOR PASCAL

This example consists of four independent "do forever"
processes thst synchrozise their actions vba semaphores.

The system structure for this example is shown below:

,SYSTEM dvm;

PROGRAM initialise and go; - -
PROCESS display;

PROCESS analog; 1
PROCESS keyboard;

PROCESS clock; 1
-

Figure 6- 10' DVM Example - Lexical Hierarchy

SYSTEM FO
PROGRAM
INITIALISE-
AND-GO

CLOCK
INTERRUPT
/

Figure 6-11 DVM Example - Concurrent Structure

Texas Instruments 6-65 October 1981

/

PROCESS
KEY BOARD

/

PROCESS
DISPLAY

/ I

PROCESS
ANALOG

/

/

PROCESS
CLOCK

J

SIGNAL (STROBE-KEYBOARD)

SIGNAL (STROBE-DISPLAY)

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

* Microprocessor Pascal Concurrency Demonstration Program * * *
? * Dave Wollen, EMTC, Bedford *

* *
* 15 Oct 1979 ~k

* *
* DESCRIPTION *
* The program implements a simple digital voltmeter *
* using a special demonstration box, The main ~t

* purpose is to illustrate Microprocessor Pascal, *
* especially concurrent processing, and for this *
* reason the system has been implemented as a number *
~t of separate processes synchronized by semaphores, *
* *
* The A/W used includes a strobed keyboard, strobed JI:

* LED display (with decoders) and a Texas Instruments *
* TL505 A/D converter. The system will run on a *
* Texas Instruments TM990 microprocessor module with *
* at least >2AFO bytes of program memory, The on- JI:

* board TMS9901 is used to provide clock interrupts, *
* *
* The H/W is set up in such a way that the keyboard *
* may not be used when the analogue input switch is *
* in the ON position. *
* *
* OPERATION .A: * When the analogue input switch is "OFF" a threshold *
* voltage can be keyed in (hundredths of a volt), with *
* the system accepting only the last four digits *
* keyed. To start converting, key "GO" and turn on *
* the analogue input switch, The input voltage will *
* be constantly monitored and displayed; if it rises *
* above the entered threshold the display will show *
* 9999 until it falls below threshold once more, To *
* alter the threshold, turn off analogue input, key t

* "STOP" and enter new value, *
* *
..
SYSTEM demo; {$debug)
TYPE non-neg = 0..32767;

interrupt = 0,.15;

PROCEDURE initsemaphore(VAR sema: SEMAPHORE;
count: non-neg); EXTERNAL;

PROCEDURE externalevent(sema: SEMAPHORE;
level: interrupt); EXTERNAL;

PROCEDURE wait(sema: SEMAPHORE); EXTERNAL;

PROCEDURE signal(sema: SEMAPHORE); EXTERNAL;

PROGRAM initialise and go; - -

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CBNST interrupt level = 3;
V AR threshold; analog value: ARRAY [O.. 31 of 0.. 9;

converting : BOOLE~N;
t ime : SEMAPHORE ;
time to strobe display: SEMAPHORE;
t ime-f or a d czun t : SEMAPHORE ; - - - -
time - to - strobe - keyboard: SEMAPHORE;

PROCESS clock;
CONST clock mode = 0; enable clock interrupt = 3;

timeron - - 9901 = #loo; peFiod - for - 58hz = fi65D;

{This process synchronises all others. It initialises
the 9901 clock register and waits for each level 3
interrupt, after which it signals to other processes
that they can resume. If the period between
interrupts is made too short, other processes will
not run to completion; for the sake of brevity no
attempt is made to cope with this.)

BEGIN (clock)
{ # STACKSIZE=50; HEAPSIZE=O; PRIORITY=interrupt - Ievelj
crubase(timer on 9901);
ldcr(l5, perizd - For - 58hz);
WHILE TRUE DO
BEGIN

sbz(c1ock mode);
sbo(enab1; clock - interrupt) ;
wait (timely
signal(time to strobe display);
signal(time-fo';r - - - - a d count);
signal(time - to - strobe - keyboard)

END
END; {clock)

PROCESS display;
CONST num of bits = 9; display base = 288;

higK - byte = 8100; low - byte = 0;
V AR dig ptr: 0..3;

byte selector: 0. .6100;
dispiay - output: 0. .#199;

(This process strobes and updates the display when
it has been signalled to do so. It simply converts
the appropriate two digits of threshold or analog -
value (depending on the current mode) to a bit
pattern (including the strobe bit) and outputs this
pattern to the CRU.)

BEGIN (display)
(# STACKSIZE=50; HEAPSTZE=O; PWIORITY=16)
dig ptr := 2;
cru~ase(display - base) ;
WHILE TRUE DO
BEGIN

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

waititime to strobe display);
I F dig - ptF T 2 THEN-

BEGI N
dig - ptr := 0;
byte-selector := low - byte

END
ELSE
BEGIN
dig - ptr := 2;
byte-selector := high o byte

END;
I F converting THEN

display - odtput := analog value [dig ptr]
+ analzg value[dTg - ptr + l]*16
+ byte - selector

ELSE
display-output := thresholdrdig ptr]

+ threshold[dTg ptr + 11*16
+ byte selector?

ldcr(num of - bits, display - output)
END {whil;)

END; {display)

PROCESS analog - to - digital - converter;
CONST a d base = 308;

0-

comparator on 505 = 4; - -
A input to - 505 = 0; B input to 505 = 1; -
t?i = ZST ti = 25y
Vref = 250; ratio = Vref DIV tl;
max count = 32767 DIV ratio;

TYPE conversion-period = (pre-con, in-to, in - tl, in - t2);
VAR count: O..max~count;

when: conversion period;
limit, millivolts: INTEGER;

{This process implements all the A/D conversion. The
TL505 requires a specific sequence of events to occur
for conversion, and the final representation of the
analog value is the value held in a S/W counter, which
may then be scaled etc as required, The symbols used
in this process correspond to those used in the 505
data sheet, to which further reference should be made.
If the current mode is "not converting'' then the 505
control lines are kept high,)

BEGIN (analog to digital converter)
{ # STACK SIZE=^^; HEAPS~E=O; PRIORITY=~~)
cruhase(a d base);
WHILE TRTJE DO
BEGIN
wait(time for - - - a d count);
I F converiing THEN
BEGIN
count := count + 1;
CASE when OF
pre-con : BEGIN

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

sbz(A input to 505);
sbz (~-in~ut-to-505) ; - - -
when := in to;
count := 0-

END;
in to : IF count = to THEN -

BEGIN
sbo(A input to 505);
sbo(B-inputto-505) : - - - - -
when := in tl; -
count := 0

END;
in tl : IF count = tl THEN -

BEGIN
sbz(A - input to 505);
when := in - F2;-
count := 0

END;
in - t2 : IF tb(comparator - on - 505) THEh

REGIN
sbz(B - input to 505): - -
whelz := A L L '- to;
millivolts-:= ratio * count;
count := 0;
limit := threshold[3]*1000

+ threshold[2]*100
+ threshold[l]*lO
+ threshold[O];

IF millivolts > limit THEN
millivolts := 9999;

FOR i := 0 TO 3 DO
BEGIN
analog value[i] := millivolts MOD 10;
mi lliv~lts := millivolts DIV 10

END
END {if tb)

END (case)
END (if converting)

ELSE
BEGIN
when := pre con:
sbo(~ input-to 505) ;
sbo(B-inputto-505) - - -

END
END (while)

END; (analog - to - digital - converter)

PROCESS keyboard - input;
CONST width = 4; strobe = 0;

key - input- = 31 1; nothing = FF; -

V AR row: 306, ,312;
key push, last push: 0.,15;
updgt ed : BOOLE~N;

PROCEDURE update - inputs;

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

PROCEDURE change threshold ; -
{This procedure shift threshold and accept most
recent key into least significant position)

BEGIN {change threshold)
FOR i := 3 EOWNTO 1 DO threshold[i] := threshold[i-1] ;
threshold [O] : = key

END; (change - threshold)

{This procedure decode the keyboard and take appropriate
action. The keyboard is arranged as follows:

LSB. • • .MSB

310 1 2 3 4
308 5 6 7 8 %
306 9 0 go stop

BEGIN {update inputs)
CASE key puFh OF

#E - : key := 1;
#C, fD : key := 2;
8..#B : key := 3;
0..7 : key := 4

END;
key := key + 4*abs((row - 310) DIV 2);
CASE key OF
10 : key := 0;
11 : IF NOT converting THEN converting := TRUE;
12 : converting := FALSE;

OTHERWISE
END;
IF NOT converting AND key < 11 THEN change - threshold;

END; (update - inputs)

(This process strobes the keyboard and debounces
and decodes any input when signalled to do so. If
the mode is "converting", the only key of interest
is "stop". Keys are active when low.)

BEGIN (keyboard input)
{ # STACKSIZE=~O; HEAPSIZP.=O; PRIORITY=16)
row := 306;
key push := nothing;
last push := nothing;
updaied : = FALSE;
WHILE TRUE DO
BEGIN
wait(time to-strobe - keyboard);
crubase(row) ;

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

crubase(key - input);
stcr(width, keg - push);
crubase(row) ;
sbo(strobe);
IF key push = nothing THEN
REGIZ
updated := false;
row := row + 2;
IF converting OR row = 312 THEN row := 306;

END
ELSE
IF key - push = last - push AND NOT updated THEN
BEGIN
update inputs;
updatez := TRUE

END;
last - push := key - push

END
END; (keyboard - input)

{This pr0gram.i~ used to initialise all the semaphores,
zero the threshold and analog - value arrays and start
all the other processes)

BEGIN (initialise and go)
(a STACKSIZE=~O~; HEAPSIZE=~OO; PRIORITY=16)
initsemaphore(time to strobe display, 0);
initsemaphore(time-for - - - a d count, 0) ;
initsemaphore(timeto strobe - keyboard, 0) ;
initsemaphore(time~ 07;
externalevent(time, interrupt - level);
converting := FALSE;
FOR i := 0 TO 3 DO
BEGIN
threshold [il := 0;
analog - valueti] := 0

END;
START display;
START analog to digital-converter;
START keyboaFd - Tnput ;
START clock

END; (initialise - and - go)
REGIN {demo)

{ # STACKSIZE=300; HEAPSIZE=O; PRIORITY=16)
START initialise and go - -

END. (demo)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

6.13 REFERENCE SECTION

6.13.1 System Commands

Compile a Microprocessor Pascal
program in background

Generate native code
Collect MPIX run-time support
Compile a Microprocessor Pascal

program
Copy text files
Copy text files
Debug a compiled Microprocessor
Pascal program

Delete temporary files
Create/edit a file
Execute a compiled Microprocessor
Pascal program

Generate routine map
Print a stored file
Delete synonyms used
Reverse assemble object code
Save an edited file
Execute SCI command
Display a stored file
Separate object modules
Terminate a Mircroprocessor Pascal
session

File utility program
Wait for background task to finish

MICROPROCESSOR PASCAL

BATCH

CODEGEN
COLLECT
COMPILE

COPY
COPYSRC
DEBUG

DELETE
EDIT
EXECUTE

GENMAP
PRINT
PURGE
RASS
SAVE
SCI
SHOW
SPLIT
QUIT

UTILITY
WAIT

* Only for DX990 users
#I Only for FS990 and TMAM9000 users

6.13.2 Utility Commands (990/4 and TMAM9000 only)

Create a file
Compress a file
Change file name
Change file protection
Delete file
Change listing file/device
Receive file across data link
Transmit file across data link
Map disc
Display time and date
Terminate program execution

Texas Instruments

CF,file name
CM,file name
CM,old file name,new file name
CP,file name,<U or W or D>
DF,file name
DO, f ile or device name
DR,file name
DT,file name
MD,disc name
TI
TE

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6 = 1 3 , 3 E d i t Commands

Help CMD HELP
Edi t /compose mode F7 key
Syntax check CMB CHECK
Termina te and s a v e e d i t CMD QUIT
Termina te w i t h o u t s a v i n g CMD ABORT
Change e d i t i n g f i l e s CMD INPUT
Save t h e e d i t e d f i l e CMD SAVE

S c r o l l f i l e down
S c r o l l f i l e up
New l i n e
Tab
Back t a b
S e t t a b inc remen t
Move c u r s o r up
Move c u r s o r down
Move c u r s o r r i g h t
Move c u r s o r l e f t
Move t o home p o s i t i o n
F i n d [n t h occurrence o f]

s p e c i f i e d p a t t e r n
R e l a t i v e p o s i t i o n i n g
Move t o t o p of f i l e
Move t o bot tom of f i l e

I n s e r t l i n e b e f o r e
D u p l i c a t e l i n e
D e l e t e l i n e
Sk ip t o n e x t t a b s e t t i n g
I n s e r t c h a r a c t e r
D e l e t e c h a r a c t e r
C l e a r l i n e
Replace s t r i n g s [n t i m e s]

S p l i t l i n e

NOTES

F1 key
F2 key
RETURN key
SHIFT TAB SKIP key
FIELD key
CMD TAB(c h a r a c t e r count)
Up-arrow key
Down-arrow key
Right- arrow key
Lef t- arrow key
HOME key
CMD FIND(pat tern ,

[occurence number])
CMD [+ o r -] l i n e count
CMD TOP
CMD BOTTOM

U n l a b e l l e d g r e y key
F4 key
ERASE INPUT key
TAB SKIP key
INS CHAR key
DEL CHAR key
ERASE FIELD key
CMD REPLACE(o r i g i n a l p a t t e r n ,

new p a t t e r n , [r e p e a t c o u n t])
F8 key

CMD HELP
S t r i k e t h e CMD key and t h e n t y p e i n t h e word HELP.

[exp l
I n d i c a t e s t h a t i t e m EXP i s o p t i o n a l . O p t i o n a l i t e m s may be
o m i t t e d (t h e y d e f a u l t t o 1) a l o n g w i t h any p r e c e d i n g comma.

p a t t e r n
Is e i t h e r an i d e n t i f i e r o r a s t r i n g of c h a r a c t e r s encTosed
w i t h i n double q u o t e s .

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Getting Started/Finished
Resume execution GO
Terminate DEBUG session QUIT
Help HELP(command)
Load saved program LOAD ("pathname")
Copy commands from file COPY ("pathname")
Show unresolved externals SE

Status Displays
Display process DP([process])
Display all processes DAP

~reakpointslsingle Step
Assign breakpoint AB(routine, [statement number])
Delete breakpoint DB(routine,[statement number])
Delete all breakpoints DAB(process)
List breakpoints LB([process])
Select single step mode SS([process],[flag])

Showing/Modifying Data
Show stack frame SF(
Show heap packet SH(
Show common area SC(
Show indirect variable value sI(
Show absolute memory location SM(
Modify stack frame value MF (
Modify heap value MH (
Modify common value MC (
Modify indirect variable MI (
Modify memory (

[routine],[disp],[length])
[routine],[disp],[length])
common name,[disp],[length])
routine,disp,[length])
address, [length])
routine, [disp] , [ver] , value)
routine, [disp] , [ver] ,value)
routine,[disp],[ver],value)
routine,disp,[ver],value)
routine,[ver],value)

Tracing Execution
Trace process execution TP([process],[flag])
Trace routine ent ry/exi t TR([process],[flag])
Trace statement flow TS([process],[flag])

Monitor Process Scheduling
Select default process SDP(process)
DEBUG the process DEBUG(process,[flag])
Assign breakpoint to process ABP(process)
Delete breakpoint from process DBP(process)
Hold process HP(process)
Release process RP(process)

Interprocess File Simulation
Connect input file CIF(filel, [f ile21)
Connect output file COF(filel, [file21)

Interrupt Simulation
Simulate interrupt

Selection of CRU Mode
Select CRU mode

SIMI(level)

CRU([process] ,cru mode)

Texas Instruments 6-74 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

NOTES

1x1
Indicates that the item X is optional, Parenthesis may be
omitted if all the parameters are optional or defaulted.

process
If omitted it defaults to that set by SDP, It may be either
a name (youngest instance of the PROCESS) or an integer
constant (older instance of a particular PROCESS), found
using DAP,

routine
May he either a name (most recent activation of the ROUTINE)
or an integer constant (earlier activation), found using DP.
Optionally it specifies the process which activated it by
preceding ROUTINE with PROCESS (this is followed by '.').

flag
Is an identifier that is either TRGE or FALSE: if TRUE the
command is enabled; if FALSE the command is disabled.

disp
Is the byte displacement.

ver
Is the old value of the variable being modified, if it does
not match the actual value an error occurs,

file1
An 8 character Microprocessor Pascal file name identifier
enclosed in double quotes,

file2
A file pathname enclosed in double quotes. If omitted it
defaults to the user's terminal,

cru mode
One of the following:

EXECUTE Execute all CRU instructions
OFF Ignore all CRU instructions
DEBUG Default - All CRU 1/0 is user-simulated

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6 . 1 3 . 5 File Manipulation Routines

CLOSE(f)
Place file F in closed state.

DECODE(s,n,stat,q)
Convert string S, starting at the Nth component of S, into a
form compatible with the read variable Q (see NOTE 2) and
store in Q. Status of the operation is returned in STAT,

ENCODE(s,n,stat,p)
Convert the write parameter P (see NOTE 1) into character
format and store the result in S, starting at the Nth comp-
onent. The status of the operations is returned in STAT.

EOF(f) : BOOLEAN FUNCTION
Returns a value of TRUE if the file F is not open for input
or is in the end-of-file state.

EOLN(f) : BOOLEAN FUNCTION
Returns a value of TRUE if the last character of the current
line in the file F has been read.

FILENAMED(S) : ANYFILE FUNCTION
Connects the file variable of type ANYFILE to the file with
the name S (S is a string constant).

MESSAGE(X)
Write the string X to the system message file.

READ(f,vl,..,vn) Sequential
READ(vl,..,vn) ---> READ(INPUT,vl,..,vn) Text
READ(f,recnum,vl,..,vn) Random
Read the components of a sequential, text or random file
into the specified variables Vi (see NOTE 2) . If the first
argument is not a file variable F, the file INPUT is used.
For Random files the second argument specifies the logical
record number RECNUM, starting from zero, For Sequential
and Random files, the remaining arguments must be compatible
with the particular file components.

READLN(f ,vl , . . ,vn)
READLN(vl,..,vn) ---> READLN(INPUT,vl,..vn)
READLN(INPUT)
Read the components of a text file into the specified
variables then carry on reading until the next end-of-line
marker has been read.

RESET(f)
Opens a file F for input and positions it to its first comp-
onent. If a Sequential or Text file is empty then EOF(f) is
true, otherwise it is false.

Texas Ins t rument s October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

REWRITE(F)
Marks a file F as empty and then opens it for output, For a
Sequential or Text file EOF(f) becomes true. This is auto-
matically performed for OUTPUT,

SETNAME(f,name)
Associate logical channel F to the physical file NAME, NAME
may not be the file OUTPUT,

~~~TE(f,vl,~.,vn) Sequential 
WRITE(vl,..,vn) ---> WRITE(INPUT,vl,..,vn) Text 
~~~TE(f,recnum,vl,..,vn) Random 
Write the components to a Sequential, Text or Random file
from the specified variables V1, ,Vn (see NOTE 2), If the
first argument is not a file variable F, the file OUTPUT is
used. For Random files the second argument specifies the
logical record number RECNUM, starting from zero. For
Sequential and RANDOM files, the remaining arguments must
be compatible with the particular file components.

WRITELN(f,vl,,,,vn)
WRITELN(V:!,~~~Y~) -----> T~XTELN(OUTPUT,vl,..vn)
WRITELN(0UTPUT)
Write the components to a text file F from the specified
variables Vl.,Vn (see NOTE 1) and then write an end-of-line
marker,

NOTE 1: WRITE variables for Text files may be of the form

E is an expression of type CHAR, INTEGER, LONGINT, REAL,
BOOLEAN, or a string,

M (INTEGER expression) is the minimum field width. If
omitted and E is REAL, floating point format is used,

N (INTEGER expression) specifies that the real number E
will be output in fixed point format with N digits
after the decimal point,

If E is INTEGER or LONGINT then the value may be written as
a string of hex digits (not preceded by 8) in the form:

E hex number or E:M hex number

If E is BOOLEAN then the identifier FALSE or TRUE is written
preceded by M-5 blanks, If M<5 then the character T or F is

. - written.

If E is a string (PACKED ARRAY of characters) t h e n the xhole
string is output,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

D e f a u l t f i e l d widths f c r WRITE operations are :

INTEGER 10 LOWGINT 15 REAL
BOOLEAN 5 CHAR 1 Hex
S t r i n g l e n g t h of s t r i n g

NOTE 2: READ v a r i a b l e s f o r TEXT f i l e s

V i s a v a r i a b l e t o be a s s i g n e d t h e v a l u e r e a d and must be
e i t h e r CHAR, INTEGER, LONGINT, BOOLEAN, REAL o r a s t r i n g .

V i s a CHAR - n e x t c h a r a c t e r i s r ead .

V i s a s t r i n g (l e n g t h L) - n e x t L c h a r a c t e r s a r e r ead .

V i s BOOLEAN - e i t h e r t h e c h a r a c t e r T o r F i s r e a d o r t h e
i d e n t i f i e r TRUE o r FALSE.

V i s INTEGER, LONGINT o r REAL - a s equence of c h a r a c t e r s
t h a t makes up t h e number i s r ead . The sequence may be
t e r m i n a t e d by any c h a r a c t e r t h a t i s n o t p a r t of t h e
number. P r e c e d i n g b l a n k s and end- of- l ine marke r s a r e
s k i p p e d . I f t h e f i e l d i s b l a n k t h e v a l u e r e a d i s ze ro .

6.13.6 A r i t h m e t i c R o u t i n e s

A l l ' r o u t i n e s ' p r e c e d e d by '*' must be d e c l a r e d EXTERNAL.

ABS(x: INTEGER o r LONGINT o r REAL) : a s a r g FUNCTION
R e t u r n s t h e a b s o l u t e v a l u e of X.

* ARCTAN(x: REAL) : REAL
R e t u r n s t h e a r c t a n g e n t of t h e v a l u e X.

* COS(x: REAL) : REAL
R e t u r n s t h e c o s i n e of t h e v a l u e X.

FUNCTION

FIJNCTION

* EXP(x: REAL) : REAL FUNCTION
R e t u r n s t h e e x p o n e n t i a l v a l u e of t h e v a l u e X.

FLOAT(x: INTEGER o r LONGINT) : REAL
C o n v e r t s t h e v a l u e X i n t o a r e a l number.

FUNCTION

* LN(x: REAL) : REAL FUNCTION
R e t u r n s t h e n a t u r a l l o g a r i t h m of t h e v a l u e X.

LINT(x: INTEGER o r LONGINT o r REAL) : LONGINT FUNCTION
C o n v e r t s t h e v a l u e X i n t o a l o n g i n t e g e r number.

LROUND(X: REAL) : LONGINT FUNCTI ON
C o n v e r t s and rounds t h e v a l u e X i n t o a l ong i n t e g e r number.

Texas I n s t r u m e n t s 6-78 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

LTRUNC(x: LONGINT or REAL) : LONGINT FUNCTION
Truncate the value X into a long integer number,

ODD(x: INTEGER or LONGINT) : BOOLEAN FUNCTION
Returns TRUE if the value of X is odd; FALSE otherwise.

ROUND(x: REAL) : INTEGER FUNCTION
Converts and rounds the value X into an integer number.

* SIN(x: REAL) : REAL
Returns the sin of the value X.

FUNCTION

SQR(x: INTEGER or LONGINT or REAL) : as arg FUNCTION
Returns the squared value of X.

5 SQRT(x: REAL j : REAL
Returns the square root of the value X.

FUNCTION

TRUNC(x: LONGINT or REAL) : INTEGER FUNCTION
Truncate the value X into an integer number.

6.13.7 CRU Routines

The CRU 'routines'are expanded in-line by the comiler.

TYPE base-range = O..#lFFE;
TYPE width-range = 1..16;
TYPE displacement-range = -128..127;

CRTJBASE(base: base range)
Set the CRU base adxress for subsequent CRU operations.

LDCR(width: width range; out value: INTEGER)
Output WIDTH number of bits from the value OUT - VALUE to the
CRU lines, starting from the CRU base address.

SBO(disp: displacement range)
Set the specified bit (EISP + CRU base address) to a '1'.
SBZ(disp: displacement range)
Set the specified bit (EISP + CRU base address) to a '0'.
STCR(width: width range; VAR in value: INTEGER)
Input WIDTH numberof bits from The CRU, starting from the
CRU base address, to the variable IN - VALUE.

TB(disp: displacement range) : BOOLEAN FUNCTION
Returns TRUE if the specified bit (DISP + CRU base address)
is a ' I ' and FALSE if it is 'O'e

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.8 Miscelaane~us Routines

CHR(x: BOOLEAN or INTEGER or scalar) : INTEGER FUNCTION
Returns the character with the ordinal value X.

LOCATION(x: module or unpacked type) : INTEGER FUNCTION
Returns the address of X.

ORD(x: BOOLEAN or CHAR or scalar) : INTEGER FUNCTION
Returns the ordinal value of X.

PACK(a: packed array; i: INTEGER; z : unpacked array)
Pack the components of array A into the packed array Z,
starting at the Ith element of A.

PRED(x: enumeration) : enumeration FUNCTION
Returns the predecessor of X in the enumeration list.

SIZE(x: type or variable) : INTEGER
Returns the size (in bytes) of X.

FUNCTION

SUCC(x: enumeration) : enumeration FUNCTION
Returns th.e successor of X in the enumeration list.

UNPACK(z: packed array; a: unpacked array; i: INTEGER)
Unpack the components of the packed array Z into the array A
starting at the Ith element of A.

6.13.9 Rx Routines

All Rx procedures/functions called directly must be declared
EXTERNAL.

6.13.9.1 Processor Management (Scheduling) Routines

TYPE non - device - priority = 16..32766;

SETPRIORITY(VAR oldvalue: non device priority;
newvalue : non-devicepriority)

Changes the priority of the fiTst nonIdevice process in the
scheduling queue.

SWAP
Removes the first non-device process from the scheduling
queue and inserts it behind the last process with the same
priority.

6.13.9.2 Semaphore Routines

TYPE nonneg = 0..32766;
TYPE semaphorestate = (awaited, zero, signaled);

Texas Instruments 6-80 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CKSEMAPHORE(sema: semaphore) : BOOLEAN FUNCTION
Returns TRUE if SEMA is a valid semaphore,

CSIGNAL(sema: semaphore; VAR waiter: BOOLEAN)
Performs a conditional signal operation on SEMA. If a
waiter exists on this semaphore, a SIGNAL operation is
performed on it and WAITER is set to true,

CWAIT(sema: semaphore; VAR received: BOOLEAN)
Performs a conditional wait operation on SEMA. If it has
been SIGNALed, a WAIT operation is performed on it and
RECEIVED is set to true,

INITSEMAPHORE (VAR sema: semaphore; count: nonneg)
Allocates and initializes the semaphore SEMA to COUNT and
sets the queue management to FIFO.

SEMASTATE(sema: semaphore) : semaphorestate FUNCTION
Returns the state of the semaphore SEMA.

SEMAVALUE(sema: semaphore) : INTEGER FUNCTION
Returns the count of SEMA's initial value plus the total
number SIGNALS performed on it minus the total number of
WAITS performed on it,

SIGNAL(sema: semaphore)
Performs a SIGNAL operation on SEMA,

TERMSEMAPHORE(VAR sema: semaphore)
Returns the space occupied by the semaphore SEMA to Rx.

WAIT(sema: semaphore)
Performs a WAIT operation on SEMA,

WAITSIGNAL(wait for, signal the: semaphore)
Performs a WAIT operation O ~ ~ W A I T FOR and a SIGNAL operation
on SIGNAL THE in an indivisible mgnner. -

6.13.9.3 Semaphore Attribute Routines

TYPE interrupt - level = 0..15;

ALTEXTERNALEVENT(sema: semaphore; level: interrupt level)
Attaches the semaphore SEMA to the interrupt LEVEL- as the
alternative receiver of an interrupt.

EXTERNALEVENT(sema: semaphore; level: interrupt level)
Attaches the semaphore SEMA to the interrupt LETEL as the
primary receiver of an interrupt.

NOALTEXTERNALEVENT(level: interrupt Pevei)
Detaches any semaphore which has bee; designated the altern-
ative receiver of the interrupt LEVEL,

Texas Instruments 6-8 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

NOEXTERNALEVENT(l e v e l : i n t e r r u p t l eve l)
Detaches any semaphore which has Keen designated the primary
receiver of the interru~t LEVEL.

6,13.9,4 Interrupt Routines

TYPE interrupt result = -lee15; -
TYPE word16 = ARRAY [0. .15] OF INTEGERS ;
TYPE wp = @wordl6;

ASSEMBLYEVENT(VAR interrupt wp: wp; interrupt pc: INTEGER; -
level: interrupt level)

Assign the assembly language roctine whose entry point is
INTERRUPT PC to the interrupt LEVEL, INTERRUPT WP is the -
workspace-to be used by this routine.

INTLEVEL : interrupt result FUNCTION
Returns the interrupi level of the interrupt currently being
serviced (0 to 15) or -1 if no interrupt is being serviced,

MASK
Disables all interrupts except for interrupt level 0,

NOASSEMBLYEVENT(level: interrupt level)
De-assign the assembly language routine for interrupt LEVEL.

SETMASK(new mask: interrupt level;
V A R - O ~ ~ mask: interrupt level)

Sets the interrupt mask to NEW EASK (all interrupts less
urgent than this value are disaKled). The original value of
the interrupt mask is saved in OLD MASK. -
UNMASK
Enables all interrupts which have a higher priority than the
calling process,

6.13,9.5 Process Management Routines

TYPE processid = @processid;

MYSPROCESS : processid FUNCTION
Returns the process identification of the calling process,

P$ABORT(p: processid)
Causes process P to be marked for termination, P is aborted
when it is next active; after it has returned from all Rx
routines and is out of all user-defined critical regions.

P$LASTPROCESS(p: processid) : processid FUNCTION
Returns the identification of the last process started by P,
or NIL if the last attempted start was unsuccessfule

Texas Instruments 6-82 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

P$SUCCESSFUL(p: processid) : BOOLEAN FUNCTION
Returns the status of the last process management operation
performed by process P.

START$TERM(VAR oldvalue: BOOLEAN; newvalue: BOOLEAN)
Specifies the exception handling mode when processes can not
be successfully started. If NEWVALUE is TRUE (default), an
unsuccessful START causes the calling process to fail; else
an unsuccessful START is ignored. The. original value of the
exception handling flag is preserved in OLDVALUE.

6.13.9.6 Heap Management Routines

TYPE pointer = @INTEGER; { @any - structure)
TYPE byte - length = 0..32767;

DISPOSE(VAR p: pointer) Translated to FREE$ by compiler
Deallocate the heap packet specified by P and set P to NIL.

FREE$(VAR ptr: pointer)
Returns the area referenced by PTR to the heap, PTR is set
to NIL*

HEAP$TERM(VAR oldvalue: BOOLEAN; newvalue: BOOLEAN)
Allows the user to specify what action heap overflow causes:
error termination of the process calling NEW, or NEWS; or to
ignored the condition. If NEWVALUE is TRUE (default) then
error termination. The original value of the heap overflow
flag is saved in OLDVALUE.

NEW(VAR p: pointer) Translated to NEW$ by compiler
Allocate a heap packet of, at least, the required size and
return the address of this packet in P.

NEW$(VAR ptr: pointer; length: byte length)
Allocates, at least, LENGTH bytes of-contiguous memory from
the heap (if available). PTR is set to the address of this
memory area.

6.13.9.7 Channel I/o Routines

TYPE cid = @INTEGER;
TYPE msg record = RECORD -

{ application defined record)
END;

TYPE msg ptr - = @msg - record;
C$ACKNOWLEDGE(msg: msg-ptr)
The reciever acknowledges the receipt of the message refer-
enced by MSG.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

C$ALLOCATE(msg size: INTEGER; VAR msg: msg-ptr j
Allocates a heap packet which will contain the message to be
sent. The heap packet will he in two parts: a fixed length
header (used by the channel routines to synchronise inter-
process communication) and a message of length MSG SIZE. -
The address of this heap packet is returned in MSG.

C$CRECEIvE(c: cid; VAR msg: msg-ptr)
Checks to see if a message has been sent to channel C. If a
message is present, its address is returned in MSG. Other-
wise MSG is set to NIL. (No waiting is performed.)

C$CWAIT(msg: msg-ptr; VAR received: BOOLEAN)
Conditionally waits for a message to be processed. If the
message referenced by MSG has been processed, RECEIVED is
set to TRUE. Otherwise it is set to FALSE.

C$DISPOSE(VAR msg: msg-ptr)
Return the heap packet specified by MSG to the heap and set
MSG to NIL.

C$INIT(name: integer; VAR c: cid)
Allows the calling process to gain access to channel NAME,
and returns the "address" of this channel in C. All sub-
sequent calls to channel routines should reference this
channel by C.

C$NOTIFY(c: cid; sema: semaphore)
Associate the semaphore SEMA to the channel C. Whenever a
message is sent to this channel, the semaphore is signalled.

C$RECEIVE(c: cid; VAR msg: msg-ptr)
Waits for a message to be sent to channel C. The address of
this message is returned in MSG.

C$SEND(c: cid; msg: msg-ptr)
Sends the message referenced by MSG to channel C.

C$TERM(VAR c: cid)
Disconnects the calling process from channel C. When all
processes are disconnected from the channel, the structures
associated with the channel are returned to the heap.

C$WAIT(msg: msg-ptr)
Waits for the message referenced by MSG to be processed.

6.13.9.8 Interprocess File Transfer Routines

F$CHARORT(VAR f: ANYFILE)
Aborts all file channels with the same name as F. All
connected files are disconnected. Any subsequent 1/0 trans-
fers to the file causes an exception to be raised. Any
files suspended on the file channel are activated with an
exception

Texas Instruments 6-84 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

F$CHBUFFERS(VAR f: ANYFILE; n: INTEGER)
Ensures that any file channels associated with file F have
the capability of buffering at least N components before
any producers are suspended,

F$CLENGTH(VAR f: ANYFILE) : INTEGER FUNCTION
Returns the component length of the file F,

F$CONDITIONAL(VAR f: ANYFILE; flag: BOOLEAN)
Causes the conditional attribute for file F to be reset to
FLAG, This attribute defaults to FALSE (READS and WRITES
wait for buffers),

F$EOC(VAR f: ANYFILE) : BOOLEAN FUNCTION
Indicates whether 'end-of-consumption' has been set on the
file channel associated with the file F.

F$LASTSUCCESSFUL(VAR f : ANYFILE) : BOOLEAN FUNCTION
Indicates whether the last file channel transfer made by
file F was successful or not.

F$STEOC(VAR f : ANYFILE)
Sets 'end-of-consumption' on the file channel associated
with file F. When all reading files disconnect, no files
are allowed to connect to the file channel until all
connected writing files close,

F$STLENGTH(VAR f: ANYFILE; length: INTEGER)
Allows the first text file to connect to a file channel to
set the file channel component length (defaults to 80
characters),

6,13,9,9 Exception Handling Routines

ERR$ CLAS S : INTEGER
Returns the exception condition's class code,

ERRSREASON : INTEGER
Returns the exception condition's reason code,

FUNCTION

FUNCTION

ERRSRSET
Clears the current process' exception codes.

EXCEPTION(class code, reason code: INTEGER)
Forces a routineto fail with-the specified exception codes.

ONEXCEPTION(exception hndlr: INTEGER)
Specifies the address Ef the routine (EXCEPTION HNDLR) to be
invoked when an exception condition occurs. ~h: address of
the routine can be found using the LOCATION function.

RESSTART
Causes the entire system to be restarted,

Texas Instruments 6-85 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.9.10 Critical Transaction Routines

CTSENTER
Indicates entry into a critical transaction.

CT$EXIT
Indicates exit from a critical transaction.

6.13.9.11 Rx Error and Exception Codes

Svstem Crash Codes
unable to boot system = 1
No exception handler = 2
No interrupt handler = 3
Illegal interrupt or XOP = 4
Scheduling queue in error = 5
ROM/RAM partition error = 6
Process list is in error = 7
Invalid heap pointer = 8

Class Codes
Run-time support error
User error = 1
Scheduling error = 2
Semaphore error = 3
Interrupt error = 4
Process management error = 5
Exception error = 6
Memory management error = 7
File error = 8
Text file error = 9
Channel error = 10
I/O decoder error = 11
Interprocess communication error = 12

Reason Codes (Run-Time Error)
Stack overflow = 2
Division by zero = 4
Floating point error = 5
Set element out of bounds = 6
Assert error = 7
Missing OTHERWISE in CASE = 8
Array index error = 9
Pointer equals NIL = 10
Subrange assignment error = 11
LONGINT array index error = 12
LONGINT subrange error = 13
Halt called = 20

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Reason Codes (Schedulina Error)

MICROPROCESSOR PASCAL

Scheduling queue invalid = 1
Scheduling queue priority error = 2

Reason Codes (Semaphore Zrror)
Somaphore invalid = 1
Semaphore count error = 2
Semaphore operation error = 3
Semaphore count overflow = 4
Semaphore in handler priority error = 5

Reason Codes (Interrupt Error)
Interrupt invalid = 1
Interrupt level invalid = 2
Interrupt semaphore invalid = 3
Interrupt not handled = 4
Interrupt incorrect trap vector = 5
Interrupt handler priority error = 6

Reason Codes (Exception Error)
Exception handler not established from process = 1
Exception handler cannot have parameters = 2
Exception handler cannot be in assembly language = 3
Exception handler local variables too large for stack = 4

Reason Codes
Not a process
Aborted
Not started -
Not started -
Not started -
Not started -
Not started -
Not started -
Not started -
Not started -

(Process Management Error)
= 1
= 2

invalid priority = 3
negative stacksize = 4
negative heapsize = 5
process is in assembly language = 6
no memory for semaphore = 7
no memory for process heap = 8
no memory for process stack = 9
no memory for process frame = 10

Reason Codes (Memory Management Error)
Heap invalid = 1
Heap overflow error = 2
Heap packet error = 3
Invalid packet error = 4

Reason Codes (File Error)
File is not open for reading = 1
File is not open for writing = 2
Sequential read past end-of-file = 3
Open error = 4
Read error = 5
Write error = 6
No memory for file descriptor = 7
No memory for pathname = 8
File not closed = 9
Invalid parameter passed to FSSTLENGTH = 10
Not a text file = 11

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Reason Codes (Text File Error)
Text conversion - parameter out of range = 1
Text conversion - field width too large = 2
Text conversion - incomplete data = 3
Text conversion - invalid character in text field = 4
Text conversion - value too large = 5
Text read past end of file = 6
Text field exceeds record size = 7

Reason Codes (Channel Error)
No memory for buffers = 1
No memory for semaphores = 2
No memory for channels = 3

Reason Codes (I/O Decoder Error)
Empty file identifier list = 1
File identifier not found = 2
File identifier not released = 3

Reason Codes (Interprocess Communication Error)
No heap for pathname record = 1
No heap for name field = 2
No heap for file variable record = 3
No heap for port variables = 4

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6,i3,i0 Baekus-Naur Form (BNF) Syntax Definiticns

0 . - . . - "is defined to bef'
< > For enclosing non-terminal symbols (ie entities

defined by a produet ion rule)
[1 For enclosing optional entities
(For enclosing entities that may be repeated zero

or more times
1 For representing alternatives

Indicates symbol [is to appear in the text

6,13,10,1 Compiler Options

<option control comment>::= "(" $ (option list> ")"

<option>::= [NO] <option identifier) I
[RESUME] <option identifier)

where <option identifier) is one of the following:

COL72 Default=TRUE
Only scans the first 72 columns, when turned off the whole
source line is scanned,

ASSERTS Default =TRUE
Generates object code for ASSERT statements,

CKINDEX Default=FALSE
Enables run-time checks for array bounds,

CKPTR Default=FALSE
Enables run-time checks for pointers equal to NIL,

CKSET Def ault=FALSE
Enables run-time checks for set element expressions.

CKSTJB Default=FALSE
Enables run-time checks for subrange assignments in bounds.

DEBUG Default=FALSE
Statement numbers are incorporated into the code for use by

LIST Default=TRUE
Enables printing of source listing, error lines are always
listed,

MAP Default=FALSE
Prints a map of the routine's variables and common areas
after listing the routine.

NULLRODY Default=FALSE
No code is to be generated for the empty system body,

Texas Instruments 6-89 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

PAGE Default=FALSE
Continues printing at the top of a new page.

STATMAP Default=FALSE
A map of displacements for each statement in the object
module is to be generated by the code generator.

6.13.10.2 Concurrent Characteristics

These may only appear immediately following the initial
BEGIN of a system, program or process declaration.

<concurrent characteristics>::=
" {" <concurrent characteristic list> ' I) "

<concurrent characteristic list>::=
<concurrent character) { ; <concurrent character))

<concurrent character>::=
<concurrent character keyword) = (parameter identifier) I
<concurrent character keyword) = <integer constant)

<concurrent character keyword>::= HEAPSIZE I PRIORITY I STACKSIZE

6.13.10.3 System Declaration

For a single program with no processes the syntax is:

<system>::= PROGRAM <identifier> ; (program block> .
The general syntax for a system is:

<system>::= SYSTEM <identifier> ; (system block> .
<system block>::= <label declaration part>

<constant declaration part)
<type declaration part>
<common declaration part>
<access declaration part>
<system routines)
<body>

<label declaration part>::= <empty> I
LABEL (statement label> { , <statement label>) ;

(statement label>::= <digit> { <digit>)

<constant declaration part>::= <empty> I
CONST (constant declaration) { ; (constant declaration)) ;

Texas Instruments 6-90 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(canstant declaration>::= <identifier> = <constant> ;
<identifier> = <integer constant expression) ;

<type declaration part>::= <empty> I
TYPE <type declaration) { <type declaration))

<variable declaration part>::= <empty> I
VAR <variable declaration) ((variable declaration))

(identifier list>::= <identifier> (, <identifier>)

<common declaration part>::= <empty> I
COMMON (variable declaration) ((variable declaration))

<access declaration part>::= ACCESS <identifier list) ; 1 <empty>

<system routines>::= (<system routine))

(system routine>::= <program declaration) I
<procedure declaration2 1
<function declaration)

<program declaration>::= <program header> <program block> ; I
<program header> FORWARD ; I
<program header) EXTERNAL [PASCAL] ;

<program header>::=
PROGRAM <identififier> [<program parameter list>] ;

<program parameter list>::=
(<program parameter) (; <program parameter)))

<program parameter>::= <identifier list) : <type identifier)

<program block>::= <label declaration part>
<constant declaration part>
<type declaration part>
<variable declaration part>
<common declaration part>
<access declaration part>

(program routines)
<body>

<program routines>::= ((program routine>)

<program routine>::= <process declaration) I
<procedure declaration) I

(function declaration)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

<procedure declaration>::= <procedure header> <block> ; I
<procedure header) FORWARD ; 1

(procedure header) EXTERNAL [PASCAL] ;

(procedure header>::= PROCEDURE (identifier) [(parameter list>] ;

(parameter list>::= (<any parameter) (; <any parameter)))

<any parameter>::= [VAR] (identifier list> : <type identifier)

<block>: := <label declaration part)
<constant declaration part>
<type declaration part)
<variable declaration part>
<common declaration part>
<access declaration part>
<routines>
<body>

<routine>::= <procedure declaration) I <function declaration)

<function declaration>::= (function header> <block> ; I
<function header> FORWARD ; 1
<function header> EXTERNAL [PASCAL] ;

(function header>::=
FUNCTION (identifier) [(parameter list>] : <result type> ;

<process declaration>::= <process header><program block> ; I
(process header) FORWARD ; /
<process header) EXTERNAL [Pascal] ;

<process header>::=
PROCESS <identifier> [<program parameter list>] ;

<body>::= <compound statement)

6 . 1 3 . 1 0 . 4 Type Syntax

<type>::= <simple type> I (structured type>

<simple type>::= <scalar type> I <subrange type> I
<type identifier)

<type identifier>::= <identifier> I ANYFILE (SEMAPHORE (TEXT 1
REAL (INTEGER I LONGINT I BOOLEAN 1 CHAR

<scalar type>::=
(<scalar identifier) (, <scalar identifier)))

(subrange type>::=
(enumeration constant) .. (enumeration constant)

Texas Instruments 6-92 October 1981

SOFTWARE DEVELOPMENT HANDBOOK M I C R O P R O C E S S O R P A S C A L

<enumeration constant>::= (character eonstant) I (boolean constant)
(integer constant) I <scalar identifier)

<scalar identifier>::= (Identifier)

(structured type>::= [P A C K E D] (unpacked structure type) I
<pointer type> I <file type> 1 <set type>

<unpacked structure type>::= <array type> 1 <record type>

<array type>::=
ARRAY "[I1 <index type> { , <index type>) "1" O F <type>

<index type>::= BOOLEAN I CHAR I <scalar type> I <identifier> I
<subrange type>

<record type>::= RECORD <field list> END

<fixed part>::= <record section) (; <record section>)

(record section>::=
<field identifier) (, <field identifier)) : <type> I
<empty>

<variant part>::=
C A S E [<tagfield>] (tagfield type> O F <variant> (; <variant>)

(tagfield type>::= BOOLEAN I CHAR I I N T E G E R 1 L O N G I N T 1 <identifier>

<variant>::= <variant label list> : (<field list>) I <empty>

<variant label list>::= <variant label> (, <variant label>)

<variant label>::= <enumeration constant) I
(enumeration constant) .. <enumeration constant)

<set type>: := S E T O F <simple type>

<pointer type>::= @ <type identifier)

<file type>::= [RANDON] F I L E O F <type>

<result type): := BOOLEAN I CHAR I I N T E G E R I L O N G I N T 1 R E A L I
SEMAPHORE I <identifier>

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

<statement>::= [<statement label> :] <simple statement) I
[<statement label> :] [<escape label) :]
<structured statement)

<simple statement>::= <empty statement) I (assignment statement) I
<procedure statement) I <escape statement) 1
<assert statement) I <goto statement) I
<start statement)

<procedure statement>::=
<procedure identifier) [<actual parameter list)]

<actual parameter list>::=
(<actual parameter) { , <actual parameter)))

<actual parameter): := <expression> 1 <variable>

<start statement>::=
START <process identifier) [<actual parameter list)]

(escape statement>::= ESCAPE <escape label) 1
ESCAPE <routine identifier)

<routine identifier>::= <program identifier) I <process identifier) 1
<procedure identifier) I <function identifier)

<goto statement>::= GOT0 (statement label>

<assert statement>::= ASSERT <expression>

<structured statement>::= <compound statement) 1
<conditional statement) 1

(repetitive statement) 1
<with statement)

<compound statement>::= BEGIN <statement> { ; <statement> 1 END

<conditional statement>::= <if statement) I <case statement)

<if statement>::= IF <expression> THEN <statement>
[ELSE <statement>]

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(case statement>::=
CASE <expression> OF <case element) (; <case element))
[OTHERWISE <statement> (3 <statement>)]
END

<case element>::= <case label list> : <statement> I <empty>

<case label list>::= <case label> { , <case label>)

<case label>::= (enumeration constant) I
<enumeration constant) .. <enumeration constant)

<repetitive statement>::= <for statement) I <while statement) J
<repeat statement)

<for statement>::=
FOR (control variable) <generator> DO <statement>

<generator>::= := <initial value> TO <final value> I
:= (inftial value) DOWNTO <final value>

<while statement>::= WHILE <expression> DO <statement>

(repeat statement>::= REPEAT <statement> { ; <statement>)
UNTIL <expression>

<with statement>::= WITH <with variable list> DO <statement>

<with variable list>::= <with variable) { , <with variable))

<with variable>::= <record variable) I
<identifier> = <record variable)

6.13.10.6 Expression Syntax

<boolean term>::= <boolean factor) I
<boolean term> AND <boolean factor)

<boolean factor>::= [NOT] <boolean primary)

<boolean primary>::= <simple expression) 1
(boolean primary) <relational operator) (simple expression)

(relational operator>::= = I <> I < I <= I > I >= 1 IN

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

expression>::= <term> I <adding operator) <term> I
<simple expression) <adding operator) <term>

<term>::= <factor> I <term> <multiplying operator) <factor>

<multiplying operator>::= * 1 / 1 DIV 1 MOD

<factor>::= (<expression>) I <set> 1 (unsigned constant) I
<variable> 1
<function identifier) [<actual parameter list>]

(function identifier>::= <identifier>

<unsigned constant>::= <constant identifier) I (boolean constant) I
<scalar identifier) 1 (character constant) I
<string constant) I <integer constant) I
NIL I <real constant)

6.13.10.7 Variable Syntax

<variable>::= <variable identifier) I <component variable) I
<type-transferred variable)

<component variable>::= <indexed variable) I (field designator) 1
(referenced variable)

<indexed variable): : =
<array variable) " [" <expression> (, <expression>) " I "

<array variable): := <variable>

<field designator>::= <record variable) . <field identifier)

(referenced variable>::= (pointer variable) @

<type-transferred variable>::= <variable> :: <type identifier)

Texas Instruments 6-96 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.10.8 Constant Expression Syntax

<integer constant expression>::= (integer constant term) I
<adding operator) <integer constant term> I

(integer constant expression) <adding operator)
<integer constant term>

(integer constant term>::= <integer constant factor> I
<integer constant term> <intmult operator)
<integer constant factor)

<intmult operator>::= * I DIV I MOD

<integer constant factor>::= (<integer constant expression)) f
<integer constant identifier) I
<integer constant)

<integer constant identifier>::= <identifier>

6.13.10m9 Lanugauge Element Syntax

<symbol>::= <special symbol) I <keyword symbol) I <identifier> I
<constant>

<constant>::= <enumeration constant) I <real constant) I
<string constant) I <constant identifier)

<separator>::= <space> I <end of logical source record> I <comment> I
<remark>

<comment>::= <open comment> <any sequence of graphic characters
not containing <close comment> > <close comment)

<remark> : : = " <any sequence of graphic characters extending
to the end of the logical source record>

Note : The following substitutions may be used.
L*.--> " { " *) 0-> 11)11 , (* --> 11[11 ,

- .) --> 1 1 1 11 , @ --> -

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK M I C R O P R O C E S S O R P A S C A L

(keyword symbol>::= A C C E S S I AND I A N Y F I L E IARRAY I A S S E R T I B E G I N I
BOOLEAN 1 C A S E 1 CHAR I COMMON 1 C O N S T I D I V I
DO 1 DOWNTO I E L S E 1 E N D 1 E S C A P E 1 E X T E R N A L I
F A L S E I F I L E I F O R I FORWARD I F U N C T I O N I G O T 0 I
I F 1 I N I I N P U T I I N T E G E R I L A B E L I L O N G I N T I
MOD I N I L 1 NOT I O F / OR I O T H E R W I S E I O U T P U T 1
P A C K E D 1 P A S C A L I PROCEDURE 1 P R O C E S S I PROGRAM 1
RANDOM I R E A L I RECORD (R E P E A T I SEMAPHORE I
S E T I S T A R T I S Y S T E M I T E X T I T H E N 1 T O I TRUE 1
T Y P E I U N T I L I VAR I W H I L E I W I T H

< b o o l e a n c o n s t a n t > : : = F A L S E I T R U E

< c h a r a c t e r > : : = (g r a p h i c c h a r a c t e r) I # < h e x d i g i t > < h e x d i g i t >

(g r a p h i c c h a r a c t e r > : : = (s p e c i a l c h a r a c t e r) I < l e t t e r > 1 < d i g i t > 1
< s p a c e > I (nons t anda rd c h a r a c t e r)

< n o n s t a n d a r d c h a r a c t e r > : : = <any o t h e r c h a r a c t e r a v a i l a b l e on a
p a r t i c u l a r sy s t em o r d e v i c e >

<rea l c o n s t a n t > : : = < d i g i t s > . < d i g i t s > I
< d i g i t s > . < d i g i t s > E < s c a l e f a c t o r) I
< d i g i t s > E < s c a l e f a c t o r)

Texas I n s t r u m e n t s 6-98 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

[I] Kathleen Jensen and Niklaus Wirth

Pascal User Manual and Report

Springer-Verlag

[2] Niklaus Wirth Algorithms + Data Structures = Programs

Prentice-Hall

TI Publications

Microprocessor Pascal System User's Manual (MP351)
Microprocessor Pascal Executive User's Manual (MP385)
Realtime Executive User's Manual (MP373)
Component Software Handbook (MP9 18)
Microprocessor Pascai Euroboard Application Report (MP814)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

CHAPTER 7

POWER BASIC

7.1 INTRODUCTION

BASIC (Beginner's All Purpose Symbolic Instruction Code) is
a high-level interpreted language, Although it does not
support the full block structured approach sf the Algol
based languages (Algol 68, Pascal, etc), the BASIC language
is easy to learn and supports a variety of useful features,

In an interpreted language, no machine code is produced,
Instead, as each source line is entered, it is checked for
syntax errors (does the source line conform to the language
specifications?) and, if valid, is stored in a condensed and
encoded form called interpretive code, This is not directly
executable, Because interpreted languages are normally used
in an interactive mode, syntax errors are immediately
reported to the user, Before the next source lines can be
entered, the line containing the error(s) must be
corrected, The stored code can be 'executed' at any time
(it is not necessary to wait until the whole program has
been entered) by issuing the RUN command. At this time, the
interpreter examines each statement in the interpretive code
and calls in a machine language subroutine (which is part of
the interpreter) to carry out the desired operation.

Semantic errors (non-existent variables and arrays,
incorrectly referenced arrays, etc) and run-time errors
(incorrect program logic) simply require that the line(s)
containing the errors be revised before the program can be
rerun. With a compiled language, the whole program must be
recompiled after modifications are made, It may also be
necessary to link edit the compiled program should it
contain any external references,

The advantages of using an interpretive language are:

o Because the interpreter calls in complete
assembly language subroutines to perform each
function, each statement in the interpretive ca -Sp cTfffyy-. - - - -- . - - a complex -oper-aiixnn.- -Tnfs
results in compact, memory efficient code,

o There is no need to go through separate
compilation and link edit steps to produce
executable code. As part of the edit step, each

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

source statement is translated i n t e 'executable'
interpretive code as it is entered.

o Each source line is checked for errors as it is
entered; it is impossible to enter a
syntactically incorrect statement.

o Interpretive programs are usually developed
interactively. As a result, it is only
necessary to retype the relevant line(s) and
rerun the routine in order to change the
program. The user is able to see the result of
his change immediately. Also, the interpreter
provides excellent error diagnostics and good
recovery techniques.

o Because the interpreter is in control the whole
time, it is more difficult for the programmer to
find himself in irrecoverable error situations,

o To transport a program to another machine it is
only necessary to provide a version of the
interpreter written in the new machine's
instruction code. Any program written in the
interpretive code can then be run on the new
machine,

Because of the extra work done by the interpreter in reading
interpretive code, calling subroutines, etc, interpretive
code executes several times slower than compiled code, This
is the principal disadvantage to using interpretive code.
In addition, BASIC was designed as a simple language, and
does not provide the powerful program and data structuring
techniques of, say, Pascal. As such, it is probably not a
suitable language for developing large or complex
applications, However, for small to medium sized
applications, and for experimental work demanding speed in
program development, BASIC is very acceptable,

7.2 POWER BASIC

Power BASIC is a family of software products designed for
the industrial user. It provides all of the facilities of
RASIC plus specially designed features to support real-time
industrial control applications. At the time of writing,
three members of the Power BASIC family are available:
Evaluation Power RASIC, Development Power BASIC, and
Configurable Power BASIC. New members may be added to
satisfy particular requirements.

Power BASIC is designed to run on the TM990 range of
microcomputer modules (it can also be adapted to run on

Texas Instruments 7-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

other systems), It is possible to set up a Power BASIC
development system with a minimum of capital outlay, A
chasis containing two or three microcomputer modules from
the TM990 board range, a 743 KSR terminal, a single audio
cassette recorder and a PROM programmer, provide all the
facilities necessary to develop a Power BASIC application
program and store it in Programmable Read Only Memory
(PROM). The floppy disc based FS990/4 system provides more
sophisticated features, which allow a Power BASIC program to
be tailored for any application to achieve minimum code
size.

7,2.1 Evaluation Power RASIC

Evaluation Power BASIC is a four-EPROM package that resides
on either a TM990/10OM or a /101M CPU module, Additional
RAM in the form of TM990/201 or /206 memory expansion boards
may be configured into the system as necessary.

Apart from the standard features of BASIC, Evaluation Power
BASIC allows the user to access control equipment in
real-time (timing is provided by the TIC function) by either
memory-mapped I/O (MEM function) or via TI'S standard
bitwise Communications Register Unit (RASE statement, CRB
and CRF functions), It also allows the user to load a
program from (LOAD command) and save a program to (SAVE
command) digital cassettes.

Evaluation Power BASIC is intended for users to try out the
features of Power BASIC, It was not designed for serious
development work, apart from experimental applications.

Used with the /101M CPU board, Evaluation Power BASIC
supports the following execution environments:

o Single-user, single-partition

o Single-user, two-partition

o Two-user, two-partition

The appropriate environment is selected via the 5-pole DIP
on the / 1 0 1 ~ CPU board. Section 2.9 of the TM990 Power
RASIC Reference Manual describes this feature in greater
detail,

Communication between partitions is made possible by the
system defined common array: COM(03 to CGM(9). This enables
Evaluation Power BASIC to be used to control two separate
tasks, the execution of each being synchronised using the
COM array. For example, one partition can be used to
control an industrial process while the other collects
control data (from a terminal, say),

Texas Instruments 7-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

In the following code, partition ftl gathers input from the
terminal and passes it across to partition #2 via the COM
array. COM(0) is used to synchronise the data transfer;
mutual exclusion is guaranteed by allowing bl to access the
array only when COM(O)=O; when COM(O)=l only 82 can access
it. After loading the array, 112 is informed that fresh data
is ready by setting COM(0) to 1. This also prevents #1 from
modifying the array contents until /I2 has copied them, Once
the contents have been copied, #1 is given exclusive control
of the array by setting COM(0) to 0,

PARTITION /I1 PARTITION 112

10 REM GATHER DATA 10 REM CONTROL PROCESS
20 COM(O)=O 20 'initialise' Vl,.,,,V9
30 INPUT Vl9eoe,V9 30 IF COM(O)=O THEN GOT0 120
40 IF COM(0)OO THEN GOT0 40 40 Vl=COM(l)::V2=COM(2)
50 COM(l)=Vl::COM(2)=V2 ...

* * *
110 COM(O)=O
120 'use' Vl,. , . ,V9
130 GOT0 30

In a single-user, two-partition environment, CTRL T
(pressing the T key while holding down the CTRL key) will
transfer control from one partition to the other,

7,2,2 Development Power BASIC

Development Power BASIC is a six-EPROM package that resides
on either a TM990/100M or a 1 1 0 1 ~ CPU board plus either a
TM990/302 Software Development Board or a TM990/201 memory
expansion board, Additional memory expansion boards can be
included if required,

In Development Power BASIC, the two-partition feature is
removed to allow the inclusion of additional features, With
the CALL statement, Development Power BASIC allows the user
to access assembly language routines that have been burnt
into EPROM, Development Power BASIC also allows the user to
write interrupt service routines in the Power BASIC language
and to associate each of these routines to a particular
interrupt level (using the TRAP, IMASR, and IRTN
statements), Development Power BASIC also provides full
character handling facilities (character search, match and
conversion functions), better control structures (including
the ELSE, ON and ERROR statements) and more varied print
formatting (hexadecimal formatting and direct output of hex
ASCII codes),

In addition, when the TM990/302 Software Development Board

Texas Instruments 7-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

is configured into the system, there is a two-EPROM
Enhancement Software Package that can be used to extend the
capabilities provided by Development Power BASIC. This
package allows the user to LOAD and SAVE a Power BASIC
program on low cost audio cassettes. The PROgram command
gives the ability to 'burn' a Power BASIC application into
TMS2716 EPROMso The enhancement package also provides
decimal print formatting and complete error message
reporting.

7.2.3 Configurable Power BASIC

Configurable Power RASIC is a floppy disc based development
package that Is designed to run on a 9 9 0 / 4 minicomputer
under the TX990 operating system (version 2.3 or later). It
allows the user to generate an application target system of
minimum size by deleting the Power RASIC editor along with
any parts of the interpreter that are not used.

Csnfigurable Power BASIC consists of 3 parts: a host
interpreter, a configurator and an object library. This
library is a collection of routines, each of which
implements a specific Power BASIC statement or function.

The configurator determines what Power BASIC features are
required by the user's application program and creates the
following files:

o A link editor control file containing an INCLUDE
statement for each object routine (from the
object library) that is required by the
application program. If the application program
contains any CALL statements, the user supplied
assembly language routines are also INCLUDEdo

o A "root" module containing the Power BASIC
application program in its encoded internal
form.

o A "map" file containing a summary of all Power
RASIC statements and functions used by the
application. Any errors encountered are
immediately reported to the user and are also
recorded in this file.

The TX990 Link Editor (TXSLNK) takes the link editor control
file and uses the object library and the "root" module to
protiuce a cusTomised Power BASIC run-eime mu-du2e. ----This
run-time module is then programmed into TMS2716 EPROMso
Inserting these EPROMs into a 2PU board (like the
TMS990/101~ board), starting at address 0, and toggling the
reset switch causes the Power RASIC application program to
be activated.

Texas Instruments 7-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The internal code used in the "root" module is compatible
with the internal code used by Development Power BASIC.
This means that the "root" module can be programmed into
TMS2716 EPROMs on its own and these can then be inserted
into a board system containing Development Power BASIC,
When the EPROMs are inserted at address >3000 the
application program is automatically executed whenever the
reset switch is toggled, However, if the EPROMs are
inserted elsewhere then the following command must be issued
to execute the program

LOAD <address>

where <address> is the start address of the first pair of
the "root" module's EPROMs,

Note: Due to features that have been added (eg the memory
word, MWD, function) to the Configurable Power BASIC host
interpreter and to Development Power BASIC there are
differences between releases, A "root" module generated
with Configurable Power BASIC C,1.4 should use Development
Power BASIC D.1.6; Configurable Power BASIC Cm1,6 should use
Development Power BASIC D,1.10,

The host interpreter provides all the features of
Development Power BASIC. and the Enhancement Software
Package, plus a number of other features,

Configurable Power BASIC supports a comprehensive file
management package that allows the user to create, access
and delete files (either sequential or random access) on the
990/4's floppy disc units. In accordance with 990
philosophy, all file and device 1/0 operations are performed
via conceptual links called logical unit numbers or lunos,
The physical connection between a luno and a specific file
or device is made (opened) by the ROPEN statement and is
broken (closed) by the BCLOSE statement, The RESET
statement closes all lunos that are open at the time the
statement is executed, Files can be created by either the
RDEFS (define sequential file) or the RDEFR (define random
file) statements, and deleted by the BDEL statement, The
COPY statement allows the user to copy a file to another
file or to a device: this can be used to backup a file, to
concatenate several files together, or to print a file,
Reading from and writing to files or devices can be
performed by the "BINARY" statement:

BINARY <exp>

where <exp> specifies the required 1/0 operation. BINARY 1
lets the user specify how many bytes are to be involved in
subsequent 1/0 operations to a particular file or device
(the default is 6 bytes), BINARY 2 is a write operation,
BINARY 3 is a read operation. BINARY 4 allows the user to

Texas Instruments 7-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

access a particular byte within a specified record (this is
for relative record, random, files only).

The ' @ ' operator has been added to the PRINT statement to
give the user complete cursor control. With this the user
can specify an exact starting position for output on the
screen (911 or 913 VDU) by either supplying the 'x' and 'y'
co-ordinates or using the following positioning commands:

B Move cursor to begining of line
C Clear screen and move cursor to HOME position
D Move cursor down
H Move cursor to HOME position
L Move cursor to left
R Move cursor to right

For example; To clear the screen and print the message
'INPUT NAME' on the VDU screen, starting on the fifth line
at the twelfth character position, either of the following
commands is required.

PRIET @"C5~12~" ;"INPUT NAME"
or PRINT @11C11;@(4,11);111NPUT NAME"

Note: The column values range from 0 to 79 (80 characters).
The row values range from 0 to 23 (24 lines) for the 911. and
from 0 to 11 (12 lines) for the 913.

Other features of Configurable Power BASIC include:

BYE
DIGITS

EQUATE

NUMBER

PURGE
SOURCE

SPOOL

STACK

Terminate a Configurable Power BASIC session.
Specify the number of digits to be printed in
free format.
Specify an alternate name for a variable or an
array element.
Set the initial and increment values for the
automatic line numbering facility.
Delete the specified lines.
Show how much memory the program will occupy
when saved.
Specify the secondary output device controlled
by the UNIT statement.
Interrogate the GOSUB stack.

The following diagram (Figure 7-1) illustrates how
Configurable Power BASIC minimises an application program's
memory requirements.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

R
0
M

USER'S
PROGRAM

AFTER PROGRAM AFTER PROM AFTER CONFIGURATOR
IS DEVELOPED PROGRAMMER AND PROM PROGRAMMER

EDITOR

INTERPRETER
-

R
A .
M

Figure 7-1 Code Minimisation

CUSiOrjiiSEO
INTERPRarER
'

USER'S
PROGRAM

-
USER'S

PROGRAM

7.3 BASIC LANGUAGE OVERVIEW

rn

*

-

USER'S
VARIABLES

>

Power BASIC is an uncomplicated, easy to learn language that
is based upon a few simple concepts. A Power BASIC program
consists of a series of numbered statement lings that are
executed in ascending numerical order. A line normally
contains one Power BASIC statement, although the statement
separator operator (: :) can be used to write more than
one statement on a line. One of the simplest statements,
the assignment statement, is used to assign the value of an
expression to a variable:

When the above line is executed, the variable A2 will be
assigned the value of the arithmetic expression '5+7' (the
integer 12).

R
0
M I

,

There is no variable declaration; a variable is implicitly
declared by its first appearance in one of the following:

EDITOR R
0

INTERPRETER M

o on the left-hand side of an assignment statement

o in an INPUT statement

A
+ M

o in a READ statement

, USER'S
VARIABLES

Texas Instruments October 1981

A
M

USER'S
VARIABLES

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Varizble names are restricted to one to three letters or a
combination of a letter and a number in the range 0 to 127.
There is no typing of data, Variables can have integer,
real or character string values, depending on the context.
The only data structure provided is the array, which can
have one or more dimensions.

Each statement in a Power BASIC program has a line number:

10 A = 5 * B
20 PRINT A
etc

The line numbers specify the order in which the program
statements are to be executed (ie its sequence).

The principal device for structuring a program is the GOT0
statement, which transfers execution directly to a statement
number. The IF..THEN statement implements selection (see
section 7.6.1.2); it must be combined with the GOT8
statement if the alternatives will not fit on one line, The
FOR,.NEXT statement fmplewzzts iteratien (see section
7.6.1.4). In general, programming constructs (see Section
4.5) have to be built by the programmer using IFs, FORs and
GOTOs,

Subroutines or procedures (see section 7.6.2) can be called
using the GOSUB statement, which simply places the address
of the statement following the GOSUB on a last-in-first-out
stack, from where it is retrieved when a RETURN is
executed, Subroutines are not declared separately from the
main program. The GOSUB simply specifies a statement
number; the statements between that number and the next
RETURN are treated as a subroutine. Scope rules are
simple. Once a variable has been introduced, it can be
referenced anywhere in the program, Subroutines can be
nested (up to 10 deep), but the programmer needs to check
that the GOSUBs and RETlJRNs match (the interpreter does not
perform this check), Subroutine parameters are not
allowed.

The main attraction of Power BASIC is its simplicity.
Programs can be entered and executed easily even by users
who are not skilled programmers, Power BASIC is a high
level language, and as such automatically handles such
details as storage allocation (to which the assembly
language programmer devotes a lot of attention). The
development environment provided by Power BASIC is
particularly simple and easy to use; even novices can learn
to develop a Power BASIC program in a matter of hours.
Power BASIC is ideal for the rapid development of relatively
simple applications.

However, it does have limitations. Because of its
simplicity, BASIC performs very few checks on the integrity

Texas Instruments 7-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

of program and data (such as are performed automatically by

the Pascal compiler, for instance). It is quite legal, for
example, to assign an integer value to a character string
variable (this may be valuable in some circumstances).
However, Power BASIC supplies no warning if it is done by
mistake. In addition, the structuring and self-documenting
features of Pascal are missing. For a complex application,
Pascal is probably a better alternative.

7.4 POWER BASIC OPERATION

7.4.1 Operating Modes

Power BASIC has two operating modes: Keyboard mode and
Execution mode.

Keyboard Mode is automatically entered when Power BASIC is
initialised. In this mode, entering a numbered line causes
that line to be stored in the appropriate place in the
program space. Entering an unnumbered line causes the
statement(s) to be immediately executed and keyboard mode to
be re-entered as soon as the necessary processing has been
performed.

Execution Mode is entered by issuing either a RUN, a CONT or
a GOT0 statement. This causes the Power BASIC interpreter
to execute the previously stored program. RUN starts at the
lowest line number in the program; CONT continues from the
last line that was previously interpreted; GOT0 proceeds
from the line specified. This mode is terminated by any one
of the following conditions:

o Error condition arising

o STOP or END statement executed

o Pressing the ESCape key on the terminal

Note: There are a number of statements which can only be
issued in keyboard mode (these are referred to as
commands). A full list of these commands is given in
section 7.8.5.

7.4.2 Editing Source Statements

The simplest way to modify (or edit) a line is to re-type
the whole line. However, Power BASIC also supports a simple
editor that allows the user to easily modify previously
entered source statements. The available edit commands are:

Texas Instruments 7-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

ESC Cancel input line
RUBOUT Backspace and remove character
CR or LF Enter the edited line
ctrl H Backspace the cursor one character
ctrl F Forward space the cursor one character

<In> ctrl E Display the line <In> for editing

An attempt to forward space past the last character entered,
or to backspace beyond the first character in the line will
only cause the bell on the terminal to be rung,

Development Power BASIC supports two additional commands
that are not available in Evaluation Power BASIC:

ctrl I <n> Insert <n> blanks
ctrl D <n> Delete <n> characters

'Ctrl E' strike the E key while holding down the CTRL key,
'Ctrl I <n>' hold down the CTRL key while striking the I
key, then strike the numeric key corresponding to the value
<n>,

When the carriage return (CR) or linefeed (LF) key is
pressed, all characters displayed are entered, regardless of
the position of the cursor,

Entering just a line number (and nothing else) causes the
specified line to be deleted from the stored program,
'Entering a statement with a line number that already exists
causes the original statement to be replaced by the new
one.

The editor fs automatically invoked when the interpreter
encounters a syntax error in a line being entered via the
terminal. However, if the program is being loaded from
cassette or floppy diskette (using the LOAD command) and a
syntax error is encountered, the interpreter will display
the number of the line containing the error. The whole line
is ignored (it can not be stored correctly) and the load
operation will continue,

7.4.3 Automatic Line Numbering

The automatic line numbering facility is invoked by
terminating an input line with a linef eed instead of a
carriage return. This causes the interpreter to output the
incremented line number and keyboard mode to be re-entered.
The incremented line number is 10 greater than the last line
number entered. Entering a line containing just a linefeed
initialises the line number to 10, Terminating a line with
a carriage return disables this facility.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.4.4 System Initialisation

Toggling the reset switch on the /100M or /101M CPU board
causes Power BASIC to clear and scan the system RAM area to
determine how much memory is present. This operation begins
at location >FFDC and continues on down through contiguous
memory to location >4000 or until a read/write mismatch is
encountered. If a mismatch occurs between addresses >FBFE
and >F000 then Power BASIC assumes that a /100M CPU board is
being used; any memory that was found between these
addresses is ignored and autosizing continues from address
>EFFE. (A fully populated /lOOM microcomputer board only
holds 1K of RAM. This is addressed from >FCOO to >FFFF.)

The Power BASIC interpreter then performs the auto-baud
sequence. This initialises the serial 1/0 interface for
terminal communication. After the user has struck the A (or
carriage return) key on the terminal, the interpreter
measures the time of the start bit and determines the baud
rate of the terminal. The onboard TMS9902 Asynchronous
Communications Controller is then set to this baud rate (all
terminal I/o is performed through the 9902). All output is
then directed to Port A on the microcomputer board.

When all Power BASIC pointers have been initialised, the
following message is output:

TM990 BASIC REV X.n.m
*READY

where X = language level
n = release number
m = revision number

At this stage, Power BASIC is in keyboard mode waiting for
user input.

Refer to the Power BASIC Reference Manual for instructions
on setting up the hardware configuration.

7.5 VARIABLES

A Power BASIC variable can be used to store either an
integer number, a real number, or a character string
depending on the context in which the variable is used.
Thus, although a variable may contain a number (integer or
real) it can be used as though it contained a character
string, and vice versa. All variables, whatever their type,
occupy the same amount of storage (4 bytes for Evaluation

Texas Instruments 7-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Power BASIC, 6 b y t e s in Development Power BASIC),

7.5.1 Variable Names

A variable name is either an alphabetic character followed
by a number in the range 0 to 127 (eg 2100) or an alphabetic
string up to three characters long (eg A, ST, and LST). The
variable name can not be identical to a Power BASIC keyword,
nor can it form the beginning of a keyword. The following
variable names are not valid:

LIS Begining of LIST (a Power BASIC command)
MEM A Power BASIC function
TOT First 2 letters are the Power BASIC keyword TO
12B First character is not alphabetic
ABCD More than 3 characters
I130 Number greater than 127
A. B ' not allowed in variable names

Note: There is a maximum of 140 different variable names in
any one Power BASIC program.

7.5.2 Variable Declarations

Variables are not explicitly declared in BASIC. Instead a
variable is implicitly declared by assigning a value to a
valid variable name. For example, to declare the variable
TST and assign it the value 100 the following statement can I
be used:

A value can be assigned to a variable by either a READ (read
a value from a DATA statement), an INPUT (accept input from
the terminal) or a LET statement. The statement 'TST=1008
is an implied LET, as are statements of the form:

where <expression> may contain function calls:

The above statement assumes that the variables PI and NUM
have already been declared (assigned a value). An attempt
to use a variable that has not been declared will result in
error 40 (UNDEFINED VARIABLE).

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.5,3 Numeric Representation

If a number can be represented in a 16-bit twos complement
form, it is stored in integer format, otherwise it will be
stored in floating point format,

7m5m3.1 Integer Variables

An integer variable can store a value in the range -32768 to
+32767,

7,5.3.2 Floating Point Variables

Floating point format allows a real number in the range
10E-75 to 10E+74 to be stored, ('E represents the
multiplier 10, the integer number following is the power to
which 10 is raised,) This representation provides
approximately 7 digits of accuracy for Evaluation Power
BASIC and approximately 11 digits of accuracy for
Development Power BASIC.

7.5.4 Character String Variables

A character string is a string of characters enclosed within
single or double quotes. Paired double quotes can be used
to enclose single quotes and vice versa,

A variable is specified as containing a character string by
preceeding the variable name with a dollar sign ($ In
this form, a variable should be used to store up to 3
characters for Evalyation Power BASIC, or 5 characters for
Development Power BASIC. The last byte is used to terminate
the string and contains the null character (zero).

In Development Power BASIC, non-printable characters may be
included in a character string by writing their hexadecimal
ASCII representation enclosed in angle brackets (<>). The
angle brackets are stored along with the character string
and are only interpreted when the string is being input from
a terminal, read from a DATA statement, or when the string
is being printed. Note: Attempting to use the character
sequence ' < in a string via an INPUT, READ or PRINT
statement will cause problems. If these characters are
required then the sequence '<3C><3E>' should be used.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.5.5 Array Variables

An array is a number of variables (stored consecutively in
memory) that is referenced by a single variable name,
Individual variables (or array elements) are accessed by
following the variable name with a number that identifies
the position of the variable within the array, The number
(this is known as an array subscript) is enclosed in
parentheses or square brackets (internally the parentheses
are converted into and stored as square brackets),

To allocate the array STR with 10 elements the following
statement is required:

DIM STR(9)

The elements are referenced by

The size parameter supplied to the DIMension statement is
one less than might be expected as Power BASIC automatically
allocates space starting from element zero,

Although an array may be used to hold character strings, it
is declared (in the DIMension statement) without the dollar
sign.

Power BASIC allows an array to be declared with any number
of dimensions, However, for most practical applications, a
two dimensional array is usually sufficient,

Note: The variable A and the array variable A(O) refer to
two completely different variables,

7.6 POWER BASIC PROGRAM

A Power BASIC program consists of a number of statements,
each with a line number, Statements may either perform some
action, such as adding two variables together and assigning
the sum to a third variable ('A=B+C'), or may be control
statements (GOSUB 1000), that change the execution flow of
the system, A full list of Power BASIC statements is given
in section 7.8.6,

Power BASIC allows the user to write a number of statements
on one line with each statement being executed in turn, The
general syntax for an input line is:

Texas Instruments 7-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

i iine number) statement [:: statement] { ! comment }

where (} indicates optional items
[] indicates that the item is repeated as many

times as required - 0,1,.,..

Exceptions:

o A NEXT statement should be the first statement
on a line, otherwise it may not be located to
terminate its corresponding FOR loop,

o A DATA statement should be the only statement on
a line,

o A REM statement takes the remainder of a line as
comment.

7.6.1 Control Statements

Power BASIC statements are normally executed in ascending
line number order. However, it is not usually possible to
write an effective applications program in a straightforward
sequential manner. For this reason, Power BASIC supports a
number of control statements that allow the user to dictate
the order in which program statements are executed,

7.6.1.1 GOT0 Statement

The first of these control statements is the GOTO, This
provides a simple, yet very powerful, mechanism for changing
program flow. The syntax for this statement is:

This causes control to be transferred to line <In>.

Restraint must be exercised with this statement; too liberal
a usage will lead to an unintelligible and unnecessarily
complex program, Possibly the best use of this statement is
in building constructs that are not included in Power BASIC
(the WHILE, DO FOREVER and REPEAT UNTIL loops; more about
these later).

7.6.1,2 IF THEN Statement

Often it is necessary to perform some specific action only
if a certain condition is met. For example, the only time
the telephone should be answered is if it is ringing, To
provide for this situation, Power BASIC provides the IF THEN

Texas Instruments 7-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

statement. The above operation can now be expressed as 'IF
the phone is ringing THEN answer it'. The syntax for this
is:

IF <condition> THEN <sequence>

The Power BASIC statements in <sequence> are only executed
if <condition> proves to be true. Statements in <sequence>
must be separated from each other by the statement separator
(: :) . <condition> may be any valid expression that y.ields a
value of true or false.

Note: The statement separator does not delimit the IF THEN
statement, it only separates the statements in <sequence>
from each other.

100 IF (condl) THEN <stmtl>::IF <cond2> THEN <stmt2>

Is not the same as:

100 IF <condl> THEN <stmt l>
181 IF <cond2> THEN <stmt2>

In the first case, <stmt2> is only executed if both <condl>
and <cond2> are true. In the second case, <stmt2> is
executed if <cond2> is true, regardless of <condl>.

The number of statements in <sequence> is limited by the
length of the input line. This can be overcome using the
following:

IF NOT(<condl>) THEN GOT0 150

. Sequence of statements to be performed . when <condl> = true .
150 REM end the IF THEN clause

If <condl> is false, NOT(<condl>) is true and program
control is passed to the REM statement following the
sequence. The REM statement is a remark (comment), and is
ignored by the interpreter.

A WHILE loop can be built up as follows:

10 IF NOT(<condl>) THEN GOT0 200 . . Sequence to be performed . WHILE <condl> = true .
GOT0 10

200 REM <condl> = false

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

A DO FOREVER i o o p can be e x p r e s s e d a s :

50 REM s t a r t f o r e v e r l o o p .
Sequence t o be per formed c o n t i n u o u s l y

A .REPEAT UNTIL l o o p is :

145 REM s t a r t r e p e a t l o o p

. Sequence t o be per formed . UNTIL < c o n d l > = t r u e .
I F NOT(<cond l>) THEN GOT0 145
REM d r o p th rough t o h e r e when <cond l> = t r u e

An I F THEN ELSE c o n s t r u c t can be implemented a s :

I F NOT(<cond l>) THEN GOT0 100

Sequence t o be per formed . when <cond l> = t r u e

GOT0 200
100 REM s t a r t ELSE p a r t . . Sequence t o be peformed

when <cond l> = f a l s e .
200 REM end I F THEN ELSE

T h i s can be e a s i l y expanded t o a l l o w a n ELSEIF:

I F NOT(<cond l>) THEN GOT0 192 .
Sequence t o be per formed
when <cond l> = t r u e

GOT0 475
192 I F NOT(<cond2>) THEN GOT0 320 . . Sequence t o be per formed . when <cond2> = t r u e and <cond l> = f a l s e

GOT0 475
320 REM s t a r t ELSE p a r t . . Sequence t o be performed . when <cond l> = <cond2> = f a l s e

475 REM end I F THEN ELSEIF ELSE

NOT i s a r e c o g n i s e d Development Power BASIC boolean

Texas I n s t r u m e n t s 7-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

primitive that returns a value of TRUE if its argument
evaluates to FALSE; otherwise it returns a value of FALSE,
Although it is not supported by Evaluation Power BASIC it is
simple to effect the NOT function, All conditions can be
written in the form:

using this, the NOT function is implemented by taking the
complement of the relational operator (<relop>) :

where <relop*> is the complement of <relop> and is derived
from the following table,

For example:

r

Relationship

Equal to
Greater than
Less than
Greater than or equal to
Less than or equal to
Not equal to

NOT(a > b) becomes (a <= b)
NOT(p = q) becomes (p <> q)

An expression is considered to have a truth value of TRUE if
it evaluates to a non-zero value, otherwise it is considered
FALSE, The statement:

<relop>

- -
>
<
>=
<=
<>

IF <expression> THEN <statement(s)>

<relop*>

<>
<=
>=
<
>
- -

is shorthand for

IF <expression> <>0 THEN <statement(s)>

7.6.1.3 ELSE Statement

Development Power BASIC supports the ELSE statement, This
is normally used in conjunction with the IF THEN statement.
The syntax for this is:

ELSE <sequence> - - -

where the statements in <sequence> are separated from each
other by the statement separator (::).

The ELSE statement uses the ELSE flag (set or reset by the

Texas Instruments 7-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

lzst IF THEN statement depending on whether the condition is
true or false) to determine whether the statement(s)
following the ELSE keyword are to be executed, Several ELSE
statements may appear between IF THEN statements, Each will
be executed if the condition proved to be false, otherwise
they will be skipped,

Typically, this statement will be used as:

100 IF <condl> THEN <seql>
110 ELSE <seq2>
120 REM end IF THEN ELSE

In the above, <seql> is only executed if <condl> is true; if
<condl> is false then <seq2> is executed, After executing
the appropriate sequence, control is passed to the REM
statement (line 120),

<seq2> may itself consist of an IF THEN ELSE:

100 IF <condl> THEN <seql>
110 ELSE IF <cond2> THEN <seq2>
120 ELSE <seq3>
130 REM end IF THEN ELSEIF

Here <seq3> is executed only if both <condl> and <cond2> are
false; <seq2> if <condl> is false and <cond2> is true; and
<seql> if <condl> is true.

7.6.1.4 FOR NEXT Statement

A simple loop construct (perform a sequence of statements a
known number of times) can be implemented as followsw

90 num=int
100 IF num>lst THEN GOT0 350 ! IF NOT(num<=lst)

, Sequence to be performed
while num<=lst

w

Num=num+l ! increment loop count
GOT0 100

350 REM end iterative loop

where INT is the initial value, LST is the final value and
NUM is the loop counter, ! is another form of comment;
anything after the ! is ignored.

The above loop is performed until the final value is
exceeded.

To implement a count-down loop, the test and increment
statements would have to be changed to:

Texas Instruments 7-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

100 IF num<lst THEN GOTO 350 ! IF NOT(num>=lat)
num=num- 1 ! decrement loop counter

These simple loop constructs can be made more powerful by
modifying the increment (decrement for the count-down loop)
statement to:

where STP is the required increment/decrement,

As this type of loop is frequently used, Power BASIC
provides its own loop construct in the form of the FOR NEXT
statement, The syntax of this is:

FOR <var> = <start> TO <final> STEP <increment>

, Sequence to be performed

NEXT <var>

The <start>, <final> and <increment> values can be any valid
numeric expression, If the value of <increment> is one, it
and the STEP keyword may be omitted, The variable <var>
specified by NEXT must coincide with that used by the FOR.

The FOR statement opens the loop and the NEXT statement
closes it, If the condition:

(increment)*(start value) '> (increment)*(f inal value)

is true when the FOR statement is first encountered, the
loop will not be executed, But if this condition is false,
the FOR variable is set to the value of <start> and the
sequence of statements between the FOR and NEXT statements
are executed, When the NEXT statement is encountered the
FOR variable is updated by the value of <increment>,
Control is passed back to the FOR statement and while the
condition:

(increment)*(FOR variable) <= (increment)*(final value)

remains true the loop will be executed, When execution of
the loop is finished, control is transferred to the
statement following the NEXT,

FOR NEXT loops can be nested (contained within one
another), There is a maximum nesting depth of 5 for
Evaluation Power BASIC and 10 for Development Power BASIC,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

J=9 TO 0 STEP -1

490 NEXT K

C o r r e c t n e s t i n g

No o v e r l a p p i n g i s a l l o w e d ; i n n e r l o o p s must be c l o s e d b e f o r e
c l o s i n g o u t e r l o o p s , Nested FOR NEXT l o o p s must have
d i f f e r e n t FOR v a r i a b l e s ; t h e y canno t s h a r e c o n t r o l
v a r i a b l e s , O t h e r w i s e , l o o p b o u n d a r i e s w i l l n o t be c l e a r l y
d e f i n e d ,

I 100 FOR K = l TO 100 1

1 8 0 NEXT K 1
100 FOR K = l TO 100 STEP 3 r

I n c o r r e c t n e s t i n g

C o n t r o l v a r i a b l e
I s h a r e d ; u n c l e a r
I l o o p b o u n d a r i e s

200 FOR J=9 TO 0 [
300 NEXT K 1

I n c o r r e c t n e s t i n g

Ove r l app ing l o o p
b o u n d a r i e s

400 NEXT J --I

W i t h i n t h e l o o p , t h e c o n t r o l v a r i a b l e can n o t be m o d i f i e d ,
It can , however , be used t o a c c e s s t h e e l e m e n t s of an a r r a y
(f o r example) .

While c o n t r o l c a n be t r a n s f e r r e d from w i t h i n a l o o p t o a
s t a t e m e n t o u t s i d e , i t i s n o t p o s s i b l e t o t r a n s f e r c o n t r o l
f rom o u t s i d e t o t h e i n s i d e .

A FOR NEXT l o o p can be w r i t t e n on a s i n g l e l i n e w i t h '::'
s e p a r a t i n g each s t a t e m e n t :

100 FOR 1=0 TO 10 :: sequence :: NEXT I

T h i s e f f e c t i v e l y d i s a b l e s t h e ESCape key on t h e t e r m i n a l
w h i l e t h e l o o p i s b e i n g e x e c u t e d (u n t i l t h e l o o p h a s
comple t ed i t i s n o t p o s s i b l e t o i n t e r r u p t program e x e c u t i o n
and r e t u r n Power BASIC t o keyboard mode). T h i s i s because
Power BASIC o n l y s c a n s t h e keyboard l o o k i n g f o r a n ' e scape '

Texas I n s t r u m e n t s 7-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

character when a statement line has been completed. Also,
if the initial check indicates that t h e loop is not to be
executed, error 31 (FOR W/O NEXT) will result as the NEXT
statement will not be found.

7.6.2 Subroutines

As previously stated, statements are normally executed in a
straightforward sequential manner, A subroutine represents
a method of executing a number of statements outside the
normal sequence.

Pictorally, subroutine execution is:

Main . .
, v-wSubroutine start

Subroutine end

If a subroutine is only used once, there is little point in
separating the subroutine code from the calling routine. No
benefit is derived apart from (perhaps) clarifying the
program structure. However, there is a benefit when a
subroutine is used to replace a number of statements that
appear in several different places in a program. For
example :

.
: I SEQA

SEQA 0 .

: 1 SEQA

Texas Instruments

Call .
Call. .
Call

to SEQA

to SEQA

to SEQA

SEQA

October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Program execut f o n ---- w ~ c i l d beeoine:

Main . . - Subroutine start
.

Subroutine end

. -+Subroutine start

. L Subroit ine end . . - Subroutine start

. . L Subroit ine end

If the subroutine is large, or it is called from a number of
different places, there can be a considerable saving
realised in program storage against a small overhead in
calling and in returning from the subroutine.

A Power BASIC subroutine is simply a sequence of statements
' that is entered via the GOSUB statement and exited via a
RETURN statement. A subroutine can have multiple exit
points (each distinguished by a RETURN statement), but this
is usually considered bad programming practice. The syntax
for these statements are:

GOSUB <In>
RETURN

A subroutine is identified by its starting line number
(<ln>), rather t an by a name. For example :

i i

100 GOSUB 2000
110 REM return to here

2000 REM start of subroutine

L2300 KETuRN ! exit subroutine

A GOSUB statement causes the address of the sta$ement
immediately following it to be pushed onto the GOSUB stack
and then passes control to the specified line. In the
above, the address of line 110 is pushed onto the top of the
stack before control is passed over to line 2000. If the

Texas Ins t rumen t s 7-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

GOSUB 2000 had been followed by (eg) '::FLG=9' then the
address of this statement would have been pushed onto the
GOSUB stack.

The RETURN statement transfers program control back from a
subroutine to the statement following the last GOSUB
executed, by popping the top item off the GOSUB stack. In
the above, the last entry to the stack (address of line 110)
is popped, allowing control to be passed back to line 110.

If a subroutine is exited by any way other than a RETURN
statement, program flow can become unpredictable. Power
BASIC performs no check that a subroutine has been exited
(via a RETURN statement). Executing a RETURN statement when
a subroutine has not been invoked will result in error 12
(STACK UNDERFLOW).

Subroutine calls may be nested (a subroutine may call
another subroutine) up to a maximum of 10 levels for
Evaluation Power BASIC and 20 levels for Development Power
BASIC (there can be a maximum of 10 outstanding RETURNS at
any one time). An attempt to exceed this number will result
in error 11 (STACK OVERFLOW). 1

A program with nested subroutine calls is shown below:

55 GOSUB 200 I
60 REM return to here from SIR1 I

.
200 REM start of S/R1

to here from SIR2

1200 RETURN ! exit SIR2

1
Pictorally, program execution becomes :-

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Master

GOSUB - Subroutine 1
. I GOSUB - Subroutine 2

iETuR,

RETURN

As a Power BASIC subroutine has complete access to all
variables defined in a program, no parameter passing
mechanism is supplied (nor is one really necessary). Power
BASIC is not a block structured language, and so the
programmer must make his own checks that variables are not
accessed incorrectly (inadvertently modified by a
subroutine). If a subroutine can overwrite critical data,
it is necessary to use temporary variables for storage of
this data and the programmer must ensure that the subroutine
only accesses this data through the temporary variables.

7.6.3 ON Statement

The ON statement is a type of 'computed' GOTO. The syntax
for this is:

ON <expression> THEN GOSUB/GOTO <11>,<12>,...,<1n>

A branch is made to line , depending on the value of
<expression>, via a GOT0 or GOSUB statement. This statement
is equivalent to:

IF <expression>=l THEN GOTO/GOSUB <11>
ELSE IF <expression>=2 THEN GOTO/GOSUB <12> .
ELSE IF <expression>=n THEN GOTO/GOSUB <In>

If a GOSUB is used, on returning from the subroutine,
control passes to the statement following the ON statement.

If the expression evaluates to less than one or greater than
<n>, no transfer is made and execution continues from the
statement following the ON.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.6.4 ERROR Statemezt

The ERROR statement allows the user to specify a Power BASIC
routine that is to be executed when an error occurs. The
syntax for this is:

ERROR <In>

When an error condition arises, control is passed to line
<In> via a GOSUB statement. The address of the statement
line following the one in which the error occurred is
preserved on the GOSUB stack.

When the error handling routine has been invoked, the system
function SYS can be interrogated to find the cause of the
error. SYS(1) will return the error code number, and SYS(2)
the number of the statement in which the error occurred.

PO ERROR 1000

1000 REM error handling routine
1010 IF SYS(1)<>23 THEN PRINT "ERROR= ",SYS(l):: STOP
1020 RESTOR
1030 RETURN

When an error occurs, control is transferred to statement
1000. If the error was not due to "READ OUT OF DATA" (error
23), the message "ERROR=" and the error code are output to
the terminal and program execution STOPS. Otherwise the
error is corrected by resetting the READ pointer to the
first DATA statement in the program and a return is made to
the line immediately following the read statement that
caused the error. Obviously this "error routine" is not
particularly useful (as the contents of the "read variables''
can not be relied upon), however it does serve to illustrate
the use of the ERROR statement,

If the sequence of read operations is of the form:

100 READ
200 READ
300 READ ., . ,

Then replacing line 1030 by:

1030 POP:: ON SYS(2)/100 THEN GOT0 100,200,300,...

allows the "error routine" to be more useful. The POP

Texas Instruments 7-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

statement s i m p l y removes the top address from the GOSUB
stack (in this case, the address of the line following the
READ statement that caused the error).

Once an error has been trapped using this statement, no
future errors will be trapped until another ERROR statement
is executed.

Note: Use of the ERROR statement suppresses the automatic
printing of error code/message.

7.6.5 CRU Operations

The 9900 supplies a bit-oriented method of 1/0 called the
Communications Register Unit (CRU). Under Power BASIC the
CRU is accessed using the BASE statement and the CRB and CRF
functions, For full details of the CRU and its operation
refer to Section 8.9.

7.6.5.1 BASE Statement

CRU operations are performed on a signed displacement (in
the range -128 to +I27 bits) from a base address. This base
address is set using the BASE statement. The syntax for
this statement is:

BASE <exp>

where <exp> is any valid arithmetic expression,

Note: The base address is a 12 bit address that is stored in
bits 3 to 14 of workspace register 12. Because of this, the
value of <exp> (known as the software base address) must be
twice that of the hardware CRU base address desired. For
example; to access a device that has a CRU base address of
32, <exp> must evaluate to 64.

7.6.5.2 CRB Function

Single-bit 1/0 is performed using the CRB function.
Depending on the context in which it is used, this function
either reads or writes to the specified bit.

When reading, the function returns one if the specified bit
is set, and zero if it is not set.

Example: Execute the sequence <seql> if the 15th bit from
the base address is a '1'.

IF CRB(15) THEN <seql>

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

?%%en writing, the selected bit is set to '1' if the assigned
value is non-zero, and to 'Of if the assigned value is
zero.

Example: Set the 100th bit from the base address to '1'.

7.6.5.3 CRF Function

The specified number of bits are written to or read from the
CRU starting at the address set by the BASE statement. The
number of bits to be transferred must be in the range 0 to
15. If the number is zero, all 16 bits are transferred.

Example: Transfer the 16 bit value minus one (hex >FFFF) to
the CRU address specified by the RASE statement.

Exampie: Read an 8 b i t value from the CRU base address and
store the result in VAL.

VAL will be in integer format with the value occupying the
least significant byte of the integer word.

7.6.6 Memory Operations

The Power BASIC functions MWD and MEM allow the user to read
or write to an individual word or byte in memory. However,
care must be exercised when using these functions to ensure
that no Power BASIC system variables are inadvertently
corrupted.

These functions can also be used to directly interface to
memory mapped 1/0 devices.

7.6.6.1 MEM Function --

This function allows the user to read from or write to the
specified memory-byte location.

Example: Output the character 'A' to the device data
register located at memory address >AEOO.

ASC returns the decimal ASCII code of the character

Texas Instruments 7-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Example: P i c k up t h e c h a r a c t e r i n t h e d e v i c e d a t a r e g i s t e r
l o c a t e d a t memory a d d r e s s >B000.

The s i n g l e c h a r a c t e r s t r i n g i s t e r m i n a t e d by t h e 'XO' .

7.6.6.2 MWD F u n c t i o n

T h i s f u n c t i o n a l l o w s t h e u s e r t o r e a d from o r w r i t e t o t h e
s p e c i f i e d memory word l o c a t i o n . T h i s f u n c t i o n i s
p a r t i c u l a r l y u s e f u l f o r l o a d i n g s m a l l a s sembly l anguage
r o u t i n e s i n t o memory. (The a r e a of memory used must be
o u t s i d e t h e Power BASIC envi ronment .)

Example: Load t h e a s sembly l anguage program i n t o memory
s t a r t i n g from a d d r e s s >7000.

MWD(07000H)=e....e. !Load 1 s t i n s t r u c t i o n

MWD(07XXXH)=045BH ! Load RT i n s t r u c t i o n

Fo r l a r g e r o u t i n e s t h e above app roach i s n o t r e a l l y
s u i t a b l e , An e a s i e r method is:

100 DATA s t a r t a d d r e s s ,
600 DATA, 045BH, term

1000 READ s t r !Get s t a r t a d d r e s s
1010 READ opc ! G e t n e x t i n s t r u c t i o n
1020 I F opc = t r m THEN STOP
1030 MWD(str)=opc :: s t r = s t r + 2 :: GOT0 1010

The f i r s t i t e m t o be r e a d from t h e DATA s t a t e m e n t i s t h e
a c t u a l a d d r e s s i n ,memory where t h e program i s t o be loaded .
The o n l y o t h e r a d d i t i o n t o t h e r o u t i n e i s some way of
i n d i c a t i n g when t h e end of t h e r o u t i n e h a s been r eached . I n
t h e above code , t h i s i s i n d i c a t e d by TRM (t h i s i s a un ique
v a l u e t h a t d o e s n o t a p p e a r anywhere w i t h i n t h e r o u t i n e t o be
l o a d e d) . It c o u l d , j u s t a s e a s i l y , have been i n d i c a t e d by
i n c l u d i n g t h e l e n g t h of t h e r o u t i n e as t h e second i t e m i n
t h e DATA s t a t m e n t a t l i n e 100. I f t h i s had been t h e c a s e
t h e n a s i m p l e FOR NEXT l o o p c o u l d have been used .

Example: Check memory a d d r e s s >6000 t o s e e i f a p a r t i c u l a r
EPROM se t h a s been i n s t a l l e d and i f s o , e x e c u t e t h e assembly
l a n g u a g e r o u t i n e l o c a t e d t h e r e . (T h i s EPROM s e t i s
i d e n t i f i e d by t h e c o n t e n t s of i t s f i r s t word, i t s h o u l d be
>1234e)

I F MWD(06000H)=01234H THEN CALL 11routine1' ,06002H,. . . .

Texas I n s t r u m e n t s 7-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7 . 6 , 7 Assembly Language Routines

Although Power BASIC is one of the fastest BASIC
interpreters commercially available, there are some
situations where it may be advantageous, or even necessary,
to write a routine in assembly language, Perhaps a complex
operation has already been written in assembly language and
it would certainly be easier, and simpler, to use this
without having to recode it in the Power BASIC language. Or
perhaps, to look after a high-speed device where timing is
critical and a response is required in a matter of a few
tens of microseconds, (At 3MHz and no memory wait states,
the TMS9900 microprocessor executes an interrupt context
switch in 7,3us; a MOV instruction takes between 4,7us and
lOus depending upon the addressing mode used,)

With Development, and Configurable, Power BASIC, this sort
of situation is provided for by the CALL statement, It
aiisws t he programmer to fnvoke an asseiiibly language routine
from within a Power BASIC program, The syntax for this
statement is :

CALL <name>,<address>,<var1>,<var2>,<var3>,<var4>

where the string <name> is the assembly language routine's
IDT, <address> is the address of the routine in memory,

- d- IF, 4 1 ~trmtt Lmi' 6

parameters (these parameters are optional and can be
omitted, along with their preceeding commas, if they are not
required),

When running under either Development Power BASIC or the
Configurable Power BASIC host interpreter, the <name>
operand is not checked (but it must be present) and the
<address> operand is used as the routine's entry point,
However, a customised Power BASIC target interpreter
(derived from Configurable Power BASIC) uses the <name>
operand to generate the routine's entry point and the
<address> operand is not checked (but it must be present).

The assembly language routine is entered by a BL
instruction, which stores the return address in register
11, A return to the Power BASIC interpreter is made by an
RT pseudo-instruction (this is equivalent to a B *R11
instruction),

---- -. - -

The parameters are passed across to the assembly language
routine in registers 4, 5, 6 and 7 of the Power BASIC
workspace. When a Power BASIC variable is a parameter, its
contents are converted into a 16 bit twos complement integer
value before being loaded into the appropriate register, 1

Enclosing the variable name in parentheses causes the I
Texas Instruments 7-31 October 1981 1

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

address of the variable to be passed over. (The formats
employed by the Power BASIC interpreter are given in section
7.7.1.) The routine can modify these four registers as
necessary. If, however, more than four registers are
required, the assembly language routine should be provided
with its own workspace as modifying any of the other
registers could cause the interpreter's execution to become
unpredictable.

Example: Invoke the assembly language routine (IDT of TEST)
located at memory address >8446, with parameters 10 and the
address of the Power BASIC variable INC.

CALL "TEST1',08446H, 10, (INC)

On entry to the routine, R4 will contain 10 and R5 will
contain the address of INC,

With the Configurable Power BASIC host interpreter, the user
must first load the object program from either cassette or a
floppy disk file. Details on how to do this are given in
the Assembly Language Support for Power BASIC Application
Report (MP719), available from TI. (A small assembly
language routine can be 'loaded' using the mechanism
described in section 7.6.6.2.)

7.6.8 Interrupts

Development Power BASIC allows the uskr to perform interrupt
handling via a Power BASIC subroutine. This is achieved
using the Power BASIC interrrupt statements IMASK, TRAP and
IRTN.

With the T~990/10OM and / 1 0 1 ~ microcomputer modules, all
interrupt lines are connected to the onboard TMS9901
Programmable Systems Interface. It is this device that
informs the 9900 microprocessor when an interrupt has been
generated.

The 9901 is accessed via CRU instructions using a hardware
base address of >80; this address needs to be doubled (ie
>loo) when used in the BASE statement to set the base
address of the 9901. For an interrupt to be recognised by
the 9901 (and subsequently by the 9900), its level must be
enabled. This is performed by setting the appropriate mask
bit in the 9901's CRU address space to '1' (for details on
the operation of this device refer to the TMS9901
programmable Systems Interface Data Manual).

To program the 9901 to enable an interrupt level it is
necessary to:

1) Select interrupt mode.

Texas Instruments 7-32 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

2) Write a '1' to the appropriate mask bit.

For example: To enable interrupt level 7:

BASE lOOH !set base address of 9901
CRB(O)=O !set control bit=interrupt mode
CRB(7)=1 !enable mask 7

If a '0' is written (instead of a '1') to the mask bit then
the interrupt level is disabled, For example: To disable
interrupt level 12:

CRB(O)=O !select control bit=interrupt mode
CRB(12)=O !disable mask 12

The above example assumes that the base address of the 9901
has already been set,

An 'open/close window' mechanism is used to recognise
interrupts. This mechanism was chosen because it guarantees
the integrity of the Power BASIC environment, Interrupts
are only recognised after a Power BASIC statement has been
executed, As the Power BASIC interpreter is not re-entrant
(see Sections 8.13.7 to 8.13.9 inclusive), this is necessary
to ensure that temporary/partial results and even Power
BASIC system variables are not corrupted by executing a
Power BASIC interrupt handler while the interpreter is in
the middle of a statement,

After a statement has been executed, the interpreter sets
the status register's interrupt mask to the 'open' value
(this allows the processor to take the highest priority
pending interrupt), If there is a pending interrupt, its
priority level is stored in an internal 'flag register'.
The interrupt mask is then reset to the 'close' value. If
the 'flag register' is unchanged, the next Power BASIC
statement is executed. Otherwise the 'open' value and the
address of the next instruction to be executed are stacked,
The 'open' value is reset to the incoming interrupt level
minus one (this disables interrupts of an equal or lower
priority) and the appropriate Power BASIC interrupt routine
is then invoked. (On completion of the interrupt routine,
both the 'open' value and the address of the next
instruction to be executed are restored and the above
sequence is then repeated,)

The 'open' and 'close' values are determined during system
initialisation, This is performed by scanning the interrupt
vectors (starting from interrupt level 15 and working down
towards level 3) to find the lowest priority interrupt that
is not handled by Power BASIC. Both 'open' and 'close' are
set to the value of this interrupt level (if all interrupts
are handled by Power BASIC, these two values are set to 3).
This allows all enabled interrupts that are handled by

Texas Instruments 7-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

assembly language routines to be taken immediately they are
recognised by the processor, no matter what the Power BASIC
interpreter is doing. However, this means that a11
interrupt levels below the 'open' value must be handled by
assembly language routines. If, for example, interrupt
level 7 is handled by an assembly language routine, the
Power BASIC interrupt statements can only be used in
conjunction with levels 8 to 15.

Additional information on interrupts is contained in Section
8elOa

7,6,8,1 IMASK Statement

The IMASK statement is used to control the TMS9900
micropr~cessors's interrupt mask (bits 12 to 15 of the
status register),

The 9900 recognises 16 distinct interrupt levels, level 0 is
the highest priority interrupt and level 15, the lowest.

With the / 1 0 0 ~ and the /101M microcomputer modules,
interrupt level 0 is reserved for the RESET function and
interrupt level 3 for the real-time clock. Apart from these
two, all other interrupt levels may be used by external
devices, Several devices may even share the same interrupt
level (if system considerations require it). If this is the
case, the programmer must determine which device caused the
interrupt by polling the devices' status registers,

An interrupt can only be recognised by the TMS9900 when the
incoming interrupt has an equal or higher priority (equal or
lower numerical level value) than that specified in the
interrupt mask, If, for example, the interrupt mask is set
to 5, then only interrupt levels 0 to 5 will be recognised
by the processor, The interrupt mask can be changed using
the IMASK statement, The syntax for this statement is:

IMASK <exp>

where <exp> is an expression in the range 0 to .15.

Note: Care must be taken when using the IMASK statement as
this causes the 'open' and 'close' values to be changed.
('Close' is set to the IMASK value. 'Open' is also set to
this value if it is numerically lower than the current
'open' value.)

7,6,8,2 TRAP Statement

The TRAP statement is used to define a Power BASIC
subroutine that is to be executed when an interrupt of the
specified level occurs, The syntax for this statement is:

Texas Instruments 7-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

TRAP <exp> TO <In>

where <exp> is the interrupt level and <In> is the line
number sf the first statement sf the interrupt routine.

7.6.8.3 IRTN Statement

The last statement of an interrupt subroutine must be an
IRTN. When this statement is executed, the interpreter
recognises that the interrupt has been serviced and that it
should continue program execution from where it left off.
The syntax for this statement is:

IRTN

Before this statement is executed, the device that generates
the interrupt signal must be reset. If this is not done
then as soon as the IRTN statement has been executed the
interrupt subroutine will be immediately re-entered (as the
interrupt signal will still be present).

7.7 POWER BASIC STORAGE ALLOCATION

The paragraphs that follow discuss variable storage and the
system memory map. This information is not necessary in
order to write Power BASIC programs, but may be of interest
to users.

7.7.1 Variable Storage

As a variable is allocated the same amount of memory no
matter what it contains (4 bytes in Evaluation Power BASIC
and 6 bytes in Development Power BASIC), swapping a
variable's contents between integer, floating point or
character string formats as the context requires presents no
problem.

The memory space for variable storage starts in high memory
and builds down towards low memory as each new variable is
declared. Suppose variable storage starts at memory address
>FEOO. The first variable used will be allocated space as
follows :

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

1 ST BYTE 2ND BYTE
> r n F C I 1 1
EVALUATION POWER BASlC

POWER BASIC

>FEOO

DEVELOPMENT POWER BASlC

Figure 7-2 F i r s t Variable Al locat ion

The next var iab le w i l l he a l l o c a t e d space a s f o l l o w s :

I 3RD BYTE 1 4lH BYTE I I
1ST-

VARIABLE

>FDFC

EVALUATION POWER BASIC \

I lSTBYTE I ZNDBYTE I
I. DEVELOPMENT POWER BASIC

Figure 7-3 Second Variable Al locat ion

7 . 7 . 1 . 1 Integer Format

Integer numbers are s tored a s :

EVALUATION POWER BASlC

0 15 16 31

ALL ZEROS

DEVELOPMENT POWER BASlC

TWOS COMPLEMENT

0 15.16 31 32 47

Figure 7-4 Integer Format

ALL ZEROS

Texas Instruments 7-36 October 1981

TWOS COMPLEMENT ALL ZEROS

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The first word /I.-+ \ " L L s 0 to 15) is set to zero indicating an
integer number. The second word (bits 16 to 31) contains
the twos complement integer value, For Development Power
BASIC the third word (bits 32 to 47) also contain zero.

7.7.1.2 Floating Point Format

A floating point number is represented internally as a
fraction multiplied by a power of 16 (this power is known as
the characteristic) and is stored as:

EVALUATION POWER BASIC

SIGN +

DEVELOPMENT POWER BASIC

EXPONENT

SIGN -+,

Figure 7-5 Floating Point Format

MANTISSA

Bit 0 is the sign bit and represents the sign of the
floating point number: 0 for positive, 1 for negative. Bits
1 to 7 hold the characteristic coded in Excess 64 notation
(the true characteristic plus 64; this gives the
characteristic a range of 0 to 127 representing a true
exponent range of -64 to +63). The remaining hits (24 for
Evaluation Power BASIC and 40 for Development Power BASIC)
contain the normalised mantissa (the mantissa is normalised
if its first hex digit is non-zero).

EXPONENT

Negative fractions are stored in true form with the sign bit
set to one and not in twos complement notation.

MANllSSA

The conversion of a decimal real number into its approximate
binary equivalent is described in Sections 8.13.2.3 and
8.13.2.4.

7.7.1.3 Character String Format

A character string is stored as follows:

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

EVALUATION POWER BASIC

BYTE 1

Figure 7-6 Character String Format

0 7 8 15 16 23 24 31 32 39 40 47

Suppose the t w o variables A and B, defined in that order,
occupy successive memory locationse The statements:

(21 BYTE 2

BYTE 1

would cause these strings to be stored as follows:

BYTE 3

HIGH MEMORY

DEVELOPMENT POWER BASIC

LOW MEMORY

@ BYTE 2

EVALUATION POWER BASIC DEVELOPMENT POWER BASIC

Figure 7-7 Character String Storage Example

BYTE 3

When a character string is too long to be held in a
variable, an array should be used,

7,7,1.4 Array Storage

BYTE4

An array is referenced by its array header. This contains
information such as the size of each dimension and its
stride (the stride is the number of bytes between successive
elements of a dimension), For a one dimensional array the

BYTE5

Texas Instruments 7-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

stride Is 4 f c r Evaluation Power BASIC and 6 for Development
Power BASIC.

The memory address of any element in a one dimensional array
is calculated (in bytes) as:

start address + n * subscript
where start address = address of array header + 4

n = 4 for Evaluation Power BASIC
6 for Development Power BASIC

If the array header is located at >EFFO, the 9th element of
the array, array name(8), starts at memory address:

For Evaluation Power BASIC = >EFF4 + 4 * 8 = >F014
For Development Power BASIC = >EFF4 + 6 * 8 = >F024

To allocate a ten-element array (STR) and store the
character string 'ABCEEFGXIJ ' into it, the following
statements are required.

DIM STR(9)
$STR(O)=' ABCDEFGHIJ'

This string would be stored as:

LDVv' MEiiiiGRY'
EVALUATION POWER BASIC DEVELOPMENT POWER BASIC

Figure 7-8 Array Storage

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The statements:

PRINT $STR(O)
PRINT $STR(1)
PRINT $STR(2)

would produce the following output:

ABCDEFGHIJ ABCDEFGHIJ
EFGHIJ GHIJ
IJ
Evaluation Power BASIC Development Power BASIC

Individual bytes of an array containing a character string
can be accessed by following the array subscript with a
semicolon (; and the number of the required byte. For
example: $STR(1;3) references the letter 'G' (the letter 'I'
in Development Power BASIC),

The statement:

DIM LST(25,9)

allocates space for a two dimensional array, which can be
thought of as 26 one dimensional arrays each containing 10
elements. The stride for the first index will be 40 for
Evaluation Power BASIC and 60 for Development Power BASIC;
the stride for the second will be 4 for Evaluation Power
BASIC and 6 for Development Power BASIC,

The memory address of any element in a two dimensional array
is calculated (in bytes) as:

start address + n * (subscript1 * multiplier + subscript2)
where start address = address of array header + 4 * m

m = number of dimensions
multiplier = maximum value of subscript2 + 1
n = 4 for Evaluation Power BASIC

6 for Development Power BASIC

If the array header for LST is located at >E4DC then the
element LST(16,4) is at memory address:

For Evaluation Power BASIC = >E4E4 + 4 * 164 = >I3774
For Development Power BASIC = >E4E4 + 6 * 164 = >E8BC

7.7.2 System Memory Map

Any additional RAM to that supplied with the TM990/101M and
/100M CPU boards must be configured to be contiguous and to

Texas Instruments 7-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

end at address >EFFF, For full details on how to do this,
refer to Section 3 of the TM990/201 and TM890/206 Memory
Expansion Boards Data Manual,

The lower limit of RAM is determined at system
initialisation time by autosizing. This can be altered by:

NEW <exp>

where <exp> is the address of the first byte of RAM to be
used by the system. (The first few bytes of RAM are
reserved for system use.)

Once the system has been initialised, the memory map will
look like this:

SYSTEM STACKS Y l
I SYSTEMPTRS

i GOSUB, WNmON '- END OF USER STORAGE (EUS)

AND FOR NEXT
STACKS

VDT

VMT

SLT

VARIABLE DEFINITION TABLE

VARIABLE NAME TABLE

STATEMENT LOCATION TABLE

USER PROGRAM

Figure 7-9 System Memory Map

- BEGlNlNG OF USER STORAGE (BUS)

ROW&
POWER BASIC
iWcRFR€iER

Texas Instruments

LO-W MEMORY

October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

When a Power BASIC statement is entered, it is checked for
syntax errors, Syntactically correct statements are encoded
to minimise storage space, The encoded statement is stored
in the program space in ascending line number order.
Program space starts at BUS and builds up in memory towards
EUS, Line numbers are stripped off the statements as they
are encoded and are stored in the Statement Location Table
(SLT) along with the statement's position in the program
space. (This allows statements that are entered out of
sequence to be stored in their correct position in the
program space.)

As the program grows the system tables (VNT, VDT and SLT)
are moved up in memory in order to increase the size of each
table and to expand the program space.

When a variable is first encountered, its name is encoded
and entered into the Variable Name Table (VNT). As a
statement is being encoded, all variable names present are
replaced by their position within the VNT. This position
number is then incremented by >74 to signify that an entry
in the VNT is being referenced, For example, the statement:

LET AJ=SIN (PX*RAD)

will initially be converted into something like:

LET <77>=SIN(<76>,<75>)

The angle brackets are used to indicate a two digit hex
number, <77> signifies the fourth entry in the VNT, (76)
the third entry and (75) the second entry.

At run time, space is allocated to each variable as they are
declared in the program; the address of this space is
recorded in the Variable Definition Table (VDT), Variable
storage is allocated from below the 1/0 buffer down towards
BUS, If insufficient space exists, the run will terminate
with error 10 (STORAGE OVERFLOW),

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8 REFERENCE SECTION

An item preceded by an asterisk (*) denotes a feature that
is not supported by Evaluation Power BASIC.

7.8.1 Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters

(! I) * : = - + ; , . ? / < >

* Non-printable characters may be specified by enclosing
the character's hex representation with angle brackets.

Character Use

Statement separator or THEN keyword
Tall remark indicator
Equivalent to PRINT

7.8.2 Hexadecimal Constants

A hexadecimal integer constant is one to four hex digits
followed by the letter H. A hex constant begining with one
of the letters A - F must be preceded by a zero.

7.8.3 Variable Names

A variable name starts with an alphabetic character
optionally followed by up to two additional alphabetic
characters or a number in the range 0 to 127. The variable
name may not be the same as a Power BASIC keyword; nor can
it form the begining of a keyword.

7.8.4 Edit Commands

ESC
DEL/RUBOUT

dc Ctrl D <n>
* Ctrl I <n>

Ctrl H
Ctrl F

<In> Ctrl E

Enter line into program source
Enter line into program source and enable
the auto-numbering facility
Cancel input line, return to keyboard mode
Backspace and delete character
Delete <n> characters
Insert <n> blanks
Backspace 1 chaaracter
Forwardspace i character
Display line <In> for editing

Texa's Instruments 7-43 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7,8.5 Bower BASIC Commands

Power BASIC commands may not appear within a program,

Command Function

CONtinue * Continue execution from last break
<In> LISt List currebt program from specified line

<ln>=Null, Line=Firs t line number
<In>+ Null, Line=<ln>

LOAd <exp> Load BASIC program from specified device
<exp>=Null, Device=733 digital cassette

* <exp>=O, Device=733 digital cassette
* <exp>=l or 2, Device=Audio cassette
* <exp>=Address, Device=2716 EPROM

NEW <exp> Clear system for new program
<exp>=Null, RAM limit set by autosizing

* <exp>#~ull, RAM limit =<exp>
PROgram * Burn current program into 2716 EPROM
RUN Clears all variable space, pointers, and

stacks and executes current program from
first line number

SAVe <exp> Save current program on specified device
<exp>=Null, Device=733 digital cassette

* <exp>=O, Device=733 digital cassette
* <exp>=l or 2, Device=Audio cassette

SIZe Display size of current program

Texas Instruments 7-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7*8 .6 Power BASIC Statements

Power BASIC program lines are of the form:

(line number) statement [:: statement] { ! comment)

where { } indicates optional items
[] indicates that the item is repeated as many

times as required - 0,1,, , , .
Exceptions:

DATA should be the only statement on a line
NEXT should not be preceded by '::statement(s)'
REM should not be followed by '::statement(s)'

* BAUD <expl> , <exp2>
Sets the baud rate of the serial 1/0 port(s) of the TMS9902
Asynchronous Communications Controller,

<exp l>=O, port=A (CRU address >80)
< e x p D f C , pcrt=E (CRY address X80)
<exp2>=0, baud rate=19200
<exp2>=l, baud rate=9600
<exp2>=2, baud rate=4800
<exp2>=3, baud rate=2400
<exp2>=4, baud rate=1200
<exp2>=5, baud rate=300
<exp2>=6, baud rate=llO

BASE <exp>
Sets CRU base address to <exp> for subsequent CRU
operations,

* CALL <name> , <add> { , <parm>)
Transfers control to the assembly language subroutine <name>
located at <add>, Up to 4 parameters, <parm>, are allowed
in the statement (each separated by commas); these are
passed to the subroutine in R4, RS, R6 and R7. (If a
variable is contained in parenthesis, the address of the
variable is passed,) The return address is contained in
R11,

DATA <item> [, <item>]
Defines an internal data block for access by READ, <item>
is either an expression or a string,

* DEF FN<i> { (<arg>) } = statement
Defines a single line arithmetic statement containing a
maximum of 3, single letter, dummy variables <arg> (each
separated by commas). <i> is the single alphabetic
character function identifier, when caiiing Fiu'<f> the d.;m-,y
arguments are replaced by the actual parameters, which may
be any Power BASIC variable, array element or expression,

Texas Instruments 7-45 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

D I M <var> (<nun) [, <num>])
Allocates user space for the dimensioned array <var>, <num>
is the number of elements in a dimension; each dimension
starts at element 0,

* ELSE statement [:: statement]
When the most recently executed IF THEN statement is false,
all subsequent ELSE statements are executed; otherwise they
are ignored,

END
Terminates program execution and returns to keyboard mode,

* ERROR <In>
Specifies a Power BASIC subroutine, starting at line <In>,
that is to be executed via a GOSUB statement when an error
occurs.

* ESCAPE
Enables the ESCape key to interrupt program execution.

FOR <var> = <expl> TO <exp2> (STEP <exp3>)
The FOR statement is used with the NEXT statement to open
and close a program loop, Both identify the same FOR
variable <var>, <expl> is the start value, <exp2> is the
end value and <exp3> is the stepsize. If STEP is omitted, a
stepsize of 1 is assumed,

GOSUB <In>
Transfers control to a Power BASIC subroutine starting at
line <In>, The address of the statement following the GOSUB
statement is stored on the GOSUB stack.

GOT0 <In>
Transfers control to line <In>,

IF <cond> THEN statement [:: statement]
The statement(s) following the THEN keyword are executed if
the condition <cond> is true,

* IMASK <exp>
Sets the interrupt mask of the TMS9900 microprocessor to
allow interrupts of higher or equal priority to <exp> (in
the range 0 to 15).

9

INPUT <var> [, <var>]
Take input (numeric or string) from the terminal and store
it into next variable <var> in the INPUT list. Input is
prompted with a question mark (?) for numeric data and a
colon (:) for character data, A double question mark (? ?)
signifies an illegal number. See section 7.8.14 for more
details,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

* IRT??
Is used to return from an interrupt routine; it restores the
program environment existing prior to taking the interrupt,

{ LET) <varS = <exp>
Evaluate <exp> and store the result in the variable, string
variable or array element <var>,

NEXT <var>
Delimits a FOR loop, The variable <var> must match the FOR
variable,

* NOESC
Disables ESCape key on the terminal,

GOSUB
* ON <exp> THEN GOT0 <In> [, <In>]

Transfer control, via a GOSUB or a GOT0 statement, to the
line specified by the value of the expression (when <exp>=i
use the ith <In> in the list), If <exp> is outside the
specified range (less than 1 or greater than the number of
Cinh in the l i s t) then drop through to the newt statement
line.

* POP
Removes the top item from the GOSUB stack,

PRINT <exp> [, <exp>]
Prints (without formatting) the value of <exp>, See section
7.8.15 for more details,

* RANDOM <exp>
Sets the seed for the random number generator to the value
of <exp>.

READ <var> [, <var>]
Takes input from the internal DATA block and stores it in
the next <var> in the READ list,

REM <text>
Inserts comment lines (REMarks) into a user program. The
whole line is taken as a comment,

RESTOR (<In>)
Resets the DATA pointer to the specified DATA line <In>, If
<In> is not present, the pointer is set to the first DATA
statement in the program.

RETURN
Return from a Power BASIC subroutine, the return address fs
the last entry in the GOSUB stack,

STOP
Terminates program execution and returns to keyboard mode.

Texas Instruments 7-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

TIME (<item>)
~nterrogate/set the 24 hour time of day clock.

<item>=Null - Output time in HR:MN:SD format
<item>=$<var> - Store time in string variable <var>
<item>=<expl>,<exp2>,<exp3> - Set clock to specified

time (<expl>=hours; <exp2>=mins; <exp3>=secs)

* TRAP <exp> TO <In>
Defines the entry point, <In>, of a Power BASIC interrupt
subroutine for interrupt level <exp>, Level 0 (RESET) and
level 3 (CLOCK) are reserved and can not be serviced by the
TRAP statement*

* UNIT <exp>
Designates the device(s) to receive all printed output.

<exp>=l, 1/0 port-A
<exp>=2, 1/0 port=B
<exp>=3, I/o ports A and B

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.7.1 Arithmetic Operators

A=B
A-B
A+B
A*B
A18
AAB
-A
+A

As s ignmen t
Subtraction
Addition
Multiplication
Division
Exponentiation
Unary minus
Unary plus

7.8.7.2 Relational Operators

Return values of '1' (TRUE) or '0' (false).

A=B TRUE if equal, else FALSE
A==B * TRUE if approximately equal (+/- 9.5E-7),

else FALSE
A<B TRUE if less than, else FALSE
A<=B TRUE if less than or equal, else FALSE
A>B TRUE if greater than, else FALSE
A>=B TRUE if greater than or equal, else FALSE
A<>B TRUE if not equal, else FALSE

7.8.7.3 Boolean Operators

Return values of '1' (TRUE) or '0' (FALSE). A non-zero
value variable is considered TRUE; a zero-valued variable is
considered FALSE.

NOT A * TRUE if FALSE (zero), else FALSE
A AND B * TRUE if both TRUE (non-zero), else FALSE
A OR B * TRUE if either TRUE (non-zero), else FALSE

7.8.7.4 Logical Operators

Perform bitwise operations on the operand(s). Operand(s)
are converted into 16 bit integers before the operation.

LNOT A * 1s complement
A LAND B * Bitwise AND
A LOR B * Bitwise OR
A LXOR B * Bitwise exclusive OR

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.7.5 Operator Precedence

Expressions in parentheses
Exponentiation and negation
*,/
+, -
<= , <>
>=,<
=,>
== , LXOR
NOT, LNOT
AND, LAND
OR,LOR
Assignment (=)

7.8.8 Arithmetic Functions

I-----------------I--------I.------------.--.------------- I
1 Function I Explanation
I-----------------I----.--.-----------------.------.--

I
I

I * ABS (<exp>) I Absolute value of <exp> I
I ATN (<exp>) I Arctangent of <exp>, <exp> in radians I
I COS (<exp>) 1 Cosine of <exp>, <exp> in radians I
I * EXP (<exp>) I Raise E to the power of <exp> I
I INP (<exp>) I Signed integer part of <exp> I
I * LOG (<exp>) 1 Natural logarithm of <exp> I
I RND (<exp>) I Random number between 0 and 1 I
I SIN (<exp>) 1 Sine of <exp>, <exp> in radians I
I SQR (<exp>) I Square root of <exp>
111--11--------~-ll--II.-----------~----I---~--------------

I
I

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.9 CRU Operatisns

To use the f o l l o w i n g CRU f u n c t i o n s i t i s flrst n e c e s s a r y t o
s e t t h e CRU b a s e a d d r e s s v i a t h e BASE s t a t e m e n t , (The v a l u e
supplieC to the BASE statement is twice t h e a c t u a l hardware
b a s e a d d r e s s ,)

7.8.9.1 CRB Func t ion

CRB (<exp>)
Read t h e CRU b i t s p e c i f i e d by t h e CRU hardware base a d d r e s s
p l u s <exp>, <exp> i s v a l i d o v e r t h e range -128 t o +127,

CRB (<exp l>) = <exp2>
S e t / r e s e t t h e CRU b i t s p e c i f i e d by t h e CRU b a s e a d d r e s s p l u s
<expl> . I f <exp2>=0 t h e n r e s e t (0 t h e s e l e c t e d b i t ,
o t h e r w i s e set (' 1 ') t h e b i t . <exp l> i s v a l i d o v e r t h e range
-128 t o +I270

7 , 8 , 9 , 2 CRF Funetfons

CRF (<exp>)
Read <exp> CRU b i t s from t h e CRU hardware base a d d r e s s .
<exp> i s v a l i d ove r t h e range 0 t o 15, I f <exp>=O t h e n 16
b i t s w i l l be r e a d ,

CRF (<expl>) = <exp2>
Output <exp l> b i t s of t h e v a l u e <exp2> t o t h e CRU l i n e s
s t a r t i n g a t t h e CRU hardware base a d d r e s s , <exp l> i s v a l i d
o v e r t h e r ange 0 t o 15 , I f <expl>=O t h e n 16 b i t s w i l l be
o u t p u t ,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.10 Memory F u n c t i o n s

7.8.10.1 BIT F u n c t i o n

* BIT (< v a r > , <exp>)
Read t h e <exp> th b i t of t h e v a r i a b l e <va r> .

* BIT (< v a r > , < e x p l >) = <exp2>
Modify t h e < e x p l > t h b i t of t h e v a r i a b l e <va r> . The s e l e c t e d
b i t i s s e t t o '1' i f <exp2> i s non- zero , o t h e r w i s e i t i s set
t o '0'.

7.8.10.2 MEM F u n c t i o n s

MEM (<exp>)
Read t h e memory b y t e s p e c i f i e d by <exp>.

MEM (< e x p l >) = <exp2>
S e t t h e memory b y t e s p e c i f i e d by < e x p l > t o t h e v a l u e
<exp2>.

7.8.10.3 MWD F u n c t i o n s

* MWD (<exp>)
Read t h e memory word s p e c i f i e d by <exp>.

* MWD (< e x p l >) = <exp2>
S e t t h e memory word s p e c i f i e d by < e x p l > t o t h e v a l u e
<exp2> .

'qxas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7 , 8 , ? ? Miscellaneous Funct ions

78.11.1 NKY Function

NKY (<exp>)
Samples the keyboard in run-time mode. If <exp>=O then
return the decimal value of the last key struck. (Zero is
returned if no key was struck.) If <exp>#O then compare the
last key struck with the decimal value of <exp> and return a
value of 1 (they are the same) or 0 (they are not the
same).

7.8,11,2 SYS Function

* SYS (<exp>)
Obtain system parameters generated during program
execution,

<exp>=O, parameter=input control character
<exp>=l, parameter=error code number
<exp>=2, parameter~error lf ne number

7.8,11,3 TIC Function

TIC (<exp>)
Samples the real time clock and returns the current TIC
value minus the value of <exp>, One TIC equals 40
milliseconds. TIC(0) obtains the current value,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7,8,12 String Operations

<$var> denotes either a literal string, enclosed in
quotes, or a string variable

$<var> denotes a string variable

A variable is specified as being a string variable by
preceeding the variable name by a dollar sign ($) ,

An individual byte within a dimensioned string variable can
be accessed by following the last array subscript with a
semicolon (;) and the byte position,

$<var> = <$var>
Character Assignment: Copy characters into the string
variable until a null (zero) byte is found,

$<var> = <$var> , <exp>
Character Pick: Copy <exp> characters into the string
variable and then terminate the string with a null byte,

$<var> = <$var> + <$var> [+ <$var>]
Character Concatenation: Concatenate the strings into the
string variable (in the specified order) and terminate the
completed string with a null byte,

$<var> = <$var> ; <exp>
Character Replacement: Copy <exp> characters into the string
variable (do ,not add the null byte),

* $<var> = / <$var>
Character Insertion: Insert the characters into the string
variable,

* $<var> = / <exp>
Character Deletion: Delete <exp> characters from the string
variable,

$<var>= % <exp> [% <exp>]
Byte Replacement: Replace the specified byte by the
character equivalent of <exp>,

IF <$var><relop><$var> (, <exp>) THEN <sequence>
String Comparison: Where <relop> is a relational operator,
If the second string is followed by a comma, <exp> indicates
the number of characters to be compared.

* <varl> = <$var> , <var2>
Convert from ASCII to Binary: Convert the character string
into its binary equivalent, The number delimiting character
is stored in the first byte of <var2>,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

* $<var> = <exp>
Convert from Binary to ASCII: Convert the number <exp> into
an ASCII character string. The string is automatically
terminated with a null character.

$<var>= d <$var> , <exp>
Formatted conversions can be made by preceding <exp> with
the formatting operator (1 ,) and a string.

7.8.13 String Functions

* ASC ($<var>)
Returns the ASCII decimal value of the first character in
the specified string.

* LEN ($<var>)
Returns the length of the specified string. Zero is
returned if the string is the null string,

* MCH ($<varl> $<var2>)
Return the number of characters that are the same in the two
strings. A zero is returned if no match is found.

* SRH ($<varl> , $<var2>)
Return the character position of where the first string is
located in the second. A zero is returned if the search is
U ~ S U C C ~ S S ~ U ~ .

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7 , 8 . 1 4 INPUT Options

INPUT <feature> <item> [<feature> <item>]

<item> Either a variable, a string variable, or an
array element

 Explanation

9 Delimit <item>s in the INPUT list
9 Delimit <item>s in the INPUT list. Suppress

<CR> <LF> if at the end of the statement line

<feature> Explanation

<string> Prompt with <string> then get input
? <In> * Upon an invalid input or control charcater, a

GOSUB to the line <In> is executed
X <-exp> * Requires entry of exactly <exp> characters
<exp> A maximum of <exp> characters to be entered

3 Suppress prompting
null Prompt (? for numeric, : for character) and

and then get input

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7,8*15 PRINT Options

PRINT <feature> <item> [<feature> <item>]

<item> Either a variable, an expression, a string
variable, a string, or an array element

 Explanation

s Delimit <Ftem>s in the PRINT list and TAB to
the next print field

9 Delimit <item>s in the PRINT list. Suppress
<CR> <LF> if at the end of the statement line

<feature> Explanation

<string> * Output <string>
TAB (<exp>) TAB to column specified by <exp>

<exp> * Print <exp> in hex free format
, <exp> * Print <exp> in hex (word)

; < ~ x p > * Print <exp> in hex (byte)
<string> * Decimal formatting - (In Enhancement Software

Package and Configurable Power BASIC).
<string> can be
9 Digit holder
0 Digit holder or force 0
$ Digit holder and floats $
S Digit holder and floats sign
< Digit holder before decimal and floats on

negative number
> Appears after decimal if negative
E Sign holder after decimal . Decimal point specifier
, Comma in output - suppressed if before

significant digit
A Translated to decimal point on output

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.16 F l o a t i n g P o i n t XOP Package

Fo r u s e w i t h assembly language r o u t i n e s .

FORMAT XOP ga , op

where GA - Genera l memory a d d r e s s operand
OP - XOP number

FPAC - F l o a t i n g P o i n t Accumulator

XOP no. F u n c t i o n

LOAD FPAC w i t h 6 b y t e number a d d r e s s e d by GA
STORE FPAC i n 6 b y t e number a d d r e s s e d by GA
ADD 6 b y t e number a d d r e s s e d by GA t o FPAC, s t o r e
r e s u l t i n FPAC
SUBTRACT 6 b y t e number a d d r e s s e d by GA t o FPAC,
s t o r e r e s u l t i n FPAC
MULTIPLY FPAC by 6 b y t e number a d d r e s s e d by GA,
s t o r e r e s u l t i n FPAC
DIVIDE FPAC by 6 b y t e number a d d r e s s e d by GA,
s t o r e r e s u l t i n FPAC
SCALE a d j u s t s FPAC's exponent t o v a l u e of b y t e
a d d r e s s e d by GA
MORMALISE FPAC - 1 s t hex d i g i t of m a n t i s s a i s
non- zero. Operand n o t used
CLEAR FPAC. Operand n o t used
NEGATE FPAC - change 1st b i t . I f FPAC=O t h e n no
change. Operand n o t used
FLOAT FPAC's 2nd word - 16 b i t twos complement
number t o f l o a t i n g p o i n t . Operand n o t used

C o n v e r t i n g I n t e g e r . t o F l o a t i n g P o i n t

1) S e t words 1 and 3 of 6- byte r e s e r v e d a r e a t o ze ro .
2) S t o r e i n t e g e r number i n 2nd word of a r e a .
3) LOAD t h i s 6- byte number i n t o FPACo
4) FLOAT FPAC.
5) STORE FPAC i n 6 b y t e a r e a .

DECNO BSS
FLPT BSS

CLR
CLR
L I
MOV
XOP
XOP
XOP

@DECNO
@DECN0+4
RO , NUM
RO,@DECNO+Z
~ D E C N O , o
0 , lO
@FLPT, 1

Texas I n s t r u m e n t s 7-58 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.17 Variable Storage

A variable occupies 4 consecutive bytes in Evaluation Power
BASIC and 6 in Development Power BASIC. Variable storage is
allocated down through memory (from high memory to low).
The variable is referenced by the address of the lowest byte
it occupies.

Character String Format

0 7 8 15 16 23 24 31
1--------1--------1--------I-------- I
1 Byte 1 1 Byte 2 1 Byte 3 1 0 I
1--------I--------I--------II------- I
Evaluation Power BASIC

0 7 8 15 16 23 24 3 1 32 39 40 47
I--------)--------I--------I--------I--------~-------- 1
I Byte 1 I Byte 2 1 Byte 3 1 Byte 4 1 Byte 5 1
I--------1--------I--------I--------l--------

0 I
I -------- 1

Development Power BASIC

Integer Format

0 15 16 ' 32
I----------------I---------------- I
I All zeros I Twos complement 1
I----------------I------------ I
Evaluation Power BASIC

0 15 16 31 32 47
I----------------l---.---------------------- I
I All zeros I Twos complement 1 All zeros 1
~---d---------w--l-----------~--~-l------LI-------- I
Development Power BASIC

Floating Point Format

0 1 7 8 3 1
1-1.------1------------.---------.- I
IS1 Exp I Mantissa
1-1-------1--------.-------------.-

I
I

Evaluation Power BASIC

0 1 7 8 47
111-------1.---------.---------------II---------.--. I
I S f Exp I Mantissa I
!~!-------~---------------------~----=-------~.--.-- i
~evelb~ment Power BASIC

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

708,18 A S C I I C h a r a c t e r S e t

CHAR HEX CHAR HEX

NUL 00
SOH 0 1
STX 02
ETX 0 3
EOT 04
ENQ 05
ACK 06
BEL 07
BS 08
HT 09
LF OA
VT OB
FF OC
CR OD
SO OE
S1 OF
DLE 10
D C 1 11
DC2 12
DC3 1 3
DC4 14
N AK 1 5
SYN 16
ETB 17
CAN 18
EM 19
SUB 1 A
ESC 1B
FS 1 C
GS i n
RS 4.E
US IF
S p a c e 20
! 2
11 2

23
$ 24
% 25
& 26
8 27
(28
1 29
J(2A

Texas I n s t r u m e n t s 7-60

CHAR HEX

DEL

O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.19 Eex-Decimal Table

------ ----------.----.---.-
Even Byte

,-------..---1-----.-------
Hex Dec 1 Hex Dec

------------.I-------------
0 0 1 0 0
1 4,096 1 1 256
2 8,192 1 2 5 12
3 12,288 1 3 768
4 16,384 1 4 1,024
5 20,480 1 5 1,280
6 24,576 1 6 1,536
7 28,672 1 7 1,792
8 32,768 1 8 2,048
9 36,864 1 9 2,304
A 40,960 1 A 2,560
B 45,056 1 B 2,816
C 49,152 1 C 3,072
D 53,248 1 D 3,328
E 57,344 1 E 3,584
F 61,440 1 F 3,840

-------------I-------------

Texas Instruments

Odd Byte I

Hex Dec I Hex Dec I

October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.20 E r r o r Codes

Code Error message

Syntax error
Unmatched parenthesis
Invalid line number
Illegal variable name
Too many variables
Illegal character
Expecting operator
Illegal function name
Illegal function argument
Storage overflow
Stack overflow
Stack underf low
No such line number
Expecting string variable
Invalid screen command
Expecting dimensioned variable
Subscript out of range
Too few subscripts
Too many subscripts
Expecting simple variable
Digits out of range (0< no. digits > i 2)
Expecting variable
Read out of data
Read type differs from data type
Square root of negative number
Log of non-positive number
Expression too complex
Division by zero
Floating point overflow
Fix error
FOR without NEXT
NEXT without FOR
Exp function has invalid argument
Unnormalised number
Parameter error
Missing assignment operator
Illegal delimiter
Undefined function
Undimensioned variable
Undefined variable
Expansion EPROM not installed
Interrupt without TRAP
Invalid baud rate
Tape read error
EPROM verify error
Invalid device number

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

7.9 sxssrosamz

POWER BASIC

TI Publications

Power BASIC Reference Manual (MP308)

Configurable Power BASIC Reference Manual (MP318)

TMS9901 Programmable Systems Interface (MP003)

TM990/100M Microcomputer User's Manual (MP321)

TM990/101M Microcomputer User's Manual (MP337)

TM990/201 and ~~990/206 Memory Expansion Boards (M~334)

TM990/302 Software Development Board User's Guide (MP343)

Assembly Language Support For Power BASIC Application
Report (MP7 19)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

CHAPTER 8

ASSEMBLY LANGUAGE

8.1 INTRODUCTION

The relationship between assembly language and the computer
it was designed to support is displayed below, Assembly
language provides the interface between the hardware
operation and the high-level language specifying the
problem. Assembly language is therefore machine dependent
and thus it has the capability to access all low-level
features of the machine (memory, hardware registers, etc).

Problem (Real Word)

Figure 8-1 Assembly Language and the Computer

Due to its low-level nature, assembly language does not have
the programming aids that are built into high-level
languages, For example, high-level languages automatically
provide the necessary data mappings and addressing
mechanisms used to access declared variables, while the
assembly language programmer must perform this housekeeping
for himself,

Assembly language is useful when tight control must be
maintained over the use of resources (for example where
particularly compact or efficient code is required), The
disadvantage is that skill and a lot of time is needed to
realize this compactness and efficiency, Using high-level

Texas Instruments 8- 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ianguages can speed up program production considerably and
the program will he less prone tn errore, A l n n , en n g q ~ ~ h l y

language program becomes more and more difficult to manage
as its size increases,

However, assembly language is ideal for short, frequently
executed program segments such as 1/0 routines and for
high-volume applications where savings on code (and
hardware) outweigh the extra development effort.

The machine instruction is a hardware defined operation and
is the basic unit. of processing. The complete range of
hardware instructions designed into a particular processor
forms the instruct ion set. (Sixty-nine instructions make up
the TMS9900 instruction set.)

Every program written for the 9900 (or any other processor)
will eventually be broken down into a sequence of these
basic instructions, Each instruction is actually stored in
program memory as a number (a string of '0's and '1's). In
this state the instruction is usually referred to as a
machine code instruction,

While programming at the machine code level is possible, it
is not very practical. Moreover, understanding the function
of a machine code program is difficult and requires very
careful study.

Assembly language allows programming directly in the
machine's instruction set using mnemonics instead of
numbers, Further, most assembly languages allow symbolic
referencing: using a name to reference a data item or a code
segment (the assembler translates these references into
their actual memory addresses),

Consider the following example, A value is stored at
address >4E70 (symbolic location START), This value is to
be transferred to address >5630 (symbolic location NEW),
The assembly language instruction

will do this, The machine code equivalent is:

The symbol ')' indicates that the number that foilows is a
hexadecimal number (the hexadecimal number system is
described in section 8.13,2.1),

Before an assembly language program can be executed, it must
first be converted into a form the processor can handle
(machine code). This conversion is performed by an
assembler 'on a one-for-one basis. (A single assembly
language instruction generates one machine code

Texas Instruments 8-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instructions can be one, two or three words long, The
length of an instruction depends on the number of operands
contained and the type of addressing allowed, The MOV
instruction above has two memory address operands (START and
NEW) and thus requires three words of storage. If one of
these operands had been a register only two words would be
needed. Had both operands been registers one word would be
sufficient.

8.2 INSTRUCTION FORMAT

An instruction consists of four fields, each separated from
the other by at least one space. Several examples follow.
The asterisk (*) in the first column indicates a comment
line.

OP-
Label code Operand(s) Comment s

RESET CI R4,>100 * Contents of R4= >loo?

* operands - 1 workspace register, 1 immediate value *
C R2,R3 Contents of R2=R3? *

* operands - both workspace registers *
Branch to RESET

* operands - 1 symbolic memory location *
RSET Reset the 9900 *

* operands - none *

The instruction fields are:

1) Label field - An optional field; when used the
user supplied name is assigned the current
value of the location counter (the address in
memory where the instruction will be stored).
This field starts in column one. An asterisk
in column one indicates that the whole line is
a comment .

2) Opcode field - The operation code, or mnemonic,
specifies what the instruction does (eg MOV).
Assembler directives, assembly language
instructions and pseudo-instructions are

Texas Instruments 8-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

covered by this term.

3) Operand field - This field specifies the
opcode's argument(s); eg, where the data is to
be taken from (source) and/or where the data is
to be stored (destination),

4) Comment field - An optional field ignored by
the assembler and used for documentation
purposes. Although comments have no effect on
the code produced, they are extremely useful,
They allow the programmer to describe exactly
what is done at the point in the code where the
action is performed, If used properly,
comments can make a program completely self-
documenting.

The assembler places no restrictions on the position of any
field in the line, except for the label field, However, it
is advantageous for the programmer to adopt some
convention. The recommended convention is:

o LABEL field Starts in column 1

o OPCODE field Starts in column 8

o OPERAND field Starts in column 13

o COMMENT field Starts in column 31

8 . 3 INSTRUCTION FORMAT RESTRICTIONS

Restrictions to instruction formats are listed below.

1) If a label is present it must start in column
one; otherwise column one must be left blank,

2) A label consists of up to six alphanumeric
characters, the first of which must be
alphabetic,

3) All fields are separated by one or more
spaces,

4) Operands, if more than one is required, are
separated by commas.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4 MEMORY ORGANIZATION

Computer memory is sequential and consists of a large number
of storage cells or locations. Each location has a unique
address. Using this address, the processor is able to
directly reference a particular location.

Memory is used for storing patterns of bits that may be
interpreted as either:

1) Programs - lists of instructions that tell the
processor what to do.

or 2) Program Data - patterns of bits that can be
used to represent numbers, status of switches,
etc (anything that the computer is programmed
to deal with).

8.4.1 Byte

A byte is a group of eight binary digits (bits). The most
significant bit (MSB) is designated hit zero and the least
significant bit (LSB) as bit seven. The contents of a byte
can be represented by two hex digits (>00 to >FF).

k
0 1 2 3 4 5 6 7

Bit Position

Figure 8-2 A Byte

8.4.2 Word

A memory word, on the 9900, occupies 16 bits (2 bytes). A
word's MSB is designated bit 0 and its LSB as bit 15. The
contents of a word can be represented by four hex digits
(>0000 to >FFFF).

The architecture of the TMS9900 is based on words. However,

Texas Instruments 8- 5 October 1981

+ LSB MSB-

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 15 Bit Position

Figure 8-4 A Word

Most Significant
Byte

I I 1 1 1 1 I

*4 Least ~ ig i f icant
Byte

*

I I I I I l l

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

semi9csr;~uct~r i i l e n ~ i y is ---- UDdaPPy organf zed i n bytes.
Therefore, although the word is the basic unit, byte
addressing is used. This means that the addresses of
consecutive words in storage are n, n+2, n+4, etc. The
first byte of a word (the most significant byte) must be on
an even numbered address.

Figure 8-4 Memory Organisation

Storing a single byte's worth of data in a memory word is
not very efficient. The 9900 instruction set provides a
number of instructions for byte operations (eg MOVB, CB, AB,
SB, etc). Using these instructions, it is possible to
individually access/manipulate each of the bytes within a
word.

b

4 Word *

8.4.3 Registers

- Byte ----------YW

Most computers provide a number of general purpose hardware
registers that are accessible to the assembly language
programmer. All operations are centred around these
registers. To add the contents of two memory locations (A
and B) together and store the result in the first location
(A), these steps are necessary:

- Byte b

o Load the contents of one of the locations into a
register.

o Add the contents of the other location into the
register.

o Store the contents of the reaiscer into memory
location A.

The register oriented instruction evolved because sf the
great differences in operation speeds between hardware
registers and ferrite core memory.

The introduction of semi-conductor memory (considerably
faster than ferrite core) into computer systems has
eliminated the need for such registers. With the TMS9900
microprocessor, direct memory-to-memory operations are
possible. The above example can now be performed in a

Texas Instruments 8-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

single instruetior,

The 9900 has only three dedicated hardware registers:

1) Program Counter (PC) - contains the address of
the next instruction to be executed,

2) Workspace Pointer (WP) - contains the address
of the first word of the current workspace,

3) Status Register (ST) - contains the processor's
status flags (bits 0 to 6) and the current
interrupt mask (bits 12 to 15). Bits 7 to 11
are reserved for future use,

$, 4 , 4 Workspace Registers

The TMS9900 does not provide a unique set of hardware
implemented registers, Instead any contiguous 16-word area
of readlwrite memory (RAM) may be defined as the 16-word
workspace. The 16 workspace registers (RO to R15) may be
used exactly as if they were implemented in hardware,
However, the location of the workspace may be changed during
program execution to give 16 completely new registers, This
is called a context switch and occurs automatically during
an interrupt, when' a BLWP instruction is used to call a
subroutine, or when an XOP instruction is executed. The
workspace can also he changed using the Load Workspace
Pointer Immediate instruction (LWPI),

Although the registers can be located anywhere in memory,
only 4 bits are needed to completely specify any register
within the workspace, This allows a register operand to be
incorporated into the instruction word without having to set
aside another word for the address,

The BSS (Block Starting with Symbol) assembler directive
allows the user to reserve an area of data storage for use
as a workspace, The following lines of code reserve a 16
word area starting at address >200O, The LWPI instruction
causes this value to be loaded into the WP, When this
instruction has been executed, RO references address >2000,
R1 references address >2002, etc,

AORG >2000
WKSP BSS 32 Reserve 16 word area

b

LWPI WKSP Set WP= >2000

The benefit of this approach is realized when it is
necessary to save the contents of the registers (for

Texas Instruments 8-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

example, on interr~pt). V i t h the t r a d i t i o n a l approach , t h e
c o n t e n t of e v e r y r e g i s t e r h a s t o be copied Fntn reserve2
memory l o c a t i o n s , With t h e 9900, o n l y t h e t h r e e d e d i c a t e d
r e g i s t e r s need t o be saved and t h e WP loaded w i t h t h e
a d d r e s s of a n o t h e r workspace, T h i s i s handled a u t o m a t i c a l l y
when an i n t e r r u p t o c c u r s ,

8 ,4 ,5 R e g i s t e r F u n c t i o n s

I n g e n e r a l , when a r e g i s t e r i s r e q u i r e d a s a n operand f o r an
i n s t r u c t i o n , any of t h e 16 workspace r e g i s t e r s can be used.
However, f o r c e r t a i n o p e r a t i o n s (i n p a r t i c u l a r t h e c o n t e x t
s w i t c h) some of t h e r e g i s t e r s have s p e c i a l l y d e s i g n a t e d
f u n c t i o n s , a s f o l l o w s :

RO I f t h e count operand t o a s h i f t i n s t r u c t i o n
i s z e r o , t h e s h i f t count i s t a k e n from b i t s
12 t o 15 o f RO, I f t h e s e 4 b i t s a r e a l l
z e r o s , t h e s h i f t count i s s e t t o 16,

R11 Branch and Link i n s t r u c t i o n u s e s R 1 1 t o s t o r e
i t s r e t u r n addres s . Also t h e XOP i n s t r u c t i o n
u s e s R11 t o s t o r e t h e e f f e c t i v e a d d r e s s of
t h e s o u r c e operand,

R12 B i t s 3 t o 14 o f R12 c o n t a i n t h e hardware base
f o r CRU i n s t r u c t i o n s ,

R13 When a c o n t e x t s w i t c h o c c u r s , R13 i s used t o
s t o r e t h e o l d WP,

R14 When a c o n t e x t s w i t c h o c c u r s , R14 i s used t o
s t o r e t h e o l d PC,

R15 When a c o n t e x t s w i t c h o c c u r s , R15 i s used t o
s t o r e t h e o l d ST,

Note: The MPY and D I V i n s t r u c t i o n s u s e two c o n s e c u t i v e
r e g i s t e r s . The f i r s t i s s u p p l i e d a s an operand t o t h e
i n s t r u c t i o n (e g i f R2 i s t h e r e g i s t e r operand, R2 and R3 a r e
b o t h u s e d) , I f R15 i s t h e s p e c i f i e d r e g i s t e r , t h e word
f o l l o w i n g t h e workspace i s used t o s t o r e e i t h e r t h e
remainder f o r D I V o r t h e l e a s t s i g n i f i c a n t h a l f of t h e
r e s u l t f o r MPY,

8 ,4 ,6 Context Switch

When a c o n t e x t s w i t c h o c c u r s , t h e WP and PC r e g i s t e r s a r e
loaded w i t h new v a l u e s , The o l d c o n t e n t s of t h e WP, PC and
ST r e g i s t e r s a r e t h e n s t o r e d i n t h e new workspace r e g i s t e r s
13, 14 and 15 r e s p e c t i v e l y , The o l d r e g i s t e r s can be

Texas I n s t r u m e n t s 8-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

accessed using the indexed mode of addressing (see
Addressing Modes, section 8.4.7.4) on the new register 13.

Hardware interrupts, XOP instructions and the BLWP
instruction cause a context swdtch to take place. For an
interrupt and an XOP instruction, the WP and PC are taken
from the interrupt's or XOP's vector. The BLWP instruction
requires the address of a two word area, containing the new
WP and PC, as its operand. This two word area is known as a
RLWP vector.

Executing a RLWP instruction does not affect the ST
register. An XOP instruction causes the ST register's bit 6
to be set to a one. The hardware interrupt only changes the
ST register's interrupt mask (bits 12 to 15); this is set to
one less than the incoming interrupt level (a level six
interrupt resets this mask to five).

A context switch provides a completely fresh environment, or
context, for program execution and results in program
control being transferred to a new routine, The last
instructfsri in this routine must be an? RTWP, This r e s t e r e s
the environment existing prior to the context switch.

Consider the following code:

Address Label Instruction Comment

AORG >200
0200 MAINWP BSS 32 Define MAIN'S WP
0220 SUBWP BSS 32 Define SUB'S WP
0240 SURPTR DATA SUBWP Ref SUB'S workspace
0242 DATA SUB Ref SUB'S entry point

.
MAIN EQU $ Entry point for MAIN

LWPI MAINWP Load WP with >200

1000

1200 STJB

.
BLWP @SUBPTR Execute subroutine SUB .

. .
1300 RTWP

Entry point for SUB

Exit from SUB

The context switch is shown diagrammaticaliy in Figures 8-5,
8-6 and 8-7.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Figure 8-5 Before Executing the BLWP Instruction

Figure 8-6 After Executing the BLWP Instruction

SUB WP

> 0240 w

Figure 8-7 After Executing the RTWP Instruction

> 0200
> 1004

MAIN WP

8.4.7 Addressing Modes

*

Often a programmer wants to use an instruction in slightly
different ways. For example: At one point he may want an
operand to be a workspace register. Later, he may want the
operand to be a specified memory location, or he may want it
to be a memory location the address of which is contained in

RO

R13
R14
R15

A

Texas Instruments 8- 10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

a workspace register.

Implementing these different ways af accessing operands by
way of a different instruction for each method is wasteful,
and can easily lead t o confusion. If, instead, a part of
the instruction is reserved for specifying which method is
to be used, a compact, but very powerful, instruction set is
produced. (The method of accessing an operand is usually
referred to as the addressing mode.)

The 9900 microprocessor provides five distinct addressing
modes for instructions that specify a general address as an
operand. Full details on these modes are available in
Section 3 of the TMS9900 Assembly Language Programmer's
Guide. A simplified description of each of these modes is
presented below.

8.4.7.1 Register Addressing

A workspace register contains the operand.

* Copy the contents of R4 into R10 *
MOV R4,RlO

Be£ ore After

8.4.7.2 Register Indirect Addressing

A workspace register contains the address of the operand.
To identify this mode the workspace register is preceded by
an asterisk (*).

* Copy the contents of the address in R7 to R9 *
MOV *R7 ,R9

Bef ore After

Contents 1 L2;;;on Contents
4376 437 6

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.7.3 Symbolic Memory Addressing

A memory address contains the operand. To identify this
mode, the memory address is preceded by an at sign (@).
(If a symbolic name such as TABLE is used, the name must be
defined somewhere in the program.)

* Copy the contents of the word at symbolic address TABLE
* into address >7C *

MOV @TABLE, @ > 7 ~

Bef ore
Location Contents
007C 0471

.
TABLE 6483

After
Location Contents
007C 6483

TABLE 6483

8,4.7,4 Indexed Memory Addressing

A memory address contains the operand. The address is the
sum of the contents of a workspace register and a symbolic
address. This mode is written as an address preceded by an
at sign (@) and followed by a workspace register enclosed in
parentheses (the index register), Register 0 can not be
used as an index register,

* Copy the contents of word at location (2 + contents of R7)
* into location (address of TABLE + contents of R10) *

MOV @~(R~),@TABLE(R~~)

Before Af ter

Location
1000
1002

TABLE

Contents
4849
2041

Locat ion
1000
1002

Contents
4849
2041

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.7.5 Register Indirect Autoinereneat Addressing

This is similar to the register indirect addressing mode
except that after obtaining the address from the workspace
register, the register is incremented (by one for byte
operations and two for word operations). To identify this
mode the register is preceded by an asterisk (*) and
followed by a plus sign (+).

*
* Copy the contents of the word at the address in R3 into
* the word at the address in R2. Increment R3 by 2 *

MOV *R3+,*R2

Before After

Contents
FF90

0482 372C

This mode is very useful for working with structures such as
tables, where a succession of memory locations must be
accessed in sequence.

8.4.8 Specialized Addressing Modes

The preceding addressing modes are all used to address
variables (data) and can be used with any instruction that
specifies a general memory address as its operand(s). The
following three modes have more specialized applications.

8.4.8.1 Immediate Addressing

This is used by immediate instructions; the word immediately
following the instruction contains the operand (the operand
is contained in the program code). Immediate instructions
that require two operands have a workspace register
preceding the immediate value.

LWPI >FE70 Set WP= >FE70
LI R5,1000 Set R5= 1000

Texas Instruments 8-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.8.2 CRU Bit Addressing

This is used by CRU bit instructions for performing bit
I/O. The operand is a signed displacement in the range -128
to +I27 bits from the CRU base address which is stored in
workspace register 12. (Only bits 3 to 14 are actually
used.) When the CRU is addressed the least significant bit
(bit 15) of this register is not transferred onto the
address bus. Because of this it is necessary to store the
doubled base address in the register. Thus, if register 12
contains >80, the actual base address of the hardware
accessed is only >40. For full details on the operation of
the CRU, refer to section 8.9.

SRO 8 Sets the CRU bit, 8 greater then the base
address, to one. If R12 contains >20 then
CRU bit 24 will be set to one by this
instruction

SRZ DTR Sets the CRU bit to zero. If DTR has the
value 10, and R12 contains >40, then this
instruction sets CRU bit 42 to zero

8.4.8.3 Program Counter Relative Addressing

This is used by the jump instructions. The operand for this
mode is a symbolic address (not preceded by an at sign) or a
signed displacement. This addressing mode can only be used
to transfer control to a location within the range of -128
to +I27 words from the current location. For jumps outside
this range, the branch instruction must be used
(B @location) .
When a symbolic address is given, the assembler performs the
following:

o Subtracts the value of the incremented PC
(address of the next instruction) from the
symbolic address.

o Halves the difference to arrive at the
displacement in words.

To jump to symbolic location THERE, the instruction

JMP THERE

is required. If THERE was at location >2090 and the jump
instruction is at location >2060, then

JMP $+>30 >30 byte jump from here

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

would perfzrru t he same operation, The symbol ' $ ' is used to
represent the current value of the location counter (the
address at vhich the instruction will he stored in memory),

8.5 SUBROUTINES

In a low-level language a subroutine, or procedure, is
simply a sequence of assembly language instructions preceded
by a symbolic name (a label) and terminated by a return
statement.

The subroutine CLOSE can be defined by:

CLOSE 1st instruction

Another way of defining this subroutine is:

CLOSE EQU $
.,., 1st instruction

Although both approaches produce the same machine code, the
second clearly indicates a subroutine's entry point and thus
aids program documentation,

Care must be exercised when using the second approach to
ensure that the assembler's location counter is on an even
address (ie a word- boundary) when the subroutine name (CLOSE
above) is defined, The only time this location counter
might have an odd address is when the assembler has just
allocated some space via the BYTE or TEXT directive, If
this is the case then it is necessary to follow the
directive by an EVEN directive, EVEN tells the assembler to
increment its location counter by one if it contains an odd
address (ie a byte boundary), otherwise it is ignored.

BOD BYTE >OD or MSG TEXT 'ENTER COMMAND'
EVEN

CLOSE EQU $

Note that this is not strictly necessary with the first
approach as the assembler automatically forces its location
counter to a word boundary when assembling instructions,

The Branch and Link instruction (BL) causes the address of
the instruction following the BL to be stored in workspace
register 11, and then passes control to the specified
routine, The operand for this instruction is the address
(or the name if the symbolic memory addressing mode is used)
of the required subroutine, For example, if subroutine
RESET is located at memory address >2000, then either of the
following may be used. h he first is much clearer,)

Texas Instruments 8-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The BL i n s t r u c t i o n p r o v i d e s a ' s h o r t l i n k a g e ' which i s b e s t
u sed f o r a s m a l l s u b r o u t i n e t h a t i s l o c a l t o t h e a r e a of t h e
program from which i t i s c a l l e d , A s u b r o u t i n e c a l l e d w i t h a
BL u s e s t h e same workspace a s t h e c a l l i n g program, and s o
t h e s u b r o u t i n e i s a b l e t o d i r e c t l y acce 'ss t h e c a l l i n g
r o u t i n e ' s r e g i s t e r s .

The Branch and Load Workspace P o i n t e r i n s t r u c t i o n (BLWP)
c a u s e s a c o n t e x t s w i t c h t o t a k e p l a c e and t h e n t r a n s f e r s
c o n t r o l t o t h e s p e c i f i e d s u b r o u t i n e , The operand f o r t h i s
i n s t r u c t i o n i s t h e a d d r e s s of a two word a r e a t h a t c o n t a i n s
t h e a d d r e s s e s of t h e new workspace and of t h e s u b r o u t i n e t o
b e e x e c u t e d , (When a c o n t e x t s w i t c h t a k e s p l a c e t h e a d d r e s s
o f t h e i n s t r u c t i o n f o l l o w i n g t h e BLWP i s s t o r e d i n r e g i s t e r
14 o f t h e new workspace ,)

SUB DATA STJBWP SUB'S workspace
DATA SUBPC SUB'S e n t r y p o i n t

BLWP @SUB

If SUB i s a t a d d r e s s >1000 t h e n 'BLWP @>10008 can be used ,

A BLWP e s t a b l i s h e s a comple te ly new c o n t e x t t h a t i s s e p a r a t e
from t h e c a l l i n g program, t h u s , a BLWP s u b r o u t i n e can be
w r i t t e n s e p a r a t e l y from t h e c a l l i n g program w i t h o u t any
d a n g e r t h a t i t w i l l i n a d v e r t e n t l y c o r r u p t t h e c a l l e r ' s
r e g i s t e r s , The r e g i s t e r s of t h e c a l l i n g program can be
a c c e s s e d u s i n g t h e indexed a d d r e s s i n g mode on r e g i s t e r 1 3 o f
t h e new workspace. When t h e c o n t e x t s w i t c h i s per formed,
r e g i s t e r 1 3 of t h e new workspace a u t o m a t i c a l l y c o n t a i n s t h e
a d d r e s s of t h e o l d workspace, R e g i s t e r 5 , f o r example, of
t h e o l d workspace can be r e f e r e n c e d by u s i n g '@10(R13)' a s
t h e operand of a n i n s t r u c t i o n , The indexed a d d r e s s i s
o b t a i n e d by add ing t e n b y t e s t o t h e c o n t e n t s of r e g i s t e r
13. A s r e g i s t e r 13 c o n t a i n s t h e a d d r e s s of t h e o l d
workspace , add ing t e n b y t e s (o r f i v e words) t o t h i s a d d r e s s
means t h a t t h e s i x t h word of t h e o l d workspace (o r t h e o l d
r e g i s t e r 5) i s a c c e s s e d . (The f i r s t word, o r o l d r e g i s t e r
0, i s a c c e s s e d by a d d i n g z e r o t o r e g i s t e r 13; t h e second, o r
o l d r e g i s t e r 1, by a d d i n g two; e t c .)

The BLWP i n s t r u c t i o n i s a v e r y u s e f u l i n s t r u c t i o n f o r
implement ing modular s o f t w a r e i n assembly language (s e e
S e c t i o n 4.3).

C o n t r o l i s r e t u r n e d from a s u b r o u t i n e by e i t h e r an RTWP
i n s t r u c t i o n (i f t h e s u b r o u t i n e was invoked by a BLWP
i n s t r u c t i o n) o r t h e RT p s e u d o- i n s t r u c t i o n (i f t h e s u b r o u t i n e
was invoked by t h e BL i n s t r u c t i o n) ,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

An RTWP irstruction r e s t o r e s the context (PC, WP and ST) of
the calling program from registers 13, 14 and 15 of the new
workspace.

The RT pseudo-instruction translates into 'B *Rile, which
is a branch to the address contained in R11 (the register
used by the BL instruction to store the return address).

8.6 PARAMETER PASSING

All high-level languages have a built in parameter passing
mechanism. When using subroutines (or procedures, in the
more modern languages) the programmer must conform to their
conventionse

Low-level languages, on the other hand, impose no such
restrictions as all parameter passing mechanisms must be
explicitly implemented by the programmer. To avoid
confusion, if is important that the programmer choases his
own convention and sticks to it.

However, when low-level language routines are to be
incorporated into a high-level language program, it is
necessary that these routines use the conventions of the
host language.

The three main methods of parameter passing and their
implementation in 9900 assembly language are given below.

1) The parameter is stored in a register.

a) Subroutine invoked by BL instruction:

*
* Called routine has direct access to all the
* calling routine's registers *

b) Subroutine invok,ed by BLWP instruction:

* Copy the contents of calling routine's workspace
* space register N into TEMP *

MOV @2*n(~13),temp

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Subroutine's
Workspace

Calling routine's
Workspace

Figure 8-8 Parameter Passing 1

Note: The register number is doubled as byte addressing is
used on the 9900.

2) The parameter is stored in an area of memory that is
referenced by a register. (Parameter numbering starts from
zero.)

a) Subroutine invoked by BL instruction:

* Copy contents of the Mth word (Mth parameter) of
* the parameter block into TEMP *

MOV @2*m(~n),temp

Calling routine's
Workspace

1st Word

mth Word

Parameter Block

Figure 8-9 Parameter Passing 2

b) Subroutine invoked by BLWP instruction:

*
* Copy address in the cailing routine's workspace
* register N into register S *

MOV @2*n(R13),Rs *
* Now copy contents of Mth word of parameter block
* into TEMP *

MOV @2*m(~s),temp

Texas Instruments 8-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I I- Parameter B I O C ~

Sub routine's
Workspace

Calling Routine's
Workspace

Figure 8-10 Parameter Passing 3

3) This is a variation on the previous method in that the
parameter block appears in-line (it immediately follows the
call). With this approach the subroutine must ensure that
the return address (where control is transferred to when the
subroutine is exited) is updated to skip over the parameter
block and pick up the instruction after the call. This can
be done using the indirect autoincrement addressing mode on
R11 for the BL fnstruction and R14 for the BLWP
instruction.

a) Subroutine invoked by BL instruction:

BL @SUBR Call SUBR
DATA Parameter block

l

SUBR MOV *Rll+,temp Get 1st parameter in TEMP,
update return address in R11

Re turn

b) Subroutine invoked by RLWP instruction:

SUBADD DATA SUBWP SlJB's workspace
DATA SURR SUB'S entry point

.
BLWP @SUBADD Call SUB
DATA .. Parameter block

.
SUBR MOV *R14+,temp Get 1st parameter in TEMP,

update return address in R14

.
RTWP Return

This in-line approach should only be used when the

Texas Instruments 8- 19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

data to be passed to the subroutine is constant
(its value is known when the prcgrgm is
assembled), since program code is likely to be
placed in ROM.

Note: Invoking a subroutine is faster using the BL
instruction as no context switch takes place, but there is a
risk that data might be inadvertently lost when any of the
calling routine's registers are used for temporary storage
purposes.

8.7 STRUCTURING

With a high-level language, structuring presents no
problem. High-level languages were designed with this in
mind; structuring constructs are an integral part of the
language.

However, assembly (or low-level) languages are designed
around the hardware and are not considered to be problem
oriented languages. The programmer must provide the
necessary structures. Turning a software design into an
executable program is considerably more difficult in
assembly language because problem oriented design constructs
must be translated accurately into groups of low-level
machine instructions. The information that follows
describes assembly language implementation of the sequence,
selection and iteration constructs used in software design.
The sequence, selection and iteration constructs (and the
notation used here) are described in Section 4.5.

In writing an assembly language program, it is effective to
produce a software design before writing the code; this
enables the programmer to design the application's logic
before worrying about the implementation details (which, in
assembly language, are considerable). This approach has
been shown to lead to better and more correct software, and
has been used very successfully for internal TI projects.

8.7.1 Selection

Normally the action taken at a specific point in a program
depends on a number of factors or conditions. If one of the
conditions changes, the action to be performed changes.
This choice of action is represented by the selection
construct displayed below.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ACTION 1

ACTION 2

ACTION N

Figure 8-11 General S e l e c t i o n Cons t ruc t

8.7.1.1 Condi t ion Codes

Implementing t h e s e l e c t i o n c o n s t r u c t a t t h e assembly
language l e v e l r e q u i r e s an unders tand ing of t h e c o n d i t i o n
codes (o r s t a t u s f l a g s) . These a r e s t o r e d i n t h e p rocessor
s t a t u s word (on t h e 9900 t h i s i s a s p e c i a l hardware r e g i s t e r
c a l l e d t h e s t a t u s r e g i s t e r - ST) , w i th each f l a g occupying
one b i t .

F i g u r e 8-12 Condi t ion Codes f o r t h e TMS9900 S t a t u s R e g i s t e r

LOGICAL GREATER THAN (L>) c o n t a i n s t h e r e s u l t of a
comparison of words/bytes a s unsigned b i n a r y numbers; a s t h e
s i g n b i t i s i n t e r p r e t e d a s p a r t of t h e number, a n e g a t i v e
number i s l o g i c a l l y g r e a t e r t h a n a p o s i t i v e one.

ARITHMETIC GREATER THAN (A>) h o l d s t h e r e s u l t of a
comparison of words/bytes a s s igned b i n a r y numbers.

EQUAL (EQ) i s s e t when t h e words/bytes being compared a r e
equa l . Also c o n t a i n s t h e TB CRU b i t .

CARRY (C) i s s e t by a c a r r y o u t of t h e most s i g n i f i c a n t b i t
of a wordlbyte d u r i n g a r i t h m e t i c o p e r a t i o n s . This b i t i s
a l s o used by t h e s h i f t i n s t r u c t i o n s t o hold t h e l a s t b i t
s h i f t e d out of t h e s p e c i f i e d workspace r e g i s t e r .

OVERFLOW (OV) i s s e t when t h e r e s u l t of an a r i t h m e t i c
o p e r a t i o n i s too l a r g e o r t o o smal l t o be c o r r e c t l y s t o r e d
i n 16 b i t s .

ODD PARITY (OP) i s s e t when t h e r e s u l t of a byte o p e t a t i c n
h a s odd p a r i t y (when t h e number of b i t s i n a b y t e having a
v a l u e of '1' i s odd).

Texas Ins t ruments 8-2 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

EXTENDED OPERATION (XI is set h e n an extended operation
instruction is performed by software.

The processor automatically sets (or resets) the appropriate
status flags once it has executed an instruction. Only
certain instructions affect certain flags, for example, the
'X' flag is only set by an extended operation instruction.
Full details on which flags are affected by a given
instruction are given in the reference section of this
chapter.

8.7.1.2 Jump Instructions

Perhaps the most important members of a machine's
instruction set are the jump instructions. These transfer
control (unconditonally or conditionally according to the
state of one or more status flags) from one point in a
program to another, without affecting the flags. The jump
instructions available are listed below:

JMP JOC JE Q JGT JHE
JLT JH JL JNE JLE
JNC JNO JOP

The conditional jump instructions (all those listed above
except JMP) can be used to implement the selection
construct.

Example: Depending on the contents of R2 0 1 0 , =lo, or < l o)
execute the sequence ACT1, ACT2 or ACT3 respectively. Then
execute the sequence ACT4.

The structure diagram for this is:

L F
Figure 8-13 A Three Way Selection Example

This can be coded as:

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK AS SEMBLY LANGUAGE

ACT0 EQ?.? $
C I R2,lO Compare X2 w i t h 10
JGT ACT1 To ACT1 i f R2 > 10
JEQ ACT2 To ACT2 i f R2 = 10

ACT3 EQU $ To h e r e i f R2 < 10

Code f o r ACT3

JMP ACT4 To ACT4
ACTl EQU $.

Code f o r ACTl .
JMP ACT4 To ACT4

ACT2 EQU $

Code f o r ACT2 .
ACT4 EQU $.

Code f o r ACT4

Note: I f R2 c o n t a i n s 10 t h e n a f t e r e x e c u t i n g t h e code f o r
ACT2, program c o n t r o l d rops through t o t h e code f o r ACT4.

For a s imple two-way s e l e c t i o n :

ACT 0

F i g u r e 8-14 A Two Way S e l e c t i o n Example

T h i s can be coded a s :

ACT0 EQU $
' t e s t '

JNE ACT2 To ACT2 i f c o n d i t i o n f a l s e
ACTl EQU $.

Code f o r ACTl .
JMP ACT3 To ACT3

Texas I n s t r u m e n t s 8-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ACT2 EQU $.
Code for ACT2 .

ACT3 EQU $.
?ode for ACT3

8.7.2 Iteration

Quite often it is necessary for a sequence of instructions
to be executed a number of times. One way of implementing
this repetition is to code the sequence the required number
of times. However, if either the sequence to be coded
and/or the repetition number is large, a large amount of
memory will be used. Further, if the sequence is to be
repeated until a particular condition arises, the repetition
number is unknown. The use of the iteration construct
overcomes these problems.

Example: A.sequence (SEQl) must be repeated N times (where N
is a Gariable supplied by a previous stage) followed by the
execution of SEQ2.

The structure diagram illustrating this follows:

REPEAT

Figure 8-15 An Iteration Example (REPEAT)

This can be coded as:

SEQA EQU $
MOV (Qn,RO Copy count into R0,sets flags

SEQAST JEQ SEQ2 To SEQ2 if RO = 0
SEQl EQU $.

Code for SEQl .
DEC RC) Decrement repetition count
JMP SEQAST TO SEQAST b

Texas Instruments 8-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK AS SEMBLY LANGUAGE

SEQ2 EQU $.
Code f o r SEQ2

I f N i s a c o n s t a n t (eg 20) then :

L I R0,20 S e t RO t o 20
SEQl EQU $.

Code f o r SEQl .
DEC RO Decrement r e p e t i t i o n count
JNE SEQl To SEQl i f RO > 0

SEQ2 EQU $ To h e r e i f RO = 0

Code f o r SEQ2

Example: While KEY=O pe r fo rm SEQI. When KEY i s changed
pe r fo rm SEQ2.

The s t r u c t u r e diagram f o r t h i s is:

F i g u r e 8-16 An I t e r a t i o n Example (WILE)

T h i s can be coded a s :

SEQA EQU $
C I @key,O CompareKEY w i t h 0
JNE SEQ2 To SEQ2 i f KEY#O

SEQl EQU $ To h e r e i f KEY = 0 .
Code f o r SEQl .
JMP SEQA To SEQA

SEQ2 EQU $.
Code f o r SEQ2

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.7.3 sequence

On the surface, the sequence is the simplest construct to
implement, as it merely involves executing one instruction
after another. Unfortunately, with assembly languages there
is a great temptation to write programs in an unsequenced
fashion with program flow jumping backwards and forwards in
an irregular manner. This usually leads to 'spaghetti
code'; code so convoluted and complex (often much more
complicated than is actually necessary) that it is difficult
to follow or understand and almost impossible to maintain.

The sequence represents a number of elements that are
executed one after the other. At the single instruction
level, assembly language programs are naturally sequential.
However, when writing a program with a complex structure,
some additional thought is needed to ensure that the logical
flow of the program is always sequential and from top to
bottom.

Probably the best way to do this is to exactly follow the
order in which blocks of code appear on the structure
diagram (see Section 4 . 5 . 1) . Further, it is important that
a single block on the structure diagram be implemented as a
single block of code.

This is, in fact, the simplest and the most natural way to
write programs; it is certainly the easiest to follow.

Consider this structure diagram:

Figure 8-17 A Sequence Example

This can be coded in (at least) three ways:

Texas Instruments 8-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

' t e s t ' ' test ' ' t e s t '
J N E B J N E B J N E B

A EQU $ A E(2U $ A EQU $.
Code f o r A

. .
Code f o r A Code f o r A . . .

JMP C c EQU $
B

c EQU $
EQU $. . . Code f o r C Code f o r C
Code f o r B . . . D EQU $ JMP D

c EQU $. B EQU $. Code f o r D .
Code f o r C . Code f o r B . .

D EQU $ JMP C . B EQU $ D EQU $
Code f o r D . . . Code f o r B Code f o r D .

JMP C

Of t h e t h r e e s e t s of code l i s t e d above, o n l y t h e f i r s t i s
s t r u c t u r e d accord ing t o t h e diagram. The o t h e r two a r e both
l e s s c l e a r and l e s s compact t h a n t h e f i r s t .

When a program i s no t s e q u e n t i a l , i t i s easy t o omit a
branch i n s t r u c t i o n , o r even branch t o t h e wrong l o c a t i o n .
With a more complex s t r u c t u r e diagram (s e e below), t h e
p r o b a b i l i t y of producing an i n c o r r e c t program i n c r e a s e s
d r a m a t i c a l l y . Th i s can be reduced by e x a c t l y fo l lowing t h e
d iagram when w r i t i n g t h e code.

F i g u r e 8-f8 A Complex S t r u c t u r e

Texas I n s t r u m e n t s 8-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The code for this is:

SEQ 1 'test'
JNE SEQ2 .
Code for A .
JMP C,

SEQ2 EQU $
'test'
JNE SEQ3 .
Code for B .
JMP F

SEQ3 EQU $
LI R0,20

c EQU $.
Code for C .
DEC RO
JNE C
'test'
JNE E

0 EQu $.
Code forfD .
JMP
EQU .
Code

.
Code

To SEQ2 if false

To SEQ3 if false

To F

Set loop count to 2 0

Decrement loop count
To C if count > 0
To here if count = 0
To E if false
TQ; here if true

for E

I

for F

.
Code for G .

8.8 PROGRAMMING FOR RX AND COMPONENT SOFTWARE

When writing a software system as a single unit, any method
can be adopted for the use of memory, way of calling
subroutines, etc, provided the system is internally
consistent.

Texas Instruments 8-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

However, there is often a requirement for writing software
that can:

a) Make use of existing pieces of software.

or b) Be used by other pieces of software.

or c) Be reliably updated at a later date, perhaps by
someone other than the person who wrote it.

All these requirements dictate the use of standard
conventions: a set of rules which are known to be complete
and consistent, and can be written down.

Pieces of software developed according to such conventions
will work together. (Of course, if one piece of software
wishes to make use of another piece, it must know what
functions are available in the second piece of software and
how to access them.)' Conventions make it possible both to
write pieces of software that will not conflict, and to
'package' them in standard ways. Software packages can be
stored in Ifbraries, then s e l e c t e d and ccnnected together to
form a new system.

TI's Component Software provides a framework of standard
conventions within which pieces of software can be written
separately to perform independent tasks. The pieces can
then be 'plugged together' to build a system. The parts
plugged together may have been written by the user, or they
may have been bought 'off the shelf' from TI or other
vendors.

TI's Realtime Executive (Rx) is the means of welding these
separate parts together to make a complete, coherent
system. Component programs call Rx routines to perform
commonly needed operations (such as calling other routines,
requesting additional memory space, etc). Rx manages all
the resources of the system so that conflicts do not occur.

This is an extension of the program modularity described
above (in relation to sequence, iteration, etc). Rx
provides 'time modularity' too: it allows independent
application functions to he written as separate programs
with different demands on the time of the processor (some
functions may need to be executed every Sms, say; others
only when an operator presses a key, or a particular device
interrupts).

When building an application system, these functions are
linked together, in a semi-automatic process know as
configuration.

Rx provides a standard mechanism for handling interrupts,
standard ways of dealing with file I/O, and standard methods
for calling other routines (whether written in assembly

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

language, Pascal or other languages),

The benefits of this 'component' approach are:

o Systems can make use of existing Component
Software packages,

o Software modules writ ten according to Component
Software standards can be used again, in other
systems,

o Reliability is improved, because each task in a
real time system can be programmed and tested
separately, and then linked with the other parts
to form the system,

o Systems can be upgraded easily, because the
component parts can be separated out and
replaced, changed or added to as necessary,

o Because of the above, systems can be developed
more quickly and for less cost,

The conventions that must be followed mainly relate to calls
between routines and the access to registers and memory,

In a high-level language, many of these requirements are
taken care of automatically by the compiler, The assembly
language programmer must himself ensure that the conventions
are followed when writing the program,

The standards are set out in the Component Software Handbook
and the Realtime Executive User's Manual, Adherence to
these standards (which are not too restrictive) means that
programs written can be used with other Component Software
routines, whether written in Microprocessor Pascal or
assembly language, See Chapter 5,

Routines to be used with Component Software should be
written according to the Rx standards from the start. This
is much easier than converting routines already written,

8-9 COMMUNICATIONS REGISTER UNIT

The 9900 supplies a bit-oriented method of 1/0 called the
Communications Register Unit (CRU), This provides a maximum
of 4096 bits of read space and 4096 bits of write space.
Each bit (or line) is individually addressable, Although
the CRU uses the address bus to access its read and write
spaces, these are totally independent from the memory
address space,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The CRU transfers data alccg a separate three-wire bus (the
wires are known as CRUIN, CRUOUT and CRUCLK),

Using the CRU, it is possible to test, set or reset a single
b i t anywhere in the 4095 b i t address space, using a single
instruct ion. Instruct ions are also provided to read and
write to any group of from 1 to 16 bits.

This 'bit-picking' 1/0 is particularly useful for control
applications, where input and output is typically single
bits (sensors, switches, warning lights, relays, valves,
etc) all of which are either on or off.

The CRU was developed from Texas Instruments' experience in
designing minicomputers for process control applications.
It grew out of the method of 1/0 used on the 960
minicomputer, As the majority of microprocessor
applications involve some kind of control, this feature is
very valuable,

The 9900 is the only major microprocessor to have a bit
oriented IjO structure, as well as the byte and wcrd
oriented techniques such as memory mapping,

The five CRU instructions operate from a base address, which
must be stored in workspace register 12 (RlZ), The contents
of this register are known as the software base address.
(In fact only bits 3 to 14 of this register are used to
generate the address, the other bits are ignored, The value
of these 12 bits is referred to as the hardware base
address. The keywords 'hardware' and 'software' are used to
avoid confusion when specifying the base address, The
software base address is twice the hardware base address,)

The three single bit CRU instructions use a signed
displacement, from the base address, to reference a
particular line, This displacement allows the instructions
to access any CRU bit within a range of -128 to +I27 bits
from the base address,

Suppose a number of CRU operations are required around CRU
line >I00 and a particular instruction needs to access CRU
line >120. To do this, set the hardware base address to
>I00 (a software base address of >200) and use a signed
displacement of +32 (>20). The CRU bits required to control
a particular device should be grouped together, If a system
has several identical devices the same piece of code
(structured as a subroutine) can be used for each, It is
only necessary to set the CRU base address for the
appropriate machine and call the subroutine.

With the two multiple bit CRU instructions, the base-address
must reference the first CRU line that the instruction is to
access. For example, if the transfer is to start at CRU
line >50 then the hardware base address must be >SO. (This

Texas Instruments 8-3 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.9.1 Single-Bit CRU Instructions

The operand of a single bit CRU instruction is a signed
displacement (in the range -128 to +127) from the base
address. This specifies the particular line to be
accessed.

niagrammatically this can be shown as:

X X X I

\yy , 7 , 8 9 , 1 0 1 1 1 , 1 2 1 1 3 , 1 4 ,
SIGN EXTENDED

SIGNED DlSP FROM BASE

k- CRU BIT ADDRESS ~--
ADDRESS BUS rr4

X - BIT IS IGNORED
0 - BIT SET TO '0'

Figure 8-19 CRU Bit Addressing

SBO : Set Bit to One. This sets the specified CRU output
line to a logical one.

Assume a control device is connected to CRU output line
>10F. This device turns on a motor when its CRU line is set
to a one. If the hardware base address is set to >I00 (this
corresponds to a software base address of >200) then a
displacement of +15 is required. The instructions to active
this motor are:

LI R12 ,>20O Set software base address
SBO 15 Set CRU bit >10F to 1

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

SBZ : Set B i t to Z e r o * This sets the s p e c i f i e d CRU o u t p u t -
l i n e t o a l o g i c a l zero .

Assume t h a t a c o n t r o l d e v i c e i s connec ted t o CRU o u t p u t l i n e
> $ G o T h i s device z'loszs a valve when its CICV l i ~ e is set to
z e r o . Also assume t h a t workspace r e g i s t e r 12 c o n t a i n s
>140. To a c c e s s CRU o u t p u t l i n e >80 a d i sp lacemen t of ->20
i s r e q u i r e d . The i n s t r u c t i o n t o c l o s e t h e v a l v e is :

SBZ ->20 S e t CRU b i t >80 t o 0

TB : T e s t B i t . T h i s i n s t r u c t i o n r e a d s t h e d i g i t a l i n p u t
and s e t s t h e e q u a l s t a t u s f l a g (b i t 2) t o t h e v a l u e of t h e
b i t .

Assume t h a t workspace r e g i s t e r 12 c o n t a i n s > I40 (t h i s i s a
hardware b a s e a d d r e s s of >AO). The f o l l o w i n g l i n e s w i l l
t e s t t h e i n p u t on CRlJ i n p u t l i n e >A4 and e i t h e r e x e c u t e t h e
code a t l o c a t i o n RUN (i f i n p u t i s a '1 ') o r WAIT (i f i n p u t
i s a '0 ') .

TB 4
JEQ RUN

WAIT

T e s t CRU i n p u t l i n e >A4
I f on, go t o RUN
I f o f f , c o n t i n e .

RUN EQU $

8.9.2 M u l t i p l e- B i t CRU I n s t r u c t i o n s

The operands of a m u l t i p l e b i t CRU o p e r a t i o n a r e :

1) A g e n e r a l memory a d d r e s s . For a ' r e a d '
o p e r a t i o n t h i s a d d r e s s s p e c i f i e s where t h e
i n p u t i s t o be s t o r e d , and f o r a ' w r i t e '
o p e r a t i o n from where t h e o u t p u t i s t o be
t aken .

2) A coun t of t h e number of b i t s (i n t h e r ange 0
t o 15) t o he t r a n s f e r r e d .

These i n s t r u c t i o n s t r a n s f e r from 1 t o 16 b i t s . A 16 b i t
t r a n s f e r i s s p e c i f i e d by s e t t i n g t h e coun t t o ze ro .

Un les s o t h e r w i s e e x p l i c i t l y s t a t e d , when less t h a n n i n e b i t s
o f d a t a i s be ing t r a n s f e r r e d , t h e p r o c e s s o r u s e s t h e most
s i g n i f i c a n t b y t e of a word f o r t h e o p e r a t i o n . (T h i s can be
o v e r r i d d e n by u s i n g t h e i n d i r e c t a d d r e s s i n g mode t o
r e f e r e n c e t h e r e q u i r e d by te .)

The base a d d r e s s f o r t h e o p e r a t i o n i s t h e CRU a d d r e s s of t h e
f i r s t CRU l i n e t o be a c c e s s e d .

Texas I n s t r u m e n t s 8-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

For a transfer of more than 8 bits:

ASSEMBLY LANGUAGE

Figure 8- 20 CRU Transfer Of More Than 8 Bits

For example, in a transfer involvfng 10 bits, the data Is
taken from, or stored in, bits 15 to 6.

For a transfer of 8 bits or less:

CRU INPUT BITS CRU OUTPUT BITS

N N

EFFECTIVE MEMORY ADDRESS

N+7
OUTPUT

Figure 8- 21 CRU Transfer Of 8 Bits Or Less

For example, in a transfer involving only 5 bits, the data
is taken from, or stored in, bits 7 to 3.

LDCR : Load Communications Register. This instruction
transfers ('writes') the specified number of bits from the
source operand into the CRU.

To write 9 data bits from symbolic location OUT to the CRU
starting at CRU output line >40, the necessary instructions
are :

LI R12,>80 Set software base address
LDCR @OUT,9 Output 9 bits

Texas Instruments 8-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

iOCAiiGN GUT
I I

0 1 1 1
CRU LINES

F i g u r e 8-22 CRU Output Example

STCR : S t o r e Communications R e g i s t e r . T h i s i n s t r u c t i o n
t r a n s f e r s (' r e a d s ') t h e s p e c i f i e d number of b i t s from t h e
CRU i n p u t l i n e s i n t o t h e s p e c i f i e d memory l o c a t i o n .

To r e a d 7 b i t s , s t a r t i n g from CRU i n p u t l i n e >60, into the
memory l o c a t i o n a d d r e s s e d by workspace r e g i s t e r 2, t h e
n e c e s s a r y i n s t r u c t i o n s a r e :

L I R12,>CO S e t s o f t w a r e b a s e a d d r e s s
STCR *R2,7 Read i n 7 b i t s

WORD REFERENCED BY R2
1

1 7 1 8 1 1 14 1 15
CRU LINES

t i m > 60

> 61

F i g u r e 8-23 CRU I n p u t Example

Note: I f workspace r e g i s t e r 2 had c o n t a i n e d a n odd a d d r e s s
(i e i f i t r e f e r e n c e d a word's l e a s t s i g n i f i c a n t b y t e) t h e n
t h e i n p u t would have been s t o r e d i n b i t s 15 t o 9.

8.10 INTERRUPTS

I n a r e a l- t i m e sys tem, t h e r e a r e two mechanisms f o r
d e t e r m i n i n g when a n e x t e r n a l e v e n t h a s occu red (f o r example,
when a d e v i c e connec ted t o t h e computer needs t o be

Texas I n s t r u m e n t s 8-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

serviced) : - - rolling - • -- - and I n t e r r u p t s .

I n t h e p o l l i n g mechanism, t h e program p o l l s , o r t e s t s e v e r y
d e v i c e known t o i t i n a c y c l i c f a s h i o n . When a ready d e v i c e
i s found, t h e d e v i c e i s immedia te ly s e r v i c e d , and t h e
program c o n t i n u e s i t s p o l l i n g c y c l e .

Although t h e program immedia te ly s e r v i c e s a d e v i c e when i t
i s found t o be r eady , t h e r e can be a c o n s i d e r a b l e d e l a y
between t h e t ime when t h e d e v i c e i n d i c a t e s t h a t i t i s ready
and t h e t i m e when t h e program a c t u a l l y d i s c o v e r s t h a t i t i s
r e a d y , Because of t h i s , p o l l i n g i s o n l y p r a c t i c a l on a
s i m p l e sys tem, o r when r e s p o n s e t ime i s n o t c r i t i c a l .

With t h e i n t e r r u p t mechanism, t h e d e v i c e s i g n a l s t h e
p r o c e s s o r when i t i s r eady t o per form t h e next o p e r a t i o n .
T h i s s i g n a l i s known a s an i n t e r r u p t .

With a more complex sys tem (one t h a t c o n t a i n s a number of
d e v i c e s) t h e p r o c e s s o r i s a b l e t o per form some o t h e r
o p e r a t i o n w h i l e w a i t i n g f o r an i n t e r r u p t . A s soon a s an
i n t e r r u p t o c c u r s , t h e p r o c e s s o r s t o p s what i t was doing and
s e r v i c e s t h e d e v i c e t h a t caused t h e i n t e r r u p t . When t h e
d e v i c e h a s been s e r v i c e d , t h e p r o c e s s o r c o n t i n u e s t h e a c t i o n
i t was pe r fo rming p r i o r t o t h e i n t e r r u p t .

8.10.1 I n t e r r u p t S t r u c t u r e

The 9900 s u p p o r t s up t o 16 i n t e r r u p t l e v e l s , numbered from 0
t o 15. Level 0 h a s t h e h i g h e s t p r i o r i t y ; 15 t h e lowes t .
The i n t e r r u p t mask, b i t s 1 2 t o 15 of t h e s t a t u s r e g i s t e r ,
d e t e r m i n e which i n t e r r u p t s a r e t o be r e c o g n i s e d by t h e
p r o c e s s o r .
A d e v i c e w i t h a lower p r i o r i t y (h i g h e r l e v e l number) t h a n
t h a t c o n t a i n e d i n t h e i n t e r r u p t mask i s no t a l lowed t o
i n t e r r u p t t h e p r o c e s s o r .

F o r example, i f t h e i n t e r r u p t mask c o n t a i n s '0011', on ly
d e v i c e s w i t h a n i n t e r r u p t l e v e l of 0 t o 3 a r e a l lowed t o
i n t e r r u p t t h e p r o c e s s o r . An i n t e r r u p t from a d e v i c e w i t h a
lower p r i o r i t y i s ignored u n t i l t h e i n t e r r u p t mask i s r e s e t
t o a v a l u e t h a t i s g r e a t e r t h a n o r e q u a l t o t h e d e v i c e ' s
i n t e r r u p t l e v e l .

Of t en , i n s t e a d of be ing coupled d i r e c t l y t o t h e 9900
m i c r o p r o c e s s o r , i n t e r r u p t l i n e s a r e connected t o a TMS990l
Programmable Systems I n t e r f a c e . The 9901 d e c i d e s whether
t h e i n t e r r u p t i n g d e v i c e i s a l lowed t o g e n e r a t e i n t e r r u p t s
and , i f s o , p a s s e s t h e i n t e r r u p t t o t h e 9900. A d e v i c e t h a t
i s a l lowed t o g e n e r a t e i n t e r r u p t s i s s a i d t o be enabled . An
i n t e r r u p t i s enab led by s e t t i n g t h e 9901's c o n t r o l b i t t o
'0' (s e l e c t i n t e r r u p t mode) and t h e n w r i t i n g a 1 t o t h e

Texas I n s t rument s 8-36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

appropriate mask bit, Full d e t a i l s of t h e o p e r a t i o n of t h i s
d e v i c e a r e g iven i n t h e TMS9901 Programmable Systems
I n t e r f a c e Data Manual,

Interrupt Mask
B i t s

12 13 14 15
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

," 1 0 1 1
1 1 0 0
1 1 0 1
I i P O
1 1 1 1

Levels
Allowed Level s e t t i n g Mask

0 , l High p r i o r i t y
2
3
4
5
6
7
8
9

10
11
12
13
14
15 bcw p r i o r i t y

Tab le 8-1 I n t e r r u p t Mask Tab le

Note: The 9901 i s a CRU-driven d e v i c e ; b e f o r e i t can be
a c c e s s e d (u s i n g CRU i n s t r u c t i o n s) i t s b a s e a d d r e s s must be
s t o r e d i n workspace r e g i s t e r 12, F u r t h e r , t h i s base a d d r e s s
i s dependent on t h e hardware c o n f i g u r a t i o n ,

8.10.2 I n t e r r u p t V e c t o r s

Every i n t e r r u p t l e v e l h a s a two word d e d i c a t e d a r e a (known
a s t h e i n t e r r u p t v e c t o r) c o n t a i n i n g :

1) The a d d r e s s of t h e workspace t h a t i s t o be used
by t h e i n t e r r u p t s e r v i c e r o u t i n e ,

2) The a d d r e s s of t h e s e r v i c e r o u t i n e ' s e n t r y
p o i n t ,

Low o r d e r memory, a d d r e s s >00 t o >3F, i s r e s e r v e d f o r t h e s e
t r a n s f e r v e c t o r s (s e e Tab le 8 - 2) ,

A p a r t i c u l a r i n t e r r u p t v e c t o r (f o r i n t e r r u p t l e v e l 8 , s a y)
c a n be a s s i g n e d t h e a p p r o p r i a t e v a l u e s by:

AORG >20 I n t e r r u p t l e v e l 8 v e c t o r a t >20
DATA INT8WP Workspace f o r i n t e r r u p t l e v e l 8
DATA INT8PC E n t r y p o i n t f o r l e v e l 8 h a n d l e r

Texas I n s t r u m e n t s 8-37 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Address Leve 1 Vector c o n t e n t s

0000
0002
0004
0006
0008
0OOA
OOOC
OOOE
0010
0012
0014
0016
0018
OOlA
OOlC
0OlE
0020
0022
0024
0026
0028
002A
002C
002F:
0030
0032
0034
0036
0038
003A
003C
003E

WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s
WP a d d r e s s
PC a d d r e s s

f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r
f o r

l e v e l 0
l e v e l 0
l e v e l 1
l e v e l 1
l e v e l 2
l e v e l 2
l e v e l 3
l e v e l 3
l e v e l 4
l e v e l 4
l e v e l 5
l e v e l 5
l e v e l 6
l e v e l 6
l e v e l 7
l e v e l 7
l e v e l 8
l e v e l 8
l e v e l 9
l e v e l 9
l e v e l 10
l e v e l 10
l e v e l 1 1
l e v e l 1 1
l e v e l 12
l e v e l 12
l e v e l 13
l e v e l 13
l e v e l 14
l e v e l 14
l e v e l 15
l e v e l 15

T a b l e 8-2 I n t e r r u p t V e c t o r T a b l e

8.10.3 I n t e r r u p t Sequence

The l e v e l of t h e h i g h e s t p r i o r i t y pending i n t e r r u p t r e q u e s t
i s c o n t i n u a l l y compared w i t h t h e c o n t e n t s of t h e i n t e r r u p t
mask. When t h e i n t e r r u p t l e v e l of t h e pending r e q u e s t i s
e q u a l t o o r less t h a n t h e mask c o n t e n t s , t h e i n t e r r u p t i s
t a k e n a f t e r t h e c u r r e n t l y e x e c u t i n g i n s t r u c t i o n h a s
completed, (Note: The l e v e l 0 i n t e r r u p t , t h e RESET
i n t e r r u p t , w i l l a lways be t a k e n and can n o t be masked o u t ,)

F o r example , i f t h e p r o c e s s o r i s s e r v i c i n g a l e v e l 4
i n t e r r u p t , o n l y i n t e r r u p t s of l e v e l 3 and h i g h e r (i e l e v e l s
0 t o 3) w i l l be r e c o g n i z e d ,

To p r o c e s s a n i n t e r r u p t , a c o n t e x t s w i t c h t a k e s p l a c e , The
c o n t e n t s of t h e i n t e r r u p t v e c t o r ' s f i r s t word i s s t o r e d i n

Texas I n s t r u m e n t s 8-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK AS SEMRLY LANGUAGE

the WP reglster and those of the second word in the PC
register. The old contents of the WP, PC and ST registers
are stored in the new workspace registers 13, 14 and 15
respectively.

After storing the contents of the ST register, the processor
decrements the incoming interrupt level by one and stores
the result in the interrupt mask. This disables the current
interrupt level, leaving only higher levels enabled. (This
does not happen with level O interrupts.)

INTERRUPT
8 VECTOR

f
ADDRESS

ST

INTERRUPT MASK = F

CONTENTS

> 0270
> 0290

INTERRUPT 8 WP

INTERRUPT 8 ROUTINE

PROGRAM'S WP

PROGRAM DATA

EXECUTIVE PROGRAM

INC R1

Figure 8-24 State Prior to a Level 8 Interrupt

No additional interrupt is taken until the first instruction
of the service routine has been executed. If the first
instruction is a 'LIMI 0' (Load Interrupt Mask Immediate
with zero) then further interrupts will be inhibited.

The last instruction in the service routine must be an
RTWP. This causes the processor to restore the contents of
the WP, PC and ST registers from workspace registers 13, 14
and 15 respectively (ie it restores the original
environment). Control then returns to the point where the
interrupt was taken.

Several interrupt lines may be combined at one level. It
then becomes the programmer's responsibility to determine
which device generated the interrupt by polling the devices
and then executing the appropriate service routine.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ADDRESS

INTERRUPT
8 VECTOR

>'0290

[l11-& O B O ST

INTERRUPT MASK = 7

F i g u r e 8-25 S t a t e A f t e r a Leve l 8 I n t e r r u p t

Any i n t e r r u p t r e q u e s t must remain a c t i v e u n t i l i t i s r e s e t
by t h e i n t e r r u p t s e r v i c e r o u t i n e . I n t e r r u p t s t h a t j u s t
d i s a p p e a r (w i t h o u t be ing r e s e t) can cause program e x e c u t i o n
t o become u n p r e d i c t a b l e ; t h e i n t e r r u p t l e v e l p r e s e n t e d t o
t h e p r o c e s s o r cou ld become c o r r u p t e d and s u b s e q u e n t l y t h e
wrong i n t e r r u p t s e r v i c e r o u t i n e would be invoked. F a i l u r e
t o r e s e t an i n t e r r u p t w i l l c a u s e t h e p r o c e s s o r t o r e- take
t h e i n t e r r u p t a s soon a s t h e s e r v i c e r o u t i n e has completed.

8.10.4 F a u l t T o l e r a n t I n t e r r u p t Systems

I n an i n t e r r u p t - d r i v e n c o n t r o l envi ronment i t i s a lmos t
i m p o s s i b l e t o g u a r a n t e e t h a t o n l y v a l i d i n t e r r u p t s i g n a l s
a r e going t o be g e n e r a t e d . T h i s i s e s p e c i a l l y t r u e i n
e l e c t r i c a l l y n o i s y envi ronments (f o r example when s w i t c h i n g
on a motor) . The sys tem d e s i g n e r must be aware of t h e
p o s s i b l i t y of r e c e i v i n g f a l s e i n t e r r u p t s i g n a l s and should
be a b l e t o r e c o g n i s e t h e s i t u a t i o n s where t h e s e may occur .
F u r t h e r , p a r t of t h e sys tem d e s i g n g o a l (s) shou ld be
conce rned w i t h overcoming t h i s problem.

It i s a l s o a good i d e a t o b u i l d a c e r t a i n amount of f a u l t
t o l e r a n c e i n t o t h e system. Obvious ly t h e more t h a t i s b u i l t
i n t o t h e sys t em t h e more r e l i a b l e t h e system i s going t o
be. However, t h i s does i n c r e a s e t h e complex i ty and hence
t h e c o s t of t h e system. Some sys tems may n o t r e q u i r e much
(i f any) f a u l t t o l e r a n c e ; i t may be s u f f i c i e n t t o s imply
power down a l l t h e equipment i n some o r d e r e d sequence. I n
o t h e r s , a l a r g e amount may be needed, e s p e c i a l l y i f t h e
sys t em i s e x p e c t e d t o r e c o v e r from t h e f a u l t . The a c t u a l

Texas I n s t r u m e n t s 8-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

amount of fault tolerance built into a system depends on the
design criteria (speed, simplicity, recoverabilitg,
reliability, cost, etc).

A classic example of including fault tolerance in a system
is the overflow pipe in a domestic water supply, in
particular, in the cistern. In normal operation, no
overflow pipe is required; the ball-cock floats on top of
the water and determines how much more water is needed,
opening or closing the water inlet value as necessary.
However, what happens if the ball-cock loses its buoyancy or
the inlet value sticks open? It would mean water running
down the walls, damaging carpets, furniture, etc. Typically
this doesn't happen as the overflow pipe is included to
cater for this problem. The system tolerates this type of
fault: water overflows, but not on the carpet.

In an interrupt-driven environment, a simple piece of fault
tolerance is to "tie" all unused interrupt levels to a
common interrupt service routine (this is often referred to
as a 'spurious interrupt handler'). What this handler
actually does is e ~ t f r e l y up to the user; it may be nothing
more than an RTWP instruction or it may, for example,
provide the user with some form of statistics on false
interrupts. If the handler does anything other than the
RTWP it will be necessary to either perform the 'LIMI 0'
instruction or to allocate some memory to be used as a
workspace (not necessarily a whole workspace, but at least
three words for R13, R14 and R15) for each unused interrupt
level.

Although this doesn't stop any false interrupt signals from
being generated, it does ensure that a false interrupt on an
unused interrupt level will not have disastrous side
effects. How to cope with false interrupt signals on a used
interrupt level is another problem. It may be possible to
investigate the "interrupting" device and to determine
whether it actually interrupted or not. Or it may be
possible to state that a particular device can only
interrupt when some specific set of conditions prevail; if
all the coditions are met then assume that it was a true
interrupt, otherwise it could be treated in a similar
fashion to an unused interrupt level.

8.11 EXTENDED OPERATION INSTRUCTIONS

Extended operation instructions (XOPs) enable the user to
extend the existing instruction set by defining additional
"instruct ions" that are implemented by software routines .
XOPs provide a kind of "fast subroutine call" for often
peyformed operations. The 9900 supports 16 extended
operation instructions, numbered 0 to 15.

Texas Instruments 8-41 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

If the program is running under an operating system, XOP
instructions are often predefined by the system, They are
used as a method of calling operating system routines that
perform specific functions, These functions, in particular
input/output operations, are provided by the system as it is
not safe to allow a user to implement them (they could, too
easily, affect other users). The XOP mechanism isolates the
user from the internal workings of the operating system.
Extended operation instructions, used in this manner are
also known as extracodes or supervisor calls (SVCS),

This type of instruction is often referred to as a software
interrupt, Software interrupts differ from hardware
generated interrupts in that software interrupts have no
priority sequencing, (There is no waiting to be recognized
by the processor, an extended operation instruction is taken
as soon as it is issued), Also, the XOP instruction
requires an operand; this allows a parameter to be passed
over to the service routine,

One potential problem with XOPs is that there is only one
set of XOPs in each system, Where a system can execute
multiple programs, there is a potential conflict over use of
XOPs, as different programs may wish to use the same XOP
number for different operations.

8.11,l Defining Extended Operation Instructions

XOP is a valid assembly language mnemonic; unfortunately, it
does not convey any information about the operation a
particular XOP performs, However, it is possible to assign
a more meaningful mnemonic to an extended operation
instruction using the Define Extended Operation (DXOP)
directive, DXOP has 2 operands:

1) The mnemonic by which the XOP is to be known,

2) The number of the XOP involved.

This directive associates the mnemonic with a particular XOP
(it does not generate any code). When the mnemonic appears
as an instruction opcode, the assembler generates the
machine code to execute the appropriate XOP routine. (It
translates the mnemonic into the correct XOP instruction and
then assembles that.) For example:

DXOP CALL,4

CALL @FRED

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The first instruction associates the mnemonic CALL to XOP
4. The second is an example of an XOP instruction (although
it doesn't look like it), The effect of these two
instructions is to execute the XOP 4 instruction with the
symholic address FRED as its parameter.

8.11.2 Extended Operation Instruction Vectors

Like a hardware interrupt, an extended operation instruction
has a two word dedicated vector containing:

1) The address of the workspace to be used by the
XOP

2) The address of the XOP routine's entry point.

These vectors are located at memory addresses >40 to >7F
(see Table 8-3) .

Before an extended operation fnstructisn is executed, its
vector must contain the appropriate values. For the CALL
extended operation above :

AORG >50 CALL'S vector at >50
DATA CALLWP Workspace for CALL
DATA CALLPC Entry point for CALL

8.11.3 Extended Operation Instruction Execution

When an extended operation instruction is executed, the
processor performs the following sequence:

1) Locates the XOP's vector (4 times the XOP
number plus >40) and then loads the WP and PC
registers with the values contained there.

2) Performs a context switch.

3) Sets bit 6 of the status register to 1 (this
indicates that an extended operat ion
instruction is being executed) if it is
implemented in software.

4) Places the effective address of the
instruction's operand into the new workspace
register 11.

5) Passes control to the routine's entry point.

Return from an extended operation instruction is via the
RTWP instruction. This restores the program environment

Texas Instruments 8-43 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

sea AA3tfng - before t h e f n s t r u c t f o n was e x e c u t e d ,

Addres s XOP Number Vec to r C o n t e n t s

a d d r e s s f o r XOP 0
a d d r e s s f o r XOP 0
a d d r e s s f o r XOP 1
a d d r e s s f o r XOP 1
a d d r e s s f o r XOP 2
a d d r e s s f o r XOP 2
a d d r e s s f o r XOP 3
a d d r e s s f o r XOP 3
a d d r e s s f o r XOP 4
a d d r e s s f o r XOP 4
a d d r e s s f o r XOP 5
a d d r e s s f o r XOP 5
a d d r e s s f o r XOP 6
a d d r e s s f o r XOP 6
a d d r e s s f o r XOP 7
a d d r e s s f o r XOP 7
a d d r e s s f o r XQP 8
a d d r e s s f o r XOP 8
a d d r e s s f o r XOP 9
a d d r e s s f o r XOP 9
a d d r e s s f o r XOP 10
a d d r e s s f o r XOP 10
a d d r e s s f o r XOP 11
a d d r e s s f o r XOP 11
a d d r e s s f o r XOP 12
a d d r e s s f o r XOP 12
a d d r e s s f o r XOP 13
a d d r e s s f o r XOP 13
a d d r e s s f o r XOP 14
a d d r e s s f o r XOP 14
a d d r e s s f o r XOP 15
a d d r e s s f o r XOP 15

T a b l e 8-3 XOP Vec to r T a b l e

Note: Extended o p e r a t i o n i n s t r u c t i o n s c a n a l s o be c a l l e d
u s i n g t h e XOP i n s t r u c t i o n , T h i s r e q u i r e s two ope rands :

1) S o u r c e ope rand , a s above f o r CALL

2) XOP number

The e x t e n d e d o p e r a t i o n i n s t r u c t i o n shown e a r l i e r

CALL @FRED c a n be w r i t t e n a s XOP FRED,^

The l a t t e r does n o t r e q u i r e t h e DXOP d i r e c t i v e t o be used .
However, i t i s recommended t h a t t h e f i r s t app roach be
a d o p t e d as t h e mnemonic c a n i n d i c a t e what t h e r o u t i n e
a c t u a l l y does and t h u s a i d s program r e a d a b i l i t y ,

Texas I n s t r u m e n t s 8-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

XOP2 VECTOR

ADDRESS

ASSEMBLY LANGUAGE

CONTENTS I

XOP2 WP

XOP2 ROUTINE

PROGRAM WP

EXECUTING PROGRAM

XOP *1,2

F i g u r e 8-26 S t a t e Before Execu t ing t h e XOP 2 I n s t r u c t i o n

XOP 2 VECTOR

ADDRESS

STATUS BIT 6='1'

CONTENTS

> 0220
0240

XOP2 WP

> xxxx

> 0700
> 0892

XOP2 ROUTINE

RTWP

F i g u r e 8-27 S t a t e A f t e r Execu t ing t h e XOP 2 I n s t r u c t i o n

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.12 9900199000 FAMILY

The 9900/99000 family of microprocessors gives a choice of
different cost/performance/environment options using the
same software. Because of the nature of some of the options
(eg the 9995 is designed for use as a microcontroller) there
are small differences in architecture which are outlined
below.

Modifications to assembly language software to run on a
different processor in the family are usually quite
straightforward. For high level language (eg Pascal)
programs the differences will be taken care of within the Rx
executive.

NMOS technology
16 bit data bus
~ M H Z

3 power rails (+5V, -5V and +12V)
4 phase clock
64 pin package
Up to 64K byte address space
16 prioritized interrupts
Memory-to-memory architecture
3 dedicated registers - PC, WP and ST
16 general registers - RO to R15
Workspace register set - any 32 byte block of RAM
5 workspace register addressing modes
16 extended operation instructions (XOPs)
Serial 1/0 via CRU - up to 4K bits
3 single bit and 2 multiple bit CRU instructions
Automatic context switch for interrupts, XOPs and
subroutines
69 instructions, includes hardware multiply (MPY)
and divide (DIV)
DMA capabilit y
5 external instructions

o Integrated injection logic (I2L) technology
o Fully static operation
o Single phase clock
o Up to 3MHz at 500mA injector current
o Approved to MIL standard 883B and RS9000

Texas Instruments 8-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

c Single power rail
o 64 pin package

o 8 bit data bus
o Up to 16K byte address space
o 4 prioritized interrupts
o On chip 4 phase clock generator
o 40 pin package

As for the 99808 except:

o No -5v rail required
o On chip crystal oscillator

Note: The TMS9981 has a different pin out to the TMS9980Ae

8 bit data bus
On chip oscillator and clock generator
Single +5V power rail
40 pin package
Optional automatic first wait state generation
12MHz (internally divided by 4)
On chip RAM (256 bytes) organised as 16 bit words
On chip decrementer/event counter
5 prioritized interrupts
Macro Instruction Detect feature
Arithmetic overflow interrupt
Up to 32K bits of serial I/o via CRU
Minimum memory cycle time of 333ns
Instruction pre-fetch
CRU flag register (16 bits)
Signed multiply (MPYS) and divide (DIVS)
Load WP and ST from register (LWP and LST)

8.12.5.1 Macro Instruction Detect

The Macro Instruction Detect (MID) feature enables the user
to extend the instruction set in a similar way to the XOP
instructions,

An XOP instruction, which is a valid 9900 assembly language
instruction, occupies a range of opcodes: for example, the

Texas Instruments 8-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

'XOP 0' instruction uses opcodes >2C00 to >2C3F; the
'XOP 1' instruction uses >2C40 to >2C7F; etc, When the
processor encounters an XOP instruction it evaluates the
address of the XOP instruction's vector, uses the least
significant 7 bits of the instruction to determine the
address of the source operand, stores this address in the
XOP's workspace register 11, and performs a context switch
to the appropriate routine. (Full details on XOPs is given
in section 8.11.)

With the MID feature, the user can implement some, one, or
all, of the undefined instruction opcodes (such as the
opcodes >0000 to >007F) in software. When an undefined
opcode (a MID opcode) is encountered by the 9995 processor,
a non-maskable level 2 interrupt is generated. This causes
the processor to perform a context switch using the
interrupt level 2 vector. The level 2 interrupt handler
must identify which software routine actually implements the
particular opcode and then pass control to that routine. A
routine may implement a single opcode, or a range of opcodes
(like the XOP instruction). This is totally up to the user
to decide when designing the level 2 interrupt handler and
its callable routines.' The MID opcode instruction can he
accessed by:

MOV @-2(R14),temp Copy opcode into TEMP

As the processor stores the incremented program counter when
the context switch takes place, a simple RTWP instruction
returns control to . the interrupted program at the
instruction following the MID opcode.

If any MID opcode instructions are executed in the level 2
interrupt handler itself then care must he taken to ensure
that the original program context is not lost, and also that
the handler does not cycle endlessly.

8.12.5.2 Arithmetic Overflow

The user can cause the processor to generate an arithmetic
overflow interrupt (a level 2 interrupt) whenever an
instruction sets the arithmetic overflow status bit (status
bit 4) . This is done by setting the arithmetic overflow
interrupt enable status bit (status bit 10) to a ' 1 and
enabling level 2 interrupts via the processor's interrupt
mask. Both of these operations can be performed using the
'LST register' instruction.

8.12.5.3 Test for MID or Arithmetic Overflow

The MID interrupt and the arithmetic overflow interrupt both
generate level 2 interrupts (they share the same interrupt
vector). Thus, when a level 2 interrupt is taken by the

Texas Instruments 8-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

p r ~ c e s s o r , the level 2 interrupt handler must determine what
actually caused the interrupt, Was ft a MID? Or was it an
arithmetic overflow? When this has been decided the
appropriate routine can be invoked. (Note: Before control
is re turaed t o the interrupted program, the interrupt must
be reset, otherwise the level 2 interrupt handler will be
immediately re-taken,)

If the MID flag (at on chip CRU software base address >lFDA)
is a '1' then a MID caused the interrupt (this is reset by
writing a '0' to the MID flag) otherwise it was an
arithmetic overflow (this is reset by masking the arithmetic
overflow status bit to a '0').

8,12.5,4 On Chip CRU Flag Register

The CRU flag register consists of 16 read/write CRU bits
(named FLAGO, FLAGl, ..., FLAGF) starting at a CRU software
base address of >lEEO, The first 5 of these flags (FLAGO to
FLAG4) are used internally, but the remaining 11 are user
der'inabie,

8.12.5.5 On Chip Decrementer/~vent Counter

The decrementer can be configured as either a timer or an
event counter using FLAGO, and enabled/disabled using
FLAGl. When FLAGO is set to 'O', the decrementer functions
as a timer, and when it is set to '1' it is an event counter
(the level 4 interrupt line is used as the input for the
event counter), If FLAGl is set to 'O', the decrementer is
disabled, but if it is a 'l', the decrementer is enabled to
generate a level 3 interrupt.

The decrementer is configured by:

o Set FLAGO to the required mode,

o Load the required 16 bit start count into the
decrementer register (this is located at memory
address >FFFA). In timer mode, the count is
decremented every fourth CLKOUT cycle (every
1.333~~). (A count of >3A98 gives a 'delay' of
2Oms, while a count of zero disables the
decrementer,) When the count reaches zero, a
level 3 interrupt is generated, the original
count is reloaded and decrementing continues,

o Enable the decrementer by setting FLAGl to '1'.

o Enable level- 3 interrupts by setting the
in.terrupt mask to 3 or higher,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

X o t e : The 256 bytes of internal RAM is distributed as 252
bytes from address >F000 to >FOFR, and 4 bytes from >FFFC to
>FFFF. (These last 4 bytes are the two-word LOAD vector.)
This RAM can not be switched out of the address map. The
internal RAM is automatically selected when any of the above
addresses are referenced, regardless of what is located at
these addresses off chip.

Integrated injection logic (I2L) technology
Fully static operation
Single phase clock
Up to 4.4MHz at 500mA injector current
Conforms to MIL standard 883B
Single power rail
64 pin package and chip-carrier 68 pin
Multiprocessor interlock signal (MPILCK)
Extended instr. processor present signal (XIPP)
Interrupt acknowledge signal (INTACK)
Arithmetic overflow interrupt
Memory map enable signal (MPEN)
- to drive TIM99610 memory mapper chip
- as an extra address bit for 2 * 64K byte pages
Signed multiply (MPYS) and divide (DIVS)
Load WP and ST from register (LWP and LST)

8.12.6.1 MPILCK

In an environment consisting of a number of microprocessors,
where some sharing of the system memory is necessary (if
only for the microprocessors to communicate with each other)
there is a possible software memory contention problem: one,
or more, processors are attempting to read the contents of a
piece of memory while another processor is attempting to
modify it. While the piece of memory is being read from, no
processor should be allowed to modify it. Similiarly, while
the memory is being written to, no processor should be
allowed to read it.

This problem is more acute if the memory location in
question is used to allow or inhibit access to another piece
of memory (in software, such a memory location is known as a
semaphore).

What is required is some mechanism that implements a 'test
and set' operation in an indivisible manner while also
inhibiting access to the semaphore. This is performed via
the MPILCK (multiprocessor interlock) signal, which is
generated whenever the ABS instruction is executed. If the
semaphore is initially set to >FFFF to indicate that it is
not in use, exclusive access to the piece of memory can be

Texas Instruments 8-50 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

guaranteed by:

test ABS semaphore Is the semaphore tn use?
JGT test +ve - semaphore in use

The ABS instruction 'converts' a negative value into a
positive value and sets the status bits according to the
original value. If the semaphore is not in use (contains
the negative value 1 the ABS instruction resets the
semaphore value to 1 and resets the arithmetic greater than
status bit to '0'; program control will 'drop through' the
JGT instruction. When the semaphore is in use (contains the
positive value I), the ABS instruction simply sets the
arithmetic greater than status bit to '1'; program control
will be sent hack to the 'test instruction',

When a processor has finished with the piece of memory, the
semaphore is reset to >FFFF (the semaphore is not in use),

8,12,6,2 XIPP

The extended instruction processor present (XIPP) signal is
the same as the attached processor present signal used in
the 99000 family processors, It works in a similar manner
to an attached processor using the MID feature (except that
the 9989 does not have a macrostore), This is defined below
in sections 8.12,7,1 and 8,12.7.2,

80 1206.3 INTACK

The interrupt acknowledge (INTACK) signal allows the 9989 to
acknowledge the presence of an interrupt during times when
it has handed over control of the system bus to an extended
instruction~processor,

8.12.7 TMS99000 Family

Scaled NMOS (SMOS) technology
Multiplexed 16 bit address and data bus
Single +5V power rail
Up to 24MHz (internally divided by 4)
40 pin package
On chip oscillator and clock generator
Minimum memory cycle time of 167ns
Instruction pre-fetch
Privileged mode
Bus status codes to identify processor activity
Multiprocessor interlock signal (MPILCK) via bus
status codes

o Multiprocessor support instructions - test memory
bit (TMB), test and clear memory bit (TCMB), and

Texas Instruments 8-51 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

test and set --- UICLUGT~~ bf t (TSi4B)
Macrostore emulation of user defined instructions
Attached processor present signal (APP) - with
access to PC, WP and ST registers
Macro Instruction Detect feature
Arithmetic overflow interrupt
Interrupt acknowledge signal (INTA)
Up to 16K bits of serial 1/0 via CRU
Up to 16R bits of parallel I / O via CRU
Optional automatic first wait state generation
Memory map enable signal (ST8) to drive TIM99610
memory mapper chip
Memory expansion instructions via macrostore -
load map file (LMF), long distance source (LDS),
and long distance destination (LDD)
Signed multiply (MPYS) and divide (DIVS)
Load WP and ST from register (LWP and LST)
Stack support instructions - branch and push link
to stack (RLSK), and branch indirect (BIND)
Double precision 32 bit instructions - add double
(AM), subtract double (SM) , shift left arithmetic
double (SLAM) and shift right arithmetic double
(SRAM)

8.12,7,1 Macrostore

In the 99000 family, the concept behind the MID (the ability
to define 'new instructions' that are implemented in
software) has been extended to allow these routines to be
stored in a high-speed memory that is addressed
independently of main memory, This high-speed memory
(minimum cycle time of 167x1s) is known as macrostore.

When a MID opcode is detected by the processor, program
control is transferred to the macrostore.

The first few words of the macrostore contain a specially
ordered table, Each entry in this table defines the
macrostore address of the routine that implements a
particular group of MID opcodes, This address table is used
to determine whether the MID opcode is, in fact, implemented
by a macrostore routine, If so, program control is passed
to the appropriate routine, If not, a level 2 interrupt is
generated. Although a special internal, 16 word, workspace
(this is known as macrostore RAM, or MRAM) is used when the
processor is executing out of macrostore, it is a simple
matter to access data in the user's main memory, When the
macrostore routine has completed, an exit is made from the
macrostore (program control is returned to the user's
program) via an RTWP instruction.

If the user defined instruction allows the standard
addressing modes (register, register indirect, symbolic,
etc) for the source and/or the destination operand then the

xas Instruments 8-52 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

apprcpriate MID routine must calculate the operand's actual
address, (This is automatfcaily performed by the microcode
for the standard instructions,) To save the overhead of
having to do this calculation in software, the 99000 family
sf processors prcvI.de the EVAD (evaluate address) macrostore
instruction,

Internal to the 99000 family processors is a 1K byte
macrostore ROM (MROM) which can be expanded to 61K bytes
using off chip high-speed ROM, PROM, or even RAM,

71 RAM

SYSTEM BUS

New instructions defined as Software Routines in high-speed on or off chip macrostore.

Figure 8-28 Macrostore

*

The macrostore can be addressed in three different modes:

EXPANSION
MROAA

o Standard mode - The on chip MROM and MRAM are
both enabled, This allows the software routines
in MROM to be used,

MRAM MROM -

o Prototyping mode - The MROM is disabled but the
MRAM is enabled, This allows the user to
re-configure the system so that a lk byte block
of the off chip macrostore is used as though it
was the MROM, This enables the user to try out
and test the macrostore routines before
committing them to mask,

o Baseline mode - All macrostore is disabled.
Only the baseline 99000 instruction set can be
executed; with the exception of the parallel CRU
instructions this is identical to that of the
9995,

8,12,7.2 Attached Processors

To increase system throughput, some of the macrostore
routines can be taken out of the macrostore and implemented
in an attached processor (a specially designed unit to

Texas Instruments 8-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

handle a particular function) which is attached to the
system via a special interface. If these routines are
frequently used, or relatively slow and complicated (such as
floating point arithmetic routines), then a considerable
speed improvement will he noticed. (Floating point
routines, for example, could be replaced by a high-speed
floating point processor,)

When the system processor encounters a MID opcode it outputs
a MID bus status code. Any attached processor that
recognises the MID opcode can then inform the system
processor that it is prepared to execute the opcode (using
the attached processor present signal), If this happens,
the system processor relinquishes the bus to the attached
processor and waits until the attached processor signals
that it has finished*

Before giving up the bus, the system processor copies its
internal WP, PC and ST registers into RAM, When it regains
control of the bus these hardware registers are reloaded
from RAM, This allows the attached processor to access the
user's workspace, to access any multiple word operands
(updating the PC to skip over these operands as necessary)
and to return status information.

+

ROM RAM

SYSTEM BUS

CPU must block and relinquish the BUS while the attached processor executes.

PROCESSOR

Figure 8-29 Attached Processor

PROCESSOR

Unfortunately, attached processors can not simply be
attached to a high-speed bus without limit. They are not
completely self-contained computing systems as they require
the services of the system bus (to access memory, for
example), and they operate by suspending (or blocking)
execution of the main program until they have completed
their operation, Even so, an attached processor can
increase the system throughput for specific operations by 10
to 100 times*

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.12.7.3 Attached Computers

Attacked computers, cn t h e other hand, only require the
services of the system bus infrequently (when the macrostore
instruction invokes them with the required parameters, for
some hand-shaking signals and for completion signaling).

SYSTEM BUS.

ROM

b

AITACHEQ I COMPUTER b-*

RAM

Once paramaters have been passed, the CPU can continue to execute in parallel
with the attached computer (the attached computer has its own BUS).

Figure 8-30 Attached Computer.

As attached computers are totally self-contained systems, no
blocking action is necessary, which means that they can
execute in a true parallel fashion. An attached computer
can increase the system throughput for particular operations
up to 1000 times.

The complete procedure when a MID opcode is encountered by
the processor is shown in Figure 8-31.

8.12.7.4 Interrupts

All interrupts (except RESET) are inhibited while executing
from macrostore. However, there are two instructions that
allow the user to test for any pending interrupts while
executing a routine in macrostore. Using these, MID opcodes
requiring long execution times can be written so that they
can be interrupted and resumed after the interrupt has been
serviced. If the MID opcode is being handled by an attached
processor when a pending interrupt is detected, the attached
processor can temporarily return control to the system
processor to handle the interrupt. Upon completion of the
interrupt servicing, the system processor returns control
back to the attached processor. (When the interrupt is

Texas Instruments 8-55 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

taken by the system processor it automatically outputs the
interrupt acknowledge bus status code, INTA, which can be
used to reset the interrupting device.)

* Process in
CPU microcode

lnvoke Attached
Computer and continue

lnvoke Attached
Procesor and wait

lnvoke Macrostore
~ y - ~ Y l ,

lnvoke main memory

I Operating system
handles violation

Figure 8-31 Full TMS99000 Instruction Sequence

8.12.7.5 MPILCK

In a multiprocessor environment where communication is
performed via shared memory it is necessary to have a
mechanism that allows a portion of memory to be exclusively
'owned', so that while one processor is accessing that
portion every other processor in the system is physically
inhibited from accessing it. This is guaranteed via the
multiprocessor interlock (MPILCK) bus status code and the
multiprocessor support instructions (TMR, TCMB and TSMB);
the ABS instruction can also be used.

8.12.7.6 CRU Operations

On the 99000 family of processors, CRU operations use bits 0
to 14 of register 12 (instead of just bits 3 to 14 with the
T~S9900). This expands possible CRU I/O operations from the

Texas Instruments 8-56 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

previous maxdwum of 4K bits (with the TMS9900) to a new
maximum of 32K bits. The 32K bfts is split into two 16K bit
blocks; the first block (0 to 16K) is used for serial I/O
transfers, and the second block (16K to 32K) is used for
parz l l e l I / O transfers. (If the most significant hit of
register 12 is set to a '1' then a parallel transfer is
indicated otherwise it is a serial transfer.)

For parallel CRU operations, the count supplied to the LDCR
and the STCR instructions is used to select either an 8 or a
16 bit transfer and also to specify whether or not the CRU
base address is to be incremented by 2 after the transfer
has been performed. (With serial CRU operations, the count
is used to specify how many bits are to be transferred.)
The possible valid values for the count, using parallel CRU,
are shown below:

Byte transfer

Word transfer

All other values for count are reserved for future expansion
of the parallel CRU capability and should not be used.

When operating in user mode (status bit 7 is set to 'l'), an
attempt to execute an LDCR or an STCR instruction using a
CRU base address in the range >1C00 to >7FFE or >9~00 to
>FFFE is flagged as a privileged opcode violation. (This
condition generates a level 2 interrupt request and also
inhibits transfer of the remaining bits.)

Note: The SBO, SBZ and TB instructions should be used with
caution when an access is made within the parallel CRU
address space. SBO and SBZ will setjreset the CRUOUT line
(the same line as data bit D15), while the other 15 bits (DO
to D14) will be undefined. TB takes its value from the
CRUIN line (the same line as data bit DO).

There will be different versions of the 99000, each
supporting an extended instruction set, implemented in the
macrostore. These instruction sets will be tailored to
particular requirements, eg:

99105 Baseline version, instruction set as 9995 ,
no macrostore

99110 High performance floating point package
99120 Realtime executive (Rx) kernel

Texas Instruments 8-57 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8 13 ALGORITHMS AND TECHNIQUES

The paragraphs that follow provide information about
algorithms and techniques that are applicable to 9900
assembly language programming.

8.13.1 Invoking the 9900 Family of Assemblers

The 9900 family of assemblers are upward compatible.
However, there are restrictions on the use of certain
instructions. The first three instructions below are only
valid on the 990/10 or 112 minicomputers with map option.
The remaining five instructions (external instructions)
perform specific functions on the /lo, 112 and the / 4 mini-
computers. Although they are not illegal for the TMS9900
microprocessor, the functions they actually perform are
dependent upon the external hardware.

Long distance destination
Long distance source
Load memory map file
Clock off
Clock on
Idle
Load ROM and execute
Reset 1/0

LDD
LDS
LMF
CKOF
CKON
IDLE
LREX
RSET

8 1 3 1 1 LRLA

The Line-By-Line Assembler is a two-EPROM package that is
used in conjunction with the TIBUG monitor supplied with the
TM990/101 and /I00 microprocessor boards. With these two
additional EPROMs correctly installed, the Line-By-Line
assembler is entered by the following sequence:

? R
W=XXXX space
P=XXXX 9E8 return (9E6 in some versions)
? E

TIRUG Monitor User Replies
Prompts and Replies

This initializes the workspace, sets the program counter to
the entry point of the assembler and begins execution.

The assembler prints the address of the first word of memory
into which the subsequent program will be stored and waits
for instructions to be entered. To exit from the assembler
and return to TIBUG press the escape key (ESC).

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Gnce the grograa has been entered, it can be executed by
performing the same sequence of commands used for entering
the assembler. However, P should be set to the program's
entry point instead of 9E8.

For further details refer to the T~990/402 Line-By-Line
Assembler User's Guide.

8.13.1.2 SYMBOLIC

SYMBOLIC is a ROM resident two-pass assembler (see footnote)
that is supplied with the ~~990/302 Software Development
Board. It takes source statements stored on audio cassette
(created via the resident text editor) and produces absolute
(not relocatable) machine code. The first instruction in
the program should be an AORG directive that sets the
location counter to the absolute start address of the
program, Before; executing the symbolic assembler, the
cassette containing the source statements must be positioned
to the begining of the program. The assembler is invoked
by:

.SA <devl>,<dev2>,<dev3> return

where <devl> is the device number of the cassette containing
the source statements. <dev2> is the device number of the
cassette where the object code is to be stored; and <dev3>
is the device number of the listing device,

After the first pass, the assembler responds with:

** REWIND TAPE
** HIT 'CR' TO GO

If <devl> and <dev2> are the same, the assembler responds
with these messages following the second pass:

** SWAP TAPES
** HIT 'CR' TO GO

If the program is too large to fit into the assembler's
buffer at one time, more steps will be involved,

Having stored the object code on cassette, the next step is
to invoke the Relocating Loader to load the absolute program
into the board's user memory.

A two-pass assembler reads the source program twice. On the
first pass it builds a symbol table containing the name of
every symbol used in the program and the address where it
was defined. During the second pass the machine code is
produced using the instruction opcodes and the completed
symbol table.

Texas Instruments 8-59 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

This is performed by:

.RL <dev> return

where <dev> is the device number of the cassette containing
the object code.

The loader requires information to determine where the
program is to be loaded into memory, how much of the program
is to be loaded, etc. When the loader is ready for this
information, it informs the user by prompting '?'.

Once loaded, the assembled program is executed by invoking
the Debugger Utility (the DP command), setting the program
counter, workspace pointer and status register to the appro-
priate values using the IR command, and then issuing the EX
command.

See the ~ ~ 9 9 0 / 3 0 2 Software Develpoment Board User's Guide
for further details.

8.13.1.3 TXMIRA

TXMIRA is a two-pass assembler that runs on a 990/4 mini-
computer under the floppy disc based TXDS Control Program.
The assembler is invoked by replying to the Control Program
prompts as follows:

PROGRAM : DSCX:TXMIRA/SYS return
INPUT: DSCX:NAME/ASM return
OUTPUT : DSCX:NAME/OBJ,DSCX:NAME/LST return
OPTIONS : return

TXDS Control User Replies
Program Prompts

DSCX:NAME/EXT is the full pathname of the file (or device)
containing the program to be assembled.

During output, if a file does not exist, it will be
created. The second output parameter specifies where the
listing is to be sent. This is usually a device such as the
line printer (LP). If this parameter is missing, the system
default printer will be used.

For a full list of the available options refer to Section
5.4 of the Model 990 Computer Terminal Executive Development
System (TXDS) Programmer's Guide.

The TXDS Linking Utility Program (TXLINK or TXSLNK) must be
used to resolve any external references (REFS) contained in
the program.

If the program has been written to run on a TM board based

Texas Instruments 8-60 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

system then it may be possible to test and debug it using
TIBUG or the Software Development Board. However, the AMPL
in-circuit emulator (if one is available) could make the
testing a lot easier, simpler, quicker and less painful.

If the program has been written to run on a /4 then there
are two options available. If it doesn't use any operating
system facilities then the EX or RU commands of the TXDS
Standalone Debug Monitor (TXDBUG) can be used. If it does
use operating system facilities and if the Operator
Communications Package (OCP) has been included in the
generation of the /4 operating system (using GENTX) then OCP
may be used.

For a program to run on the /4 the first three words of the
program must contain (in the following order):

1) The address of the initial workspace.

2) The address of the program's entry point.

3) The address sf the error handling routine to be
invoked when the operating system detects a
non-fatal error. If this address is less than
15 then it is assumed that an error handler is
not included in the program.

As the 990/4 minicomputer is based around the TMS9900
microprocessor it is possible to use the AMPL in-ciruit
emulator to debug a /4 based program. Note: there can be
timing problems with the host cpu.

8,13.1.4 SDSMAC

SDSMAC (Software Development System Macro Assembler) is a
multipass macro assembler that runs on a 990/10 or /12
minicomputer under the hard disc based DXlO operating
system. This assembler is invoked by issuing an XMA command
to the SCI (System Command Interpreter) prompt and then
supplying the relevant information to the XMA prompts,

[I XMA return

SCI prompt
a

EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: DISC.SOURCENAME return
OBJECT ACCESS NAME: DISC.OBJECTNAME return

LISTING ACCESS NAME: DISCOLISTNAME return
ERROR ACCESS NAME: DISC.ERRORNAME return

OPTIONS : return
MACRO LIBRARY PATHNAME: DISC.LIBRARYNAME return

XMA Command Prompts User Replies

Texas Instruments 8-61 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

DISC specifies the name of the (installed) disc on which the
file resides. If the file does not exist prior to the
command for the listing, object, and error access name
prompts, it will be created on the specified disc with the
name given.

DISC.xxxxNAME is the full pathname of the file (or device)
to be used.

When creating a program on the 110 or 112 it is a good idea
to create a directory (using the CFDIR command) through
which all files related to that particular program are
referenced. This allows the replies to the XMA prompts to
be of the form:

where PROGNAME is the directory name for the program files,
and EXT is one of ASM, OBJ, LST, ERR, MACRO.

When the assembly is complete it may be necessary to execute
the Link Editor (XLE command) or even the TX Link Editor
(TXXLE command) to resolve all external references in the
assembled program.

For a TM board based or for a 99014 based program refer to
the relevant comments under TXMIRA above.

For a 990/10 or 112 minicomputer the fully linked (if
necessary) program must be installed as either a procedure,
task or overlay (using the IP, IT or I0 commands). (For
most applications the program is usually installed as a
task.) This can then be executed using the XT (execute
task) command, or debugged using the XD (execute debug)
command and the SCI debugger commands.

The first three words of the 990/10 or 112 based program
must contain task information; this is the same as for a
99014 based program and is described under TXMIRA.

8.13.2 Number Representations

The information in this subsection discusses how numbers are
formed and how they are stored internally. Note: The
TMS9900 performs all arithmetic using twos complement
notation; it does not contain any instructions that directly
manipulate fractional, floating point or binary coded
decimal numbers. If a program needs to use these types of
number systems, then the user must supply the routines to
actually perform the required arithmetic operations. It
will also be necessary to provide the routines to convert
between the required number system and the twos complement

Texas Instruments 8-62 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

form, The TMS99iiG provides floatfag p e f c t instructions in
macrostore,

8 . 1 3 . 2 . 1 Number Systems

A number in the decimal, base 10, system is composed of the
digits 0 to 9, Numbers greater than 9 are represented using
the decimal place convention, The value of each place is
ten times that of the place to its immediate right,

For example, the decimal number 2976 means

Note: 10' = 1

While the decimal system is the most frequently used number
system it is not suitable for use on a computer,

The smallest unit of storage in a computer is the bit (from
BInary digiT). The bit can be thought of as a single wire
that can only be in one of two states: on or off, 'high' or
'low', ' 1 or '0' The binary system automatically lends
itself to this,

A number in the binary, base 2, system uses only the digits
0 and 1. The value of each place, in the binary
place convention, is twice that of the place to its
immediate right (as opposed to 10 in the decimal system),

For example, the binary number 1011101 (93 decimal) means

Note: 2' = 1

Writing large numbers in their binary representation is too
cumbersome for most applications. However, it is possible
to group bits together and represent each group by a single
digit. This gives rise to the octal and hexidecimal number
systems,

Octal, base 8, representation uses the digits 0 - 7. An
octal digit corresponds exactly to 3 bits,

Hexadecimal (or hex for short) notation, base 16, uses the
digits 0 - 9 plus A - F to represent the decimal values 10 -
15. Each hex digit corresponds to exactly 4 bits,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I I l l i I
Binary

I

It-lnd+-l st -1 Her

Figure 8-32 Bit Grouping

Note: Ten does not correspond to an integral power of two.
Therefore conversion from decimal to binary (and vice versa)
is more difficult.

Binary

10
1000
10 10

10000
11111111

8.13.2.2 Representation of Negative Numbers

Negative numbers are stored in twos complement form. In
this form, the most significant bit of a word (bit 0)
indicates the sign of the number. If it contains a ' 0 ' , the
number is positive; if it contains a 'l', it is negative.
The other 15 bits (bits 1 - 15) hold the twos complement
value of the number. For a positive number this is simply
the binary representatdon of that number.

Octal

2
10
12
20

37 7

The representation of a negative number, however, (for
example 1096) is derived as follows:

1) Take the magnitude of the number, in this case
1096, and write it in binary, using the full
word length of the machine. (16 bits for the
9900.)

Decimal

2
8
10
16

255

2) Take the ones complement of this number (change
the state of each bit; replace '0's with '1's
and '1's with '0's).

Hex

2
8
A
10
FF

3) Add 1 to the least significant hit.

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK AS SEMBLY LANGUAGE

The positive number 1096 is stored as >0448 while the
negative number -1096 is stored as >FBB8.

8.13.2.3 Representation of Fractions

The general equation to convert a binary fraction into its
decimal equivalent is:

where dl dn represent binary digits
For example, the binary fraction 0.1001 is equivalent to

To convert a decimal fraction to its approximate binary
equivalent, multiply the decimal fraction continually by 2,
saving the integer part of the result (either '0' or '1')
until the result is zero. Unfortunately it is not always
possible to produce an exact binary representation.

Consider the number 0.8125.

This number can be accurately expressed as 0.1101.

Now consider the number 0.9725.

We could continue this process indefinately, but there is
little point to it as the number 0.9725 can not be

Texas Instruments 8-65 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

accurately represented b x binary. After 8 iterations the
binary approximation to the number is 0.111110001. This
yields the number 0.970703125; an error of 0,001796875.
Obviously the error can be reduced further by performing
several more iterations. However, there are practical
limitations to how far this can be taken.

8.13.2.4 Representation of Floating Point Numbers

Floating point numbers can be stored in two consecutive 9900
memory words using Excess 64 notation. The 32-bit real word
is formed as: a sign bit, a 7 bit exponent and a 24 bit
mantissa:

Figure 8-33 Floating Point Format

0 1 7 8 31

The sign bit (bit 0 of the first word) is used to show
whether the number is positive or negative (a '1' means that
it is negative). A real number is converted into the form
'fraction*exponentm. The fractional part is stored in the
24-bit mantissa field in true form and not twos complement.
The exponent part is stored in the exponent field in "Excess
64 notation".

SIGN BIT b

The most significant hex digit of the mantissa must be
normalized (ie it must contain a value other than zero).
This is performed by shifting the number four bits to the
left (one hex digit) and decrementing the exponent value by
one until the mantissa is normalized,

Excess 64 notation means that the number stored in the
exponent field is 64 greater than the actual value of the
exponent part. Thus, the true exponent values 0 to 63 will
be stored as 64 to 127. The exponent field values 0 to 63
are used to represent the true exponent range of -64 to -1.

EXPONENT

Consider the number -107,5

MANTISSA

Binary Form Frac*Exp Form Normalised

01101011.1000 0.0110101110000 * 16* No change

In floating point form 1 1000010 0110101110000....0

The number -107.5 would be stored as >C26B8000 (sign = -ve,
exponent= +2).

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Co~sider the number Oe03125

Binary Form Frac*Exp Form Normalised

In floating point form 0 0111111 1000000000000....0

The number 0.03125 would be stored as >3F800000 (sign= +ve,
exponents -1).

8.13.2.5 Binary Coded Decimal

A number that is stored in a decimal form is said to be in
Binary Coded Decimal notation (BCD). In this form a word
holds four decimal digits with each digit occupying four
bits. For numbers greater than 9999, more than one word is
required to store the BCD value.

If signed numbers are allowed, the user must decide on some
convention ~ O P indicating whether a number is positive or
negative (such as using the least significant four bits of
the least significant word to contain the sign).

Most significant Word

4
Most Significant Digit

Least Significant Word

Figure 8-34 A Possible BCD Format

....

8.13.3 Position Independent Code

t Sign digit

A program is normally assembled and linked to produce an
executable object module that is designed to reside at a
particular position in memory. Typically, if the, program is
loaded at any other address than the program will not
execute correctly.

Least Signifitnt Digit

However, it is possible to write a program such that without
any modifications at all it will execute at any position in
memory. A program that exhibits this form is said to be
written in Position Independent Code. (This is different
from relocatable code, which is not directly executable
until it has gone through a location step to resolve all
addresses tagged relocatable into absolute form. It is then
no longer relocatable.)

The real value of position independent code may not be
immediately obvious so consider the following: You have an
EPROM based monitor (like TIBUG) and want to add new
capabilities to it (say an assembler, a disassembler and a

Texas Instruments 8-67 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

f l o a t i n g point package) and t h e s e a r e a l s o going t o be EPROM
based . Where a r e t h e s e e x t r a EPROMs going t o be p l aced i n
memory? A t t h e same a d d r e s s ? P o s s i b l y , b u t t h i s would
r e q u i r e you t o power down your sys tem, remove t h e unwanted
EPROM(s) and i n s e r t t h e r e q u i r e d ones. And t h e n you would
have a c c e s s t o o n l y one of t h e s e e x t r a f a c i l i t i e s a t any one
t ime , A t d i f f e r e n t a d d r e s s e s ? T h i s would be b e t t e r a s i t
a l l o w s a c c e s s t o a l l of t h e new f e a t u r e s a t any t ime ,

A f t e r a w h i l e , you cou ld have b u i l t up a h e a l t h y s e l e c t i o n
of e x t r a m o n i t o r f a c i l i t i e s and a number of u s e f u l
a p p l i c a t i o n packages. The o n l y problem i s t h a t a l l of them
a r e s p e c i f i c t o some p a r t i c u l a r a d d r e s s , What happens when
you want t o u s e a combina t ion of t h e s e packages and e x t r a
f a c i l i t i e s ? It i s q u i t e l i k e l y t h a t you w i l l have an a d d r e s s
c l a s h (two packages r e q u i r i n g t h e same memory a d d r e s s) and
i t w i l l become n e c e s s a r y t o go hack and re- assemble one of
them (t a k i n g g r e a t c a r e t h a t a n o t h e r a d d r e s s c l a s h d o e s n ' t
happen) , Now you've go t two v e r s i o n s of a p i e c e of s o f t w a r e
t h a t o n l y d i f f e r i n t h e i r l o a d a d d r e s s e s . Nothing wrong
w i t h t h i s b u t i t does mean t h a t any u p d a t e s (a bug c o r r e c t e d
o r new f a c i l i t i e s added) must be a p p l i e d t o bo th p i e c e s of
s o f t w a r e , T h i s l e a d s t o a p r o l i f e r a t i o n of n e a r i d e n t i c a l
p a r t s and t h a t i s a r e a l headache from a main tenance p o i n t
of view,

I f t h e packages a r e w r i t t e n i n p o s i t i o n independent code
t h e n o n l y one copy of a package i s e v e r r e q u i r e d , When one
of t h e packages i s wanted i t s EPROM(s) a r e s imply i n s e r t e d
i n any unused memory space , A package i s t h e n invoked w i t h
t h e a d d r e s s of t h e package ' s EPROM(s) a s t h e s t a r t a d d r e s s .

The c a l l i n g sequence f o r p o s i t i o n independen t code i s shown
below, a l o n g w i t h t h e r e l o c a t a b l e code e q u i v a l e n t ,

ENTRY EQU $ ENTRY EQU $

SUB EQlJ $ SUB EQTJ $

R e l o c a t a b l e Code P o s i t i o n Independent Code

I n t h e above example, workspace r e g i s t e r 4 (R4) c o n t a i n s t h e
a c t u a l a d d r e s s of ENTRY, T h i s i s o b t a i n e d by:

START EQU $
L I R10,>045 Load R10 w i t h RT i n s t r u c t i o n
BL R10 Execute i n s t r u c t i o n i n R10

ENTRY EQU $ R11 c o n t a i n s a d d r e s s of ENTRY
MOV Rl l ,R4 R4 c o n t a i n s a d d r e s s of ENTRY

Note: START i s t h e r e a l e n t r y p o i n t f o r t h e p o s i t i o n

Texas I n s t r u m e n t s 8-68 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

independent code program.

8.13.4 ROM/RAM Systems

Before burning a program into ROM (the usual course of
events for a microprocessor based application/control
program), it is necessary to separate the variable data and
temporary storage locations from the constant data and
program instructions, and then add instructions to the
program to ensure that all the variable data is correctly
initialized (see Figure 8-35).

c ROM

-

PROGRAM

RAM

4 Interrupts and XOPs b

4 Variables and RAM Image
workspaces

PROGRAM

*

The simplest way of initializing data is by using the DATA,
BYTE, and TEXT assembler directives:

At run time, the RAM image (held in ROM) is copied into the appropriate
RAM storage area.

Figure 8-35 RoM/RAM Partioning

TEMP1 DATA 100
TEMP2 DATA 25 . .
MSG TEXT 'READY'

BYTE >D,>A,O

While this will work in a RAM environment such as a
development system, where the program is loaded prior to
each execution, it will not work in a dedicated
microcomputer. There will be no operating system to load
the progam and initialize the data. If the data is placed
in RAM, it will never be initialized; if in ROM, it cannot
be changed by the program (this is perfectly all right for
constants). Even in a RAM environment, if the program is
restarted without reloading, the data will not be
reinitialized.

The only way of ensuring variables are correctly initialized

Texas Instruments 8-69 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

is to include instructions in the program c o d e to do the
initialization. This can be performed by:

*
* Data storage allocation in RAM
*
TEMPl BSS 2

MSG BSS 8

VAREND RSS 0

*
* Initial variable values in ROM
*
VALUES DATA 100

DATA 25

TEXT 'READY '

* Initialisation loop *
ENTRY EQU $

LI R1 ,TEMP1 R1 points to TEMP1
LI R2, VALUES R2 points to VALUE

INIT MOV *R2+,*Rl+ Load initial values
CI R 1 , VAREND Done?
JNE INIT To INIT if no

The label VAREND (no storage space is allocated to it) is
used to delimit the block of data; its address is used to
terminate the initialization loop INIT,

The initialization can also be performed by:

LI R1,100
MOV ~ 1 , @TEMP 1 Set TEMP1=100
LI R1,25
MOV R~,@TEMP~ Set TEMP2=25

The above does not make use of the table of values (VALTJES),
MOV @VALUES, @TEMP 1 Set TEMP I= 100
MOV @VALUES+~,@TEMP~ Set TEMP2=25

Although both of these methods are simple and
straightforward, they can be more costly in memory space
(they both require 4 words of ROM for each variable) for
programs with a number of variables to be initialized,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Note: A complete ROM/RAM system must satisfy the following
three conditionds.

If any interrupt level is not used then a spurious interrupt
handler should be written and lncluded in the system. All
unused interrupt levels should set their PC to access this
routine. It may be necessary to allocate some RAM to each
unused interrupt level's WP, but this depends on exactly
what the spurious interrupt handler does.

If any XOPs are used then the appropriate XOP trap vectors
must be included.

If the LOAD vector is not used then it should be treated as
though it was an unused interrupt level. Typically this
vector is used to perform a 'warmstart' operation; it allows
the user to halt the application program (usually when an
error has been detected) and for it to be restarted from a
known state (eg immediately before the code that copies the
RAM image into memory).

8.13.5 Macro Processing

Suppose a sequence of source lines will be used often in a
program. There are several methods to accomplish this:

1) Explicitly write the sequence wherever it is to
appear.

2) Make a subroutine out of the sequence and code
subroutine calls wherever the sequence should
appear .

3) Write the sequence at the begining of the
program, associating a name with it. Insert
this name wherever the sequence is to appear in
the program and pass the program through a
special program called a macro processor. The
output from this is a program in which every
occurrence of the sequence name is replaced by
the sequence of source lines.

The following text is only concerned with the last method
macro. described above. The sequence of source lines is a

Associating a name to a macro is called macro definition and
writing this name in a source line is known as a macro
call.

Like the subroutine, macros can have parameters. Macro
calls may require text that is almost, but not exactly, the
same. For example, some instructions may use different
operands. This can be handled by defining parameters for
the macro. The actual operands required are then specified

Texas Instruments 8-7 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

in the macrt c a l l (an example is presented beiowj.

A macro processor processes text. This text may, in fact,
be a program but to the macro processor it is simply text.
The macro processor is only concerned with macro related
operations, and source lines containing none of these are
output unchanged. Input to a macro processor is text
containing macro definitions, macro calls, macro
instructions and macro keywords. Output is text that has
had all the macro calls replaced by their replacement text
and all other macro operations removed.

Diagrammatically, this can be expressed as:

TEXT + MACRO CALLS I
INSTR-UCJIONS d
AND KEYWORDS

MACRO DEFINITIONS
d

MACRO
PROCESSOR

MODIFIED SOURCE TEXT
(all Macro operations removed,

calls replaced by substitution
1 text)

Figure 8-36 Macro Processor Operation

A macro processor has two phases: Macro Definition and Macro
Expansion.

Macro Definition - A macro is defined and subsequently
included into its macro library,

Macro Expansion - A macro operation is found in the source
text. A macro call causes the input to be 'switched' to the
macro's replacement text. Processing continues from there
until this text is exhausted. Other macro operations cause
the macro processor to perform the necessary, inbuilt,
operation.

The benefit of using a macro processor is that, once
defined, a macro can be "called1' from anywhere within the
source (or replacement) text, with each call having specific
arguments. Obviously, it is a good idea to build up a macro
library (containing both special and general purpose
macros), This can then be either automatically accessed
when the macro processor is used or actually included into
the macro processor itself.

Although a macro is only written once, the output from a
macro processor will contain the replacement text wherever a
macro was called in the source text. Note that although a
macro call and a subroutine call look similar when written
in a source program, a subroutine call is implemented in the

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

object module by a short calling sequence to the subroutine,
which only appears once. Wherever a macro call is written,
the complete code sequence specified in the macro definition
will he placed in the object module at the point of the
call.

The SDSMAC assembler supports a macro language (ie it is a
macro assembler). A short description of defining and
calling a macro under this assembler follows. Full details
of the SDSMAC assembler capabilities are available in
Section 7 of the TMS9900 Assembly Language Programmer's
Guide.

8.13.5.1 Macro Definition

Macro definition is performed by the $MACRO instruction.
All source lines following this instruction up to but
excluding the definition terminator ($END instruction)
constitute a macro.

Mname $MACRO parm . 1 Macro

MNAME is the name of the macro. PARM is the list of
parameters (separated by commas) used by the macro.

$MACRO causes MNAME and its attributes to be stored in the
assembler's symbol table. A similar table, the parameter
table, is used to hold the names of the individual
parameters and their attributes. (Information about any
macro variables used within a program is also stored in this
table,) $END informs the assembler that the definition is
complete. All the source lines between these two macro
instructions are stored, in an encoded form, in a macro
file.

8.13.5.2 Macro Call

A macro is called by writing its name in the opcode field of
an instruction, with the actual parameters written in the
operand field.

When this is done, the actual parameters are linked to the
dummy ones (those supplied at definition time) in the
parameter table and then macro expansion takes place. The
lines output from the macro expander are then passed
straight to the assembler,

For example, to define a macro (AGAIN) with dummy parameters
AD and NOW, the following lines are required:

Texas Instruments 8-73 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

AGAIN $MACRO AD, NOW

• 1 Macro's replacement lines

To call this with real parameters R4, *R6 the following is
required :

AGAIN R4, *R6

SDSMAC supports conditional assembly through the $IF, $ELSE
and SENDIF macro instructions. The general form for
conditional assembly is:

$IF expression

. Block B

If the expression in the above example is true, Block A is
included in the program; if not, Block B is included.

A simplified form of this is:

$ IF expression

. Block A

Unlike most macro processors, SDSMAC allows the programmer
to directly access and modify the individual components of
each entry in the parameter table. Thus 'expression' can
be:

P2.S = 'WORD' Is the string component of variable P2
equal to the string WORD

T.L = 5 Is the length component of variable T
equal to 5

SDSMAC also supplies a number of keywords such as SPCALL
(parameter appears as a macro instruction operand) and SPIND
(parameter is an indirect workspace register address) that
enable the programmer to test a variable's attribute
component. These keywords are used with the logical
operators AND (' b ') , OR ('tl-'), Exclusive OR (' & & ') and NOT
(#) For example:

Texas Instruments 8-74 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

P2.A & SPCALE This expression has a noii zere value
when the variable P2 is a parameter
supplied in a macro instruction; esle
the value is zero.

8.13.6 Nested Subroutines

A subroutine is nested when it is invoked by another
subroutine. The only problem with nested subroutine calls
is that of ensuring that a subroutine's return address is
not lost or overwritten. This is particularly troublesome
if the subroutines are called via a BL instruction (the
return address is stored in workspace register 11).

Conceptually the flow of control is as follows:

Executing the second RL instruction results in the loss of
the first return address. Exiting the inner routine causes
the continuous execution of the code located between the BL
and RT instructions.

One approach to resolve this is:

BL---------+MOV R11,RlO Save return address

BL -.
Y R T ' . -1:

MOV RlO,R11 Restore return address
• RT

In the above piece of code, the instructions:

MOV RlO,Rll
RT

can he replaced by:

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.13.7 S t a c k s

Another way of pe r fo rming t h i s s a v i n g and r e s t o r i n g of
r e t u r n a d d r e s s e s i s by implement ing a s t a c k mechanism, An
a r e a of memory i s s e t a s i d e t o be used a s a s t a c k , A s t a c k
u s u a l l y s t a r t s a t a h i g h a d d r e s s and b u i l d s down towards low
memory a s i t e m s a r e added (pushed o n t o t h e s t a c k) ,

A r e g i s t e r i s r e s e r v e d t o p o i n t t o t h e c u r r e n t t o p of s t a c k
(i e i t p o i n t s t o t h e l a s t i t e m added t o t h e s t a c k) . Th i s
r e g i s t e r i s u s u a l l y r e f e r r e d t o a s t h e s t a c k p o i n t e r , A
s t a c k can be r e p r e s e n t e d g r a p h i c a l l y by:

1-1 Low memory (>OOOO)

F i g u r e 8-37 S tack R e p r e s e n t a t i o n

v
The f i r s t i n s t r u c t i o n i n a s u b r o u t i n e pushes t h e r e t u r n
a d d r e s s o n t o t h e s t a c k and decrements t h e s t a c k p o i n t e r .
The l a s t i n s t r u c t i o n , p r i o r t o a r e t u r n , pops (o r removes)
t h e l a s t e n t r y from t h e s t a c k , u p d a t i n g t h e s t a c k p o i n t e r i n
t h e p r o c e s s ,

- Stack pointer

SUB PUSH R 1 1

POP R11
RT

PUSH and POP a r e n o t r ecogn ized assembly language
i n s t r u c t i o n s . I f SDSMAC i s a v a i l a b l e , t h e s e o p e r a t i o n s can
h e implemented by macros,

The r e a s o n f o r g i v i n g bo th PUSH and POP arguments (R11) i s
t o make t h e s t a c k o p e r a t i o n s g e n e r a l purpose , t h u s a l l o w i n g
d a t a o t h e r t h a n r e t u r n a d d r e s s e s t o be s t o r e d on t h e s t a c k ,
However, i f t h e s t a c k i s used i n t h i s way, c a r e must be
t a k e n t o e n s u r e t h a t a l l such i t e m s a r e removed b e f o r e
popping ' t h e r e t u r n a d d r e s s ,

PUSH and POP may be d e f i n e d a s macros a s f o l l o w s :

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

PUSH $MACRO OP Define macro PUSH
DECT a10 Decrement stack pointer
MOV :OP,S: ,*R10 Move data onto stack
$END PUSH

POP $MACRO SO Define macro POP
MOV *R1O+,:SOeS: Move data from stack
$END POP

Workspace register 10 (R10) is used above as the stack
pointer, The macro operands may be any valid operand for a
MOV instruction,

Before the stack can be used, the stack pointer must be
initialized to the address of the top of the stack plus two;
otherwise the first word in the stack will not be used,

8.13-8 Recursion

A nested subroutine has already been defined as a subroutine
that is called by another subroutine, In thiS definition
there is nothing to stop the nested subroutine from being
the same as the calling subroutine. If this is the case,
the subroutine is known as a recursive subroutine (a
subroutine that calls itself) and the mechanism is known as
recursion, Care must be taken to ensure that a recursive
subroutine does not perform recursion endlessly,

Recursion presents problems, For example, how is a
subroutine's return address to be saved? Simply copying it
into another workspace register will not work, as on the
next recursive call the value will be overwritten by the new
return address, Here a stack mechanism is essential. By
pushing the return addresses onto a stack the problem is
solved, as long as the storage space allocated to the stack
is not exceeded,

Suppose, in a multiple user environment, a number of
programs need to perform the same operation. The code
performing this can be included in each program, or it could
be written in such a way that it is possible for the
programs to share a single copy of the code and execute it
(simultaneously, if necessary) as though each program had
its own copy. Code written to allow this is known as
re-entrant code,

A recursive subroutine must be written in this way .as, in
effect, it shares the code with jtself,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

For code t o be r e- e n t r a n t t h e f o l l o w i n g two c o n d i t i o n s must
be s a t i s f i e d ,

The s u b r o u t i n e code must n o t modify i t s e l f . Modifying code
i s a n e x t r e m e l y dangerous p r a c t i c e ; i t i s v e r y d i f f i c u l t t o
debug and i s a c t i v e l y d i s c o u r a g e d , S t o r i n g t h e code i n ROM
e n s u r e s t h a t t h i s can n o t be done, I f s e l f modify ing code
i s i n c l u d e d t h e n t h e program w i l l n o t work a s expec ted ,

On e n t r y t o t h e s u b r o u t i n e , t h e d a t a l o c a l t o t h e s u b r o u t i n e
must be c o r r e c t l y i n i t i a l i z e d , T h i s a l s o i m p l i e s t h a t t h e
d a t a l o c a l t o p r e v i o u s i n v o c a t i o n s must be p r e s e r v e d , and
r e s t o r e d o n e x i t i n g t h e r o u t i n e , The s i m p l e s t way of
pe r fo rming t h i s i s u s i n g a s t a c k :

ENTRY EQU $
PUSH R11
PUSH @ARC1
PUSH @ A R G ~

Save r e t u r n a d d r e s s
Save ARGl
Save ARG2

PUSH RO
LI RO,...
MOV R O , @ A R G ~
L I RO,. . .
MOV R O , @ A R G ~

POP RC)

POP @ A R G ~
POP @ARC1
POP R11
RT

Save RO

Rese t A R G l

Rese t ARG2

R e s t o r e RO

R e s t o r e ARG2
R e s t o r e ARC1
R e s t o r e r e t u r n a d d r e s s

Note: The s t a c k e d i t e m s a r e popped i n r e v e r s e o r d e r . PUSH
and POP a r e macros a s d e f i n e d i n s e c t i o n 8,13,7.

8.13.10 Automatic Workspace ~ l l o c a t i o n

T r a n s p a r e n t s t a c k i n g of workspaces can he ach ieved by
c a l l i n g a l l s u b r o u t i n e s th rough a s p e c i a l purpose XOP named
CALL, d e f i n e d below, Re tu rn from any s u b r o u t i n e i s v i a a
normal RTWP i n s t r u c t i o n , Arguments may be passed by
s t a n d a r d r e g i s t e r c o n v e n t i o n s , The s t a c k b u i l d s down
th rough memory and w i l l be N*32 b y t e s deep , where N i s t h e
n e s t i n g l e v e l .

Texas I n s t r u m e n t s 8-78 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

* CALL XOP
* This r o u t i n e au toma t i ca l l y s t a c k s workspaces down
* through memory. An RTWP w i l l r e t u r n t o t h e c a l l e r
* wfth the old workspace, effectively yepping the stack
*
CALLPC LIMI 0 Non i n t e r r u p t a b l e

LI R1,-6 0 f f se . t t o new wksp's R13
A R13,Rl Pt t o new wksp's R13
MOV R13,*R1+ Move r e t u r n WP
MOV R14,*R1+ Move r e t u r n PC
MOV R15,*R1+ Move r e t u r n ST
MOV Rll,R14 Get Subrout ine ' s e n t r y p t
A 1 R13,-32 H i t next wksp
RTWP Ca l l sub rou t i ne

An example of us ing t h i s r o u t i n e fol lows:

XOPWP EQU >FFOO
TPSTCK EQU >FECO .

AOWG >78
DATA XOPWP
DATA CALLPC

AORG >80
M A I N LWPI TPSTCK

DXOP CALL, 14

Assign wksp
Assign top of s t a c k

X9B vector
XOP workspace
XOP e n t r y po in t

Arb i t r a ry s t a r t
Set top of s t a c k
Define XOP c a l l

.
CALL (aS'TJBR C a l l s SUBR

.
SURR EQU $ SUB'S e n t t y po in t

.
RTWP Return t o c a l l e r

Another way of implementing t h i s s t a ck ing mechanism i s shown
below, This method assumes t h a t r e g i s t e r 7 con t a in s t h e
add re s s of a BLWP v e c t o r (t h i s v e c t o r i s b u i l t i n RAM a t run
t ime a s t h e workspace add re s s f i e l d of t he vec to r must be
updated a f t e r each c a l l) . A r o u t i n e i s invoked by i s s u i n g a
BLWP *R7 i n s t r u c t i o n (i n t h e code t h i s t h e CALL$ DATA
word).

CALLS EQU >417 BLWP *R7 I n s t r u c t i o n
RORG

STACK BSS s tacks ize*2 Al loca te space f o r s t a c k
WP 1 BSS 32 I n i t i a l workspace .
CALLVEC EQU $
NXTWP BSS 2
HNDLR BSS 2

Texas Ins t ruments

C a l l hand l e r vec to r
Next WP t o be a l l o c a t e d
Entry p t f o r c a l l hand le r

October 1981

SOFTWARE DEVELOPMENT HANDBOOK

* Routine entry - set up call *
LI R1, CALLVEC
MOV Rl,R7
LI R2,ENTRY
LI R3,WPl-32
MOV R3,*R1+
MOV R2,*R1
w

DATA CALL$,SUBR
w

ENTRY EQU $
MOV @7*2(R13),R7
A1 *R7,-32
MOV *R14+,Rll
RT

ASSEMBLY LANGUAGE

handler vector

Ref vector
Save address of vector
Ref handler
Ref 1st stack WP
Set NXTWP
Set HNDLR

Call SUBR (shown above)

Call handler entry point
Get address of CALLVEC
Set address of next WP
Get routine's entry
Invoke routine

Only minor modifications are required to either
implementation to allow a user stack to be incorporated;
this would also allow a simple check to be made to determine
if stack overflow has occurred (stack overflow checking is
not performed in either mechanism above), For the CALL$
version this is shown below.

In the initialization loop:

ENTRY now becomes:

ENTRY EQIJ $
MOV @7*2(~13),~7
MOV @8*2(~13),~8
A1 *R7,-32
C R8, *R7
JH error
MOV *R14+,Rll
RT

Set user stack start addr

Call handler entry point
Get address of CALLVEC
Get address of user stack
Set address of next WP
Overflow?
Y - error
Get routine's entry
Invoke routine

Pictorially this can be shown:

High Memory (>F FFF)

Low Memory (>0000)

Figure 8-38 A Stack/Workspace Allocation Implementation

Texas Instruments 8-80 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Workspace a l l o c a t i o n s t a r t s from h igh memory and b u i l d s down
towards low memory; NXTWP c o n t a i n s t h e a d d r e s s of t h e next
workspace t o be a l l o c a t e d . The u s e r stack starts a t l o w
memory and b u i l d s up towards h igh memory; R8 c o n t a i n s t h e
a d d r e s s of t h e next word t o be used i n t h e s t a c k . I n t h e
a l l o c a t i o n r o u t i n e s t a c k overf low i s d e t e c t e d when t h e
c o n t e n t of R8 i s l o g i c a l l y g r e a t e r than t h e c o n t e n t of
NXTWP. However, s t a c k overf low can s t i l l occur and so t h e
code t h a t performs t h e 'push' o p e r a t i o n must a l s o check f o r
s t a c k overf low (i f no check i s made then a l l workspace
r e g i s t e r s e t s could become c o r r u p t e d) .

A f i n a l improvement on t h e a l l o c a t i o n r o u t i n e (shown below)
removes t h e n e c e s s i t y f o r t h i s a d d i t i o n a l checking. With
t h i s t h e f i r s t word of t h e r o u t i n e t o be ' c a l l e d ' c o n t a i n s a
count of t h e number of words t h a t a r e s t a c k e d i n t h e
r o u t i n e . ENTRY now becomes:

ENTRY EQU
MOV
MOV
A 1
MOV
MOV
A
C
J H E
RT

$
@7*2(R13),R7
@8*2(R13),R8
*R7,-32
*R14+,R11
* R l l+,R6
R8 ,R6
R6, *R7
e r r o r

C a l l h a n d l e r e n t r y p o i n t
Get a d d r e s s of CAELMEC
Get a d d r e s s of u s e r s t a c k
Set a d d r e s s of next WP
Get r o u t i n e ' s e n t r y
Get ' s t a c k coun t '
Get f i n a l s t a c k a d d r e s s
Overflow?
Y - e r r o r
N - Invoke r o u t i n e

The ' c a l l e d" r o u t i n e SUBR becomes:

SUBR EQU $ SUB'S e n t r y p o i n t
WORD s t a c k count Words t o be s t a c k e d

RTWP Return t o c a l l e r

'PUSH r o u t i n e ' becomes:

MOV i t em, *R8+ Stack <item>

'POP r o u t i n e ' i s :

DECT R8 Back up s t a c k p t r
MOV *R8,item Stacked o b j e c t t o <item>

This f i n a l v e r s i o n a l l o w s t h e c a l l h a n d l e r (CALL$) t o be
~ s e d with a ~ n n a q w L = L u L ~ i ~ e s u b r ~ u t i n e , On entry to t h e r e c u r s i v e

s u b r o u t i n e i t i s no t necessa ry t o save t h e r e t u r n a d d r e s s o r
any of t h e r e g i s t e r s a s t h e s e have a l r e a d y been saved i n t h e
p rev ious workspace; i t i s on ly necessa ry t o load t h e
r e l e v a n t l o c a l d a t a (named A R G l t o ARGn i n t h e re- entrancy

Texas Ins t ruments 8-8 1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

s e c t i o n) . Note: Any i t e m s t h a t have n o t been e x p l i c i t l y
popped from t h e s t a c k w i l l a u t o m a t i c a l l y be l o s t when t h e
RTWP i n s t r u c t i o n i s e x e c u t e d ,

8.13.11 Jump Table

Suppose i t i s n e c e s s a r y t o branch t o a l a b e l (L i) depending
on t h e v a l u e of a key (i) ; i f i=1, t h e n 11, i f i = 2 t h e n L2,
e t c . Assume t h a t RO c o n t a i n s t h e key, T h i s can be w r i t t e n
a s :

C I R0, l
JEQ L1
C I R0,2

JEQ LN
JGT OVER

UNDER EQU $

OVER EQU S

L1 EQT! $

Under range

Over range

KEY=l

A more e f f i c i e n t method would be t o r e p l a c e each

C I R O , i w i t h a DEC RO

T h i s s a v e s one word f o r each comparison,

P r o b a b l y t h e b e s t method of implementing t h i s would be t o
c r e a t e a t a b l e of a d d r e s s e s , i n a s c e n d i n g key o r d e r , of t h e
l a b e l s and t h e n u s i n g t h e i n d e x mode of a d d r e s s i n g on t h e
key a s f o l l o w s :

TABLE DATA Ll,LZ,. , , , ,LN Tab le of a d d r e s s e s

A R0,RO KEY->word o f f s e t
JLE UNDER KEY<=O?
CI R0,2*N
JGT OVER KEY>N?
B @TABLE-2(RO) Keys s t a r t from 1 n o t 0

T h i s assumes t h a t a l l t h e keys w i t h i n t h e range 1 t o N a r e
used . I f , f o r example, t h e key range is 1 t o 40 and keys 2 ,
14 and 29 a r e n o t u s e d , t h e a d d r e s s t a b l e (TABLE above) must
s t i l l c o n t a i n e n t r i e s f o r t h e s e t h r e e keys ; i t i s n e c e s s a r y
t o s u p p l y an 'unused key l a b e l ' .

Texas I n s t r u m e n t s 8-82 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I f t h e r e a r e l a r g e gaps of unused keys then a large amount
of e x t r a memory could be used u n n e c e s s a r i l y , Suppose you
a r e on ly i n t e r e s t e d i n d e t e r m i n i n g i f a 'key' i s ; a space , a
csmna, a double quo te , a s i n g l e q u o t e , a semi- colon, a f u l l
s t o p o r a q u e s t i o n mark, These c h a r a c t e r s have t h e
f o l l o w i n g ASCII codes ; >20, >2C, >22, >27, >3B, >2E and
>3F, With t h e above method t h i s would r e q u i r e a t a b l e of 32
e n t r i e s and t h e key would have t o be mod i f i ed t o b r i n g i t
w i t h i n t h e range 1 t o 20) ,

I n t h i s s i t u a t i o n t h e f o l l o w i n g jump r o u t i n e can p r o v i d e
c o n s i d e r a b l e memory s a v i n g s , e s p e c i a l l y i f t h i s t y p e of
check ing h a s t o be performed i n a number of d i f f e r e n t
p l a c e s , Note: T h i s t i m e t h e t a b l e i s o r g a n i s e d by f r equency
w i t h t h e most f r e q u e n t l y used key a s t h e f i r s t e n t r y i n t h e
t a b l e . (Assume t h a t t h e h i g h b y t e of Rx c o n t a i n s t h e key.)

BL ~JTJMPRX
TABLE BYTE T A B L E- ~ 1 / 2, <key l>

BYTE TABLE-L2 / 2, <key 2)

BYTE TABLE-Ln/2,<keyn>
DATA 0

NOTFND EQU $ Retu rn h e r e i f s p e c i f i e d key n o t found

Here t h e L i a r e a r r a n g e d s o t h a t t hey l i e w i t h i n a r ange of
+I27 and -128 words from TABLE, Each e n t r y inTABLE
c o n s i s t s of a s i g n e d word d i sp lacemen t (from TABLE t o t h e
c o r r e s p o n d i n g l a b e l - L i) and a <key i> b y t e opcode. The
DATA 0 word i n d i c a t e s t h a t t h e r e a r e no more e n t r i e s i n
TABLE,

A f t e r e x e c u t i n g t h e BL i n s t r u c t i o n t h e r e t u r n a d d r e s s (i e
t h e a d d r e s s of TABLE) i s s t o r e d i n R 1 1 ,

JUMPRx compares t h e key t o t h e n e x t <key i> e n t r y i n TABLE.
I f t h e y a r e t h e same t h e n t h e d i sp lacemen t f i e l d i s 'added'
t o t h e a d d r e s s of TABLE and a branch i s t h e n made t o t h i s
a d d r e s s , Otherwise t h e p o i n t e r i n t o TABLE i s inc remen ted t o
t h e n e x t <key i> , I f t h e v a l u e of t h i s e n t r y i s z e r o t h e n
t h e s p e c i f i e d key i s n o t i n t h e t a b l e and a r e t u r n i s made
t o t h e i n s t r u c t i o n immedia te ly f o l l o w i n g t h e DATA 0 word,

The a c t u a l working of t h e JUMPRx r o u t i n e i s shown below, i n
t h e b r i e f d e s c i p t i o n above t h e d i sp lacemen t f i e l d i s n o t
s imply added t o TABLE a d d r e s s (hence t h e 'added') , The
d isp lace .ment f i e l d i s i n words and needs t o be e x p r e s s e d i n

Texas I n s t r u m e n t s 8-83 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Bytes; simply Osub l ing it is not s u f f i c i e n t a s i t i s a
s i g n e d q u a n t i t y (i t i s n e c e s s a r y t o p r e s e r v e t h e s i g n) .
F u r t h e r , a MOVB i n s t r u c t i o n i s used t o copy t h e d i sp lacemen t
from TABLE i n t o a r e g i s t e r ; t h i s a u t o m a t i c a l l y c a u s e s t h e
d i s p l a c e m e n t t o be s t o r e d i n t h e r e g i s t e r ' s h igh b y t e and i t
needs t o be i n t h e low b y t e f o r t h e add i n s t r u c t i o n t o work
c o r r e c t l y . I n t h e code below, t h i s i s performed by t h e
SRA R4,7 i n s t r u c t i o n (an a r i t h m e t i c s h i f t i s used s o t h a t
t h e s i g n b i t i s p ropoga ted) .

JUMPRx EQU
MOV * CLR

JUMP MOVB
JEQ
CB
JNE
SRA
A
R

JUMPNO I N C
RT

$
R l l ,R3 Save r e t u r n a d d r e s s
R4 Needed f o r 80 and 81 p r o c e s s o r s
* R l l+,R4 Get t h e c u r r e n t d i sp lacemen t
JUMPNO I f 0 t h e n n o t found
Rx,*R11+ KEY = <key i>?
JUMP No - back f o r n e x t <keyi>
R4,7 Yes - Disp t o low b y t e and *2
R3 ,R4 Add TABLE a d d r e s s t o o f f s e t
*R4 Goto L i
R11 Not found - s k i p ove r 2nd b y t e

' E r r o r r e t u r n '

Although t h e TMS9980 and t h e TMS9981 m i c r o p r o c e s s o r s f o r c e
a l l i n s t r u c t i o n e x e c u t i o n s t o be from a word boundary i t i s
p o s s i b l e f o r t h e c o n t e n t s of t h e program c o u n t e r (PC) t o be
odd. Normally t h i s p r e s e n t s no problems. However, i f t h e
PC i s used t o i n d e x i n t o a t a b l e t h e n t h e wrong b y t e i n t h i s
t a b l e could be a c c e s s e d .

T h i s can , i n f a c t , happen w i t h t h e JUMPRx r o u t i n e above a s
e x e c u t i n g t h e BL i n s t r u c t i o n c a u s e s t h e incremented PC (t h e
a d d r e s s of TABLE) t o be s t o r e d i n R11. The problem r e v o l v e s
a round t h e c o n t e n t s of R4 b e f o r e t h e SRA i n s t r u c t i o n i s
performed. I f h i t 8 o f t h i s r e g i s t e r i s a '1' t h e n R11 w i l l
c o n t a i n a n odd a d d r e s s when t h i s r o u t i n e i s c a l l e d t h e n e x t
t i m e (assuming t h i s b i t i s n o t c l e a r e d i n t h e meantime). To
g u a r a n t e e t h a t JUMPRx w i l l work c o r r e c t l y t h e CLR R4
i n s t r u c t i o n i s needed. (Note: T h i s i s n o t r e a l l y n e c e s s a r y
f o r t h e TMS9900 m i c r o p r o c e s s o r a s b i t 15 of t h e PC i s neve r
used n o r saved ,)

8.13.12 M i s c e l l a n e o u s Techniques

A number of m i s c e l l a n e o u s " r i c k s b n d t e c h n i q u e s t h a t may
p rove u s e f u l t o t h e assembly language programmer a r e l i s t e d
below.

8.13.12.1 Swapping R e g i s t e r Values

O f t e n when w r i t i n g a program c o n s i s t i n g of a number of
r o u t i n e s t h e r e q u i r e d v a l u e i s a l r e a d y s t o r e d i n a r e g i s t e r ,

Texas I n s t r u m e n t s 8-84 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

but not in the right register for the routine. Usually,
this problem is overcome by using a spare register to swap
the contents of the two registers:

MOV Rx,tenp Save Rx contents into TEMP
MOV Ry,Rx Required contents to Rx
MOV temp,Ry Original contents of Rx to Ry
'call routine'

However, this is not always possible (all the registers are
in use and there is no 'free RAM' available). Here, the
following piece of code can be used:

XOR Rx,Ry Ry contains bit-wise difference
XOR Ry,Rx Set Rx to original contents of Ry
XOR Rx,Ry Set Ry to original contents of Rx
'call routine'

8.13.12.2 Error Return

OccasPsnalPy P t is necessary to return some knfsr~ation f r ~ m
a called routine to inform the calling routine that
something 'unexpected' happened and that some specific
action is necessary (ie an error occuried). This sort of
information can be returned in a number of different ways:
by setting a particular register to a specific value; by
setting (or resetting) a certain bit in the status register
(ST); by branching directly to an error routine; etc.

Register setting. The most common error indicators used
are:

CLR Ry or SET0 Ry Set error flag . .
MOV Ry,Ry INC Ry Error flag set?
JEQ error JEQ error Y - error routine

Status bit setting. With XOP and BLWP instructions this can
be performed by anding workspace register 15 (the old ST)
with >F (this clears all the status bits except the
interrupt mask). The required status bit can then be set to
'1' using an OR1 mask instruction (the A1 mask instruction
can also be used); 'mask' is >ZOO0 (for EQ bit), >I000 (for
C bit), etc. On return to the calling routine these status
bits are interrogated using the appropriate jump
instructions; JEQ or JNE for the EQ bit; JOC or JNC for the
C bit; etc.

AND1 R15 ,>F XOP routine - clear status bits .
OR1 R15,>1000 Error - set Carry bit .
RTWP Return to calling routine

Texas Instruments 8-85 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The AND1 i n s t r u c t i o n cculd be r e p l a c e d by:

SB R15,R15 C l e a r R15's h i g h Byte

The c a l l i n g sequence is:

XOP e * .

J O C e r r o r
C a l l i n g r o u t i n e - i s s u e XOP
C b i t s e t ? Y - e r r o r

For BL i n s t r u c t i o n s :

SET0 temp E r r o r f l a g = no

CLR temp E r r o r - e r r o r f l a g = y e s

MOV temp,temp S e t s t a t u s b i t s i n ST
RT Re tu rn t o c a l l i n g r o u t i n e

A v a r i a t i o n on t h e s e i s f o r t h e word immedia te ly f o l l o w i n g
t h e c a l l t o c o n t a i n a jump t o a n e r r o r r e t u r n , I f an e r r o r
o c c u r s i n t h e c a l l e d r o u t i n e t h e n a r e t u r n i s made t o t h e
JMP i n s t r u c t i o n , A normal r e t u r n t o t h e c a l l i n g r o u t i n e
c a u s e s t h e r e t u r n a d d r e s s t o be incremented p a s t t h e JMP
i n s t r u c t i o n ,

' e r r o r t e s t ' C a l l e d r o u t i n e - E r r o r ?
JEQ e r r r t n Y - t o e r r o r r e t u r n

INCT R14
e r r r t n RTWP

The c a l l i n g sequence is :

BLWP e r n . .

JMP e r r o r

Sk ip o v e r e r r o r r e t u r n
Re tu rn t o c a l l i n g r o u t i n e

C a l l i n g r o u t i n e - i s s u e BLWP
E r r o r r e t u r n
Normal r e t u r n

Suppose t h e r o u t i n e t o be c a l l e d c o n v e r t e d d a t a i n p u t from a
t e r m i n a l (i e from ASCII) t o b i n a r y , Then any of t h e s e
mechanisms c o u l d be used t o in fo rm t h e c a l l i n g program t h a t
t h e i n p u t d a t a was no t a dec ima l number b u t a hexadecimal
number, F u r t h e r , t h e s e mechanisms can be combined t o a l l o w
m u l t i p l e r e t u r n s , f o r example:

BLWP e e a

JMP hexno
JEQ z e r o

Convert ASCII t o b i n a r y
Hex number r e t u r n
Zero ' r e t u r n '
Normal r e t u r n

8 ,13 ,12 ,3 Buf fe red I /o

I n a m i c r o p r o c e s s o r a p p l i c a t i o n i t i s o f t e n n e c e s s a r y t o
o u t p u t i n f o r m a t i o n t o a t e r m i n a l . The most e f f i c i e n t way of
do ing t h i s i s n o t a b y t e a t a t ime bu t a s a s t r i n g of

Texas I n s t r u m e n t s 8-86 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

bytes. An area of memory is set as ide as an output buf fex,
and bytes are written into this buffer until a line is
complete. A terminating character is then added to the end
of the line. The output routine is invoked and printing
continues until the termination character is encountered,

Note: Typically, it is not possible to mix byte and word
operations on the buffer; it is all right starting off
writing words to the buffer and occasionally writing two
bytes together to it. The problem ocurrs when you start off
with bytes and want to write a word to it. If the buffer
pointer contains an odd address then performing a word
operation will cause the last byte entered to be
overwritten. It is often very difficult to guarantee that
when you want to write a word to the buffer that the buffer
pointer contains an even address.

RORG
OUTBUF BSS 80 Allocate output buffer .

LI Rx,OUTBUF Ref the output buffer

A byte is written to the buffer:

MOVB @char,*~x+ Output 'char'
or MOVB Ry,*Rx+ Output high byte of Ry

A word can be written to the buffer:

MOVB Ry,*Rx+ Output high byte of Ry
SWPR Ry Swap bytes over in Ry
MOVB Ry,*Rx+ Output new high byte of Ry

When the line is complete the terminator is added:

SB *Rx,*Rx Add termination char (null)

In the code above the termination character is a null byte
(a byte containing 0) . This is used to simplify the actual
terminal output routine, instead of comparing each character
with the terminator all that has to be done is to take the
next byte from buffer and move it into a register. Doing
this causes the processor to set/reset its status bits
according to the value of the byte moved; if it is zero then
the EQ status bit is automatically set.

OUTPUT EQU $ Output routine entry point
LI Rx,OUTBUF Ref the output buffer

OUTPl MOVB *Rx+,Ry Get next char to be output
JEQ OUTND Null? Y - finished

N - output this character .
JMP OUTPl Back for the next character

OUTND return

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

With most t e r m i n a l s i t i s a l s o n e c e s s a r y t o add t h e c a r r i a g e
r e t u r n and l i n e f e e d c h a r a c t e r s t o t h e b u f f e r b e f o r e s t o r i n g
t h e t e r m i n a t i o n c h a r a c t e r . The a c t u a l code r e q u i r e d t o
o u t p u t a c h a r a c t e r t o a t e r m i n a l (a KSR743) i s i n c l u d e d
l a t e r .

8.13.12.4 Increment R e g i s t e r by 4

The TMS9900 c o n t a i n s a number of i n s t r u c t f o n s t h a t a l l o w
r e g i s t e r s t o be incremented . I N C i n c r e m e n t s a r e g i s t e r by
one and INCT i n c r e m e n t s a r e g i s t e r by 2. For inc remen t s
g r e a t e r t h a n t h e s e t h e A (add) and A 1 (add immediate v a l u e)
i n s t r u c t i o n s have t o be used. However, t h e C (compare)
i n s t r u c t i o n can be used t o inc remen t a r e g i s t e r by f o u r , and
i t o n l y t a k e s up one word. The A 1 r e q u i r e s 2 words. The A
o n l y t a k e s one word, b u t t h e s o u r c e r e g i s t e r must have
a l r e a d y been loaded w i t h t h e v a l u e f o u r . The compare
i n s t r u c t i o n i s used a s f o l l o w s :

8.13.12.5 Non D e s t r u c t i v e Memory S i z i n g

I n t h i s example a s imple memory check i s a l s o per formed; i t
o n l y checks t o s e e i f each b i t i n t h e word can be s e t t o a
'1' and a '0'. (A f u l l memory check ing a l g o r i t h m would be
e x t r e m e l y complex and cou ld l i t e r a l l y t a k e days t o run. For
a p r a c t i c a l sys tem, some compromise i s o b v i o u s l y
n e c e s s a r y .)

L I R 2 , s t a r t
L I R5,end

NEXTWD C R2 ,R5
JL done
MOV *R2,R3
I N V R3
MOV R3,*R2
C *R2, R 3
JNE nomatch
I N V *R2
DECT R2
JMP NEXTWD

done EQU $
nomatch INCT R2

Ref s t a r t a d d r e s s (h i g h memory)
Ref end a d d r e s s (low memory)
F i n i s h e d ?
Y
N - s a v e o r i g i n a l c o n t e n t s
I n v e r t a l l t h e b i t s i n copy
Wr i t e back t o t e s t a d d r e s s
Same?
N - end of RAM found
Y - r e s t o r e o r i g i n a l c o n t e n t s
Ref n e x t word t o be t e s t e d
Back f o r t h e n e x t word

Back up t o l a s t 'good' word

Note: Memory a u t o s i z i n g o p e r a t i o n s shou ld n o t be performed
on a n a r e a of memory t h a t c o n t a i n s memory mapped d e v i c e s a s
t h i s cou ld c a u s e t h e d e v i c e s t o become c o r r u p t e d .

8.13.12.6 Simple Clock u s i n g t h e 9901

The 9901 Programmable Systems I n t e r f a c e i s a CRU-driven

Texas I h s t r u m e n t s 8-88 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

device t h a t is used t o regulate (enablz or disable) inccming
interrupt signals without interfering with the 9900
microprocessor, It is also contains an interval timer that
can be programmed to generate level 3 interrupts when the
interval p e r i o d has e l a p s e d , T h i s devfce car; be in one of
two modes (clock mode or interrupt mode), The mode is
selected by writing either a '0' (interrupt mode) or a '1'
(clock mode) to the 9901's control bit (bit 0 in the 9901's
CRU address space),

Clock mode allows the user to program the interval timer
with a 14 bit value; a copy of this value is decremented
every 64 system clock cycles (for a system clock frequency
of 3MHz this means a decrement every 21,3us), The value
1875 (in the code below) corresponds to an interval of
40ms.

Interrupt mode allows the user to enable or disable a
particular interrupt level, An interrupt level is enabled
by writing a '1' to the appropriate mask bit (mask bit 5
corresponds to interrupt level 5) and disabled by writing a
'0' to the mask bit.

The initialization code below sets the 9901's CRU base
address to BASE, selects clock mode and then loads the
interval timer for a 40ms delay. (The LDCR instruction
writes 15 bits to the 9901; the first bit causes clock mode
to be selected as it is a '1' , the other 14 bits contain the
required delay,) It is now necessary to enable interrupt
level 3, otherwise no interrupt will be allowed through to
the 9900 when the specified interval delay has expired,
Level 3 interrupts are enabled by selecting interrupt mode
(SBZ 0) and writing a '1' to the mask bit 3 (SBO 3). Now
the 9901 will pass any level 3 interrupts through to the
9900, however the 9900 will not recognise any interrupts
until the status register's interrupt mask is set to a
sufficiently low value. This is performed by the LIMI 3
instruction, (Note: A DORG directive is used to allocate
memory for the workspaces, starting at address FREE, DORG
is similar to the AORG directive except that no code is
actually produced for the DORG section, however, all
references to a DORG'd label are resolved,)

DORG free
WP 1 BSS 32 Define RESET interrupt's WP
CLKWP BSS 32 Define clock interrupt's WP
SPURWP BSS 32 Define spurious interrupt WP

AORG 0
DATA WP 1 Define RESET (level 0) vector
DATA START
DATA SPURWP,SPUR Level 1 not used
DATA SPURWP, SPUR Level 2 not used
DATA CLKWP Define level 3 vector
DATA CLOCK

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

SPUR EQU $ Spur ious i n t e r r u p t h a n d l e r

.
START EQU $ I n i t i a l e n t r y p o i n t

* S e t c u r r e n t t ime - z e r o i s e a l l c l o c k v a l u e s *
L I R2,CLKWP Ref c l o c k ' s WP
CLR *R2+ C l e a r c l o c k h a n d l e r ' s RO
CLR *R2+ C l e a r c l o c k h a n d l e r ' s R1
CLR *R2+ C l e a r c l o c k h a n d l e r ' s R2
CLR *R2 C l e a r c l o c k h a n d l e r ' s R3 *

* I n i t i a l i s e t h e 9901 *
LI R12,base S e t 9901 CRU s / w base a d d r
L I R1,1875*2+1 40ms d e l a y + c l o c k mode
LDCR R1,15 S e t 9901 i n t e r v a l t i m e r
SBZ 0 S e l e c t i n t e r r u p t mode
SBO 3 Enable l e v e l 3 i n t e r r u p t
LIMI 3 S e t i n t e r r u p t mask t o 3

The c l o c k i n t e r r u p t h a n d l e r is:

CLOCK EQU
L I
SRZ
SBO
C I
JHE
I N C
RTWP

CLKl CLR
I N C
C I
JLT
CLR
I N C
C I
JLT
CLR
I N C
C I
JLT
CLR

CLK2 RTWP

$
R12 , b a s e
0
3
R0,>24
CLK 1
RO

S e t 9901 CRU s / w base a d d r
S e l e c t i n t e r r u p t mode
Rese t l e v e l 3 i n t e r r u p t
24th t i c ?
Y - 1 second e l a p s e d
N - i nc remen t t i c count
Return
Rese t t i c count
Increment second count
60 s e c s e l a p s e d ?
N - r e t u r n
Y - r e s e t second count
Increment minute count
60 mins e l a p s e d ?
N - r e t u r n
Y - r e s e t minute count
Increment hour count
24 h o u r s e l a p s e d ?
N - r e t u r n
Y - r e s e t hour count
Return

I n t h e c l o c k i n t e r r u p t r o u t i n e above t h e i n t e r r u p t s i g n a l i s
r e s e t by s e l e c t i n g i n t e r r u p t mode and r e- enab l ing t h e l e v e l
3 mask b i t .

The above r o u t i n e can be m o d i f i e d , v e r y s imply , t o d r i v e a
c l o c k d i s p l a y (a c i r c u i t f o r t h i s i s d e s c r i b e d i n t h e Time

Texas I n s t r u m e n t s 8-90 October 1981

SOFTWARE DEVELOPMENT HANDBOOK AS SEMBLY LANGUAGE

of nay Clock A p p l i c a t i o n S h e e t) .

8.13.12.7 Simple 1 / 0 Rou t ines u s i n g t h e 9902

The 9902 i s a CRU-driven asynchronous communications
c o n t r o l l e r . It a l l o w s t h e u s e r t o r e c e i v e and t r a n s m i t
asynchronous s e r i a l d a t a o v e r a wide range of baud r a t e s .

The r e c e i v e r o u t i n e r e a d s a c h a r a c t e r from t h e 9902 r e c e i v e
b u f f e r r e g i s t e r (CRU b i t s 0 t o 7 i n t h e 9902's CRU r ead
a d d r e s s s p a c e) i n t o t h e h i g h b y t e of r e g i s t e r 0. Data i s
p r e s e n t when t h e r ead CRU b i t 21 (RBRL - Receive B u f f e r
R e g i s t e r Loaded) i s s e t t o '1'. I f d a t a i s t h e r e t h e n t h e
c h a r a c t e r i s r e a d i n t o t h e r e g i s t e r (o n l y 7 b i t s a r e
a c t u a l l y r e a d) , t h e RBRL b i t i s r e s e t by a w r i t e t o CRU b i t
18 (RIENB) and t h e r e t u r n a d d r e s s i s inc remen t t o s k i p ove r
t h e 'no c h a r a c t e r r e t u r n ' .

GETCH L I R12,base S e t the CRU b a s e a d d r e s s
TB 21 C h a r a c t e r r eady - RBRL s e t ?
JNE GETCh N - r e t u r n
CLR RO C l e a r r e c e i v i n g r e g i s t e r
STCR R0,7 Read c h a r a c t e r (o n l y 7 b i t s)
SBZ 18 Rese t RBRL
INCT R 1 1 Skip ove r 'no c h a r r e t u r n '

GETCl RT

The c a l l i n g sequence is:

BL @GETCH Get n e x t c h a r a c t e r i n p u t
JMP no c h a r No c h a r a c t e r r e t u r n a d d r e s s . C h a r a c t e r r e t u r n a d d r e s s

The t r a n s m i t r o u t i n e assumes t h a t t h e c h a r a c t e r t o be
t r a n s m i t t e d i s s t o r e d i n RO (t h i s c h a r a c t e r i s masked down
t o 7 b i t s) . When t h e t e r m i n a l i s r eady (b i t 27, Data S e t
Ready - DSR - i s s e t) a Reques t To Send i s i s s u e d (s e t s b i t
16 - RTS). Before t h e c h a r a c t e r can be s e n t t h e Transmi t
B u f f e r R e g i s t e r Empty f l a g (b i t 22 - XBRE) must be s e t .
When t h i s o c c u r s t h e c h a r a c t e r i s passed t o t h e 9902.
(Note: Although t h e c h a r a c t e r h a s been masked t o 7 b i t s , 8
b i t s a r e a c t u a l l y passed a c r o s s . I n t h e 9902, t h e c h a r a c t e r
i s i n i t i a l l y loaded i n t o t h e Transmi t B u f f e r R e g i s t e r and i s
n o t s e n t u n t i l t h e most s i g n i f i c a n t b i t of t h i s r e g i s t e r i s
w r i t t e n t o . I f o n l y 7 b i t s a r e passed a c r o s s i t i s
n e c e s s a r y t o i n c l u d e e i t h e r a SBZ 7 o r a SBO 7
i n s t r u c t i o n) . The RTS f l a g i s t h e n r e s e t .

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

OUTCH LI R12,base
A N D 1 R0,>7F00

OUTCl TB 27
J N E OUTCl
SBO 16

OUTC2 TB 22
JNE OUTC2
LDCR R0,8
SBZ 16
RT

S e t t h e CRU b a s e a d d r e s s
Mask t o 7 b i t s
DSR ready?
N - w a i t u n t i l i t i s
S e t RTS
XBRE empty?
N - w a i t u n t i l i t i s
Y - send c h a r a c t e r
Rese t RTS

Note: I f t h e t e r m i n a l i s a s low p r i n t e r (below 1200 baud)
t h e n whenever a c a r r i a g e r e t u r n c h a r a c t e r i s s e n t a d e l a y of
a round 200ms i s needed t o a l l o w t h e p r i n t head t o r e t u r n t o
t h e l e f t hand margin,

B e f o r e t h e 9902 c a n be used i t must f i r s t be i n i t i a l i z e d ,
For t h i s t h e f o l l o w i n g sequence must be used:

o Wr i t e t o b i t 3 1 (RESET), Th i s i n i t i a l i z e s t h e
t r a n s m i t t e r and r e c e i v e r , and s e t s a l l t h e load
c o n t r o l f l a g s ,

o A f t e r a r e s e t t h e f i r s t 8 d a t a b i t s w r i t t e n t o
t h e 9902 a r e used t o s e t up t h e C o n t r o l
R e g i s t e r , T h i s s e l e c t s c h a r a c t e r l e n g t h ,
p a r i t y , t h e number of s t o p b i t s t o be g e n e r a t e d ,
and t h e c l o c k p r e d i v i d e r ,

o I f t h e i n t e r v a l t i m e r i s no t r e q u i r e d t h e n i t i s
n e c e s s a r y t o r e s e t t h e Load I n t e r v a l R e g i s t e r
f l a g (b i t 1 3 - LDIR). Otherwise t h e nex t 8 d a t a
b i t s w r i t t e n t o t h e 9902 a r e used t o s p e c i f y t h e
i n t e r v a l d e l a y ,

o The n e x t 12 d a t a b i t s s e n t t o t h e 9902 a r e used
t o s e l e c t t h e r e c e i v e d a t a r a t e . I f t h e Load
Transmi t ,Data Rate R e g i s t e r f l a g (b i t 1 1 - LXDR)
h a s n o t been e x p l i c i t l y r e s e t t h e n t h e s e 12 b i t s
w i l l a l s o be used t o s e l e c t t h e t r a n s m i t d a t a
r a t e ,

I n t h e code below t h e f i r s t LDCR i n s t r u c t i o n l o a d s t h e
C o n t r o l R e g i s t e r w i t h >62; t h i s means t h a t 2 s t o p b i t s a r e
g e n e r a t e d and t h a t each c h a r a c t e r i s 7 b i t s w i t h even
p a r i t y . (As a m u l t i p l e b i t CRU i n s t r u c t i o n of l e s s t h a n 9
b i t s i s i n v o l v e d i t i s n e c e s s a r y t o s t o r e t h e >62 b y t e i n
R l ' s h i g h by te .) The second LDCR i n s t r u c t i o n c a u s e s t h e
r e c e i v e and t r a n s m i t d a t a r a t e r e g i s t e r s t o be s e t t o RATE,
The a c t u a l v a l u e of RATE depends on t h e system c l o c k
f r e q u e n c y ; f o r a 3MHz sys tem c l o c k a v a l u e of >638
c o r r e s p o n d s t o 110 baud, >4DO t o 300 baud, and >1AO t o 1200
baud. (F u l l d e t a i l s a r e i n s e c t i o n s 2 , 1 , 2 , 3 and 2 ,1 ,2 ,4 of
t h e TMS9902 Asynchronous Communications C o n t r o l l e r Data
Manual.)

Texas I n s t r u m e n t s 8-92 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

LI R12,base S e t t h e 9902 CRU b a s e a d d r e s s
SBO 31 Rese t t h e 9902 (RESET)
L I R1,>6200
LDCR R1,8 I n i t i a l i s e t h e c o n t r o l r e g
SBZ 13 No i n t e r v a l r e g (E D I R)
LDCR r a t e , l 2 I n i t REC~XMIT d a t a r a t e

8 ,13 ,12 ,8 Automatic Baud R a t e D e t e r m i n a t i o n

The r e c e i v e l i n e (RIN, b i t 15 on t h e 9902) of a t e r m i n a l t o
EIA p o r t communication c a b l e i s u s u a l l y i n t h e SPACE
c o n d i t i o n (i t i s h e l d a t l o g i c l e v e l '1 ') when n o t h i n g i s
b e i n g r e c e i v e d , When a key i s p r e s s e d on t h e t e r m i n a l , t h e
t e r m i n a l p u t s t h e RI N l i n e i n t o t h e MARK c o n d i t i o n (p u l l s
t h e l i n e down t o l o g i c l e v e l '0') by g e n e r a t i n g a s t a r t
b i t , T h i s s t a r t b i t i s fo l lowed by 7 d a t a b i t s (t h e l e a s t
s i g n i f i c a n t b i t f i r s t) and a p a r i t y b i t , A t l e a s t 1 s t o p
B f t i s t h e n g e n e r a t e d t o p u t t h e l i n e back i n t o t h e SPACE
c o n d i t i o n ,

MARK SPACE

w- 7.BIT CHARACTER

TIME
4

F i g u r e 8-39 TMS9902 C h a r a c t e r Timing

The 9902's R I N p i n can he i n t e r r o g a t e d t o de te rmine when t h e
l i n e goes i n t o t h e mark c o n d i t i o n (when a s t a r t b i t i s
r e c e i v e d) , I f t h e l e a s t s i g n i f i c a n t b i t of t h e c h a r a c t e r
b e i n g r e c e i v e d i s a '1' (e g t h e c h a r a c t e r 'A'), t h e n t h e
l e n g t h of t ime t a k e n f o r t h e R I N p i n t o go from t h e mark
c o n d i t i o n back t o t h e s p a c e c o n d i t i o n can be c a l c u l a t e d .
From t h i s , t h e r a t e a t which b i t s a r e b e i n g r e c e i v e d (t h e
r e c e i v e baud r a t e) can be de te rmined , T h i s baud r a t e i s
t h e n used t o i n i t i a l i z e t h e r e c e i v e and t r a n s m i t d a t a r a t e
r e g i s t e r s .

The code below o p e r a t e s by c o u n t i n g t h e number of t i m e s t h e
R I N p i n i s i n t e r r o g a t e d w h i l e w a i t i n g f o r i t t o be p u l l e d up
from t h e mark c o n d i t i o n t o t h e space c o n d i t i o n , T h i s coun t
(s t o r e d i n R3) i s t h e n compared a g a i n s t a t a b l e of 'maximum
t i m e s around t h e i n t e r r o g a t i o n loop f o r a g i v e n baud r a t e ' .
The corresp~nding baud ra te is then l o a d e d i n t o the receive
and t r a n s m i t d a t a r a t e r e g i s t e r s ,

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGn

* I n i t i a l i z e t h e 9902 *
L I R12,base S e t t h e 9902 CRU b a s e a d d r e s s
SBO 31 Rese t t h e 9902 (RESET)
L I R1,>6200
LDCR R1,8 I n i t i a l i s e t h e c o n t r o l r eg
SBZ 13 No i n t e r v a l r e g (LDIR)
CLR R3 C l e a r loop coun t *

* Wait f o r t h e s t a r t b i t *
SBAUD TB 15 Space c o n d i t i o n ?

JEQ SBATJD Y - t e s t R I N p i n a g a i n *
* I n t h e mark c o n d i t i o n - w a i t u n t i l R I N goes back
* t o t h e space c o n d i t i o n *
SBAUDl I N C R3 Update loop count

TB 15 Space c o n d i t i o n ?
JNE SBAUDl N - r e t r y t h e R I N p i n *

* Back i n t h e s p a c e c o n d i t i o n - f i n d baud r a t e *
L I R4,BAUDTR-2 Ref max v a l u e t a b l e

SBAUD2 INCT R4 Try nex t e n t r y
C R3,*R4+ Loop count <= t a b l e e n t r y ?
J H SBAUD2 N - h i g h e r , back f o r n e x t *

* Baud r a t e found - set r e c e i v e and t r a n s m i t d a t a
* r e g i s t e r s , w a i t u n t i l c h a r a c t e r r e c e i v e d , and
* throw t h e c h a r a c t e r away *

LDCR *R4,12 Y - s e t r e c / x m i t baud r a t e r e g s
SBAUD3 TI3 21 RBRL s e t ?

JNE SBAUD3 N - c h a r a c t e r n o t comple te
SBZ 18 Rese t RBRL

The 'baud r a t e ' t a b l e (BAUDTB) below works f o r a 3Mhz system
c l o c k (e g f o r a TM990 / l o 0 o r / I 0 1 CPU b o a r d) . Each e n t r y
i n t h e t a b l e c o n s i s t s of two f i e l d s ; a loop count (i n t h e
d e s c r i p t i o n above t h i s f i e l d was r e f e r r e d t o a s t h e 'maximum
t i m e s around t h e i n t e r r o g a t i o n loop f o r a g i v e n baud r a t e ')
and t h e baud r a t e c o r r e s p o n d i n g t o t h i s va lue .

BAUDTB DATA >0007,>001A 19200 baud
DATA >000E,>0034 96QO baud
DATA >001D,>0068 4800 baud
DATA >003R,>OODO 2400 baud
DATA >0075,>01AO 1200 baud
DATA >00EA,>0340 600 baud
DATA >0246,>04DO 300 baud
DATA >7FFF,>0638 110 baud

Note: For p r o c e s s o r s o t h e r t h a n t h e TMS9900 i t may be

Texas I n s t r u m e n t s 8-94 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

necessary to adjust the loop count entries (eg for a TMS9995
mieroproeessor using internal RAM),

8,13.12,9 Packed Data

In a number of instances a binary variable is required; such
a variable only has two possible values (eg the state of a
switch, either on or off) and can be stored in a single
hit. Unfortunately the assembler does not support a bit
structure (it only recognises the word, byte and text
structures) and storing one bit's worth of information in a
word (or even a byte) can be rather wasteful, especially if
a number of these binary variables are required,

Packing a number of these binary variables into a word
solves the memory wastage problem, however, it does make it
a little more complicated to access the individual
variables; you can not do a straight value comparison nor a
'MOV var,var8 instruction to set the status register's
status bits.

An individual binary variable can be set using the SOC
instruction (Set Ones Corresponding), reset using the SZC
instruction (Set Zeros Corresponding), toggled (change it's
state from '1' to '0' or from '0' to ' 1 using the XOR
(Exclusive OR) instruction, and tested using the COC
(Compare Ones Corresponding) and/or the CZC (compare Zeros
Corresponding) instructions, (Note: The AND1 logical
instruction can be used to isolate a particular binary
variable, which can then be tested using the compare or move
instruction,)

The SOC instruction sets the bits in the destination operand
to a ' 1 that correspond to a '1' in the source operand,
All other bits in the destination operand are unchanged,
Example: Set the binary variable in bit position 10 of a
packed word:

LI Rx,>0020 Bit 10 = '1' (rest = '0')
SOC RX, @PACKED Set bit in PACKED

or MASK DATA >0020 Bit 10 = '1' (rest = '0')

SOC @MASK,@PACKED Set bit in PACKED

Note: This can also be performed by:

MOV @PACKED,RX Copy PACKED into register
OR1 Rx,>0020 Set the bit
MOV RX,@PACKED Copy updated word to PACKED

The SZC instruction resets the bits in the destination
operand to a '0' that correspond to a '1' in the source
operand. All other bits in the destination operand are

Texas Instruments 8-95 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

unchanged, Example: Reset t h e b i n a r y v a r i a b l e in b i t
p o s i t i o n 10 o f a packed word:

L I Rx,>0020 B i t 10 = ' I ' (r e s t = ' 0 ')
SZC RX,@PACKED Rese t b i t i n PACKED

o r MASK DATA >0020 B i t 10 = '1' (r e s t = ' 0 ')

SZC @MASK,@PACKED Rese t b i t i n PACKED

Note: T h i s can a l s o be performed by:

MOV @PACKED,RX Copy PACKED i n t o r e g i s t e r
A N D 1 Rx,>FFDF Rese t t h e b i t
MOV RX,@PACKED Copy updated word t o PACKED

The XOR i n s t r u c t i o n per forms a b i t by b i t e x c l u s i v e o r of
t h e two ope rands , and s t o r e s t h e r e s u l t i n t h e d e s t i n a t i o n
(s e c o n d) ope rand , A b i t- w i s e e x c l u s i v e o r o p e r a t i o n s e t s
t h e r e s u l t b i t t o a '1' i f t h e s o u r c e and d e s t i n a t i o n b i t s
a r e d i f f e r e n t , o t h e r w i s e t h e r e s u l t b i t i s r e s e t t o ' O ' ,

MASK DATA >0020 B i t 10 = '1' (r e s t = ' 0 ')

MOV @PACRE~,RX Copy packed d a t a i n t o Rx
XOR @MASK,Rx Toggle b i t i n PACKED
MOV RX,@PACKED R e s t o r e updated d a t a

The COC i n s t r u c t i o n sets t h e EQ s t a t u s b i t t o '1' i f a l l t h e
b i t s i n t h e d e s t i n a t i o n operand t h a t co r re spond t o a '1' i n
t h e s o u r c e operand a r e '1's.

MASK DATA >0020 B i t 10 = '1' (r e s t = ' 0 ')

MOV @PACKED,RX Copy packed d a t a i n t o Rx
coc @MASK,RX R i t 10 s e t t o ' l ' ?
JNE NOT1 N - g o t o NOT1

Y - drop through t o h e r e

NOT1 EQU $ R i t 10 was n o t s e t t o '1'

The CZC i n s t r u c t i o n s e t s t h e EQ s t a t u s b i t t o '1' i f a l l t h e
b i t s i n t h e d e s t i n a t i o n operand t h a t co r re spond t o a '1' i n
t h e s o u r c e operand a r e '0 's .

MASK DATA >FFDF B i t 10 = '0' (r e s t = '1')
*
MOV @PACKED,RX Copy packed d a t a i n t o Rx
C Z C @MASK,RX B i t 10 r e s e t t o 'O'?
J N E NOT0 N - g o t o NOT0

Y - drop through t o h e r e

Texas I n s t r u m e n t s

B i t 10 was no t r e s e t t o '0'

October 198 1

SOFTWARE DEVELOPMENT HANDROOK ASSEMBLY LANGUAGE

8.14 REFERENCE SECTION

8.14.1 Instruction Formats

Format no. Bit Positions
and use 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

1 ARITHMETIC

2 JUMP

3 LOGICAL

4 CRTJ

5 SHIFT

6 PROGRAM

7 CONTROT,

8 IMMEDIATE

10 DOUBLE WORn
OPERATIONS

(99000 Only)

1--1--1--1--1--1--1-- I - - I I - I - - I - - I - - I~-1--~--~-~
I OPCODE IB 1 Td I D I Ts I S
l - - l - - l - - l - - l - - l - - l - - l - l f - ~ l ~ ~ I I - I ~ ~ I - ~ I - - ~ ~ - ~ ~ ~
I OPCODE I SIGNED
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - 1 - ~ 1 - ~ 1 - - 1 - - I - - I - - ~ - - ~ - -
1 OPCODE 1 D I Ts I S
1--1--1--1-- 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - I - - 1 - - I - - I - -
I OPCODE 1 C I Ts I S
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I I - 1 - - 1 - - m - - l - - 1 - -
I OPCODE I C I W
l - - l - - l - - l - - l - - l - - l - - l - - I I - l l - ~ t - I I - I - I I - - ~ - - ~ - -
1 OPCODE I Ts I S
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - ~ - - I - - I - - ~ - - 1 - - 1 - - ~ - - ~ - -

I OPCODE 1 NU
l - - l - - l - - l - - l - - l - - l - - l l l l - l I - - M - - l - - l - -
I OPCODE lNU1 W
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - ~ 1 - - I - - ~ - - ~ - - ~ - - ~ - - ~ - - ~ - -

1 Immediate value 1
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - I - - I - - 1 - - I - - I - - ~ - - ~ - - ~
I OPCODE I D I T s I . S I
1 - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - I - - 1 - - I I - I I - I I - I - - I - - l - - l - - l
1 OPCODE I
1--1--1--1--1--1--1--1I-1--1--11-1--I-II--~--~--~
I Code I Td I D I Ts I S I
1--1--1--1--1--1--1--1--1-~1--1--I--I--I--~--~--~

Note: For AMISM Code='0100'
For SLAM / SRAM Code='OlOO';Td='OO';n is shift count
For TMR/TCMB/TSMB Code='O000';Td='OO';D is bit number

OPCODE - Assembly language mnemonic
R - Byte indicator (1 = hyte, 0 = word)
Td/Ts - ~estination/~ource address mode
D/S - ~estination/Source address
C - Shift or CRU transfer count
W - Workspace register number
NU - Not used
SIGNED - Signed displacement of -128 to +127 words

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Td/Ts F i e l d

Code Mode E f f e c t i v e a d d r e s s

00 Workspace r e g i s t e r Rx WP+2*[S o r D]
01 I n d i r e c t *Rx (WP+2*[S o r D l)
10 Indexed (S o r D+O) label(^^) (WP+2*[S o r D])+(PC+2)
1 0 Symbolic (S o r D=O) @Labe l (PC+2)
1 1 I n d i r e c t w i t h Auto *RX+ (WP+2*[S o r Dl); Increment

i n c r e m e n t e f f . a d d r e s s by 1 - b y t e ;
2 - word; 4 - d o u b l e word

An e x t r a word i s r e q u i r e d f o r each ope rand code of 2.

8.14.2 S t a t u s R e g i s t e r

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 15 ---
IL>IA>I= I C 10 1P I X IPRlM I JOEJEMI I n t o mask I

L o g i c a l g r e a t e r t h a n
A r i t h m e t i c g r e a t e r t h a n
Equal/TR i n d i c a t o r
Ca r ry from most s i g n i f i c a n h i t
Overf low
P a r i t y
So f tware implemented XOP i n p r o g r e s s
P r i v i l e g e mode (99000)
Map s e l e c t (9989 and 99000)
Overf low e n a b l e (9995, 9989 and 99000)
Emulate XOP e n a b l e (99000)

I n t e r r u p t mask: F - A l l i n t e r r u p t s e n a b l e d
0 - Only i n t e r r u p t l e v e l 0 e n a b l e d

8.14.3 I n t e r r u p t s

I------------------------ I
V e c t o r a d d r e s s I Workspace P o i n t e r (WP) I

I------------------------ I
V e c t o r add re s s+2 I E n t r y p o i n t (PC)

I------------------------
I
I

Note: 1) I n t e r r u p t v e c t o r s 0-15 from 0 TO >3C
(o n l y l e v e l s 0 - 4 f o r 9980A, 9981 and 9995)

2) XOP v e c t o r s f rom >40 t o >7C
3) LOAD v e c t o r a t >FFFC
4) I n t e r r u p t 0 i s t h e RESET i n t e r r u p t

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

R12 - Base address for CRU operations
bits 3 - 14 used (all but 9995 and 99000)
bits !I - 14 used (9995 and 99000)

Transfers < 9 bits - high byte used
Transfers > 9 bits - low byte used

Parallel CRU (99000 only) - CRU base address -ve
l----------l--------I----------------------- 1
1 Transfer 1 Count 1 Effect on R12 1

I - I

I 0010 1 Not altered
1 Byte 1--------1----------------------- 1
1 I 0011 1 Post incremented by 2 1
!----------!--------I----------------------- 1
1 I 1010 I Not altered I
I Word 1--------1----------------------- 1
I 1 1011 I Post incremented by 2 1
i---=====--l--------'-------------------------i

8.14.5 Register Restrictions

Memory
addr Register Usage

1 - - - - - - - I - - - - - - - - - Shift count
WP+>OO I RO 1 ? MPYS and DIVS

1 ---------
I MPYS and DIVS
I I
1 1
I Index
I capability
I 1

Data or 1
Addresses I BL - Return address

I I XOP - , Operand's ef f . address
1 I
I I CRU base address
I 1
1 I Saved WP
I I
I 1 Saved PC

I 1 I 1
WP+>lR (R15 I 9 Saved ST

MPY and DIV use two consecutive registers, the first is
supplied as the source operand. If R15 used then the word
following R15 is used as the second register.

Texas Instruments 8-99 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.6 Assembly Language Instructions

Symbols Used

G,Gl,G2 - General memory addresses
R - Workspace register address
S - Symbolic memory address
E - Expression (all symbols previously defined)
I - Immediate value
T - Term (range 0 - 15)

() - Contents of the address within parenthesis
-> - 'Replaces'
: - 'Is compared to,'
C - Count (0 - 15)
* - Result is compared to zero

Additional symbols for 9989, 9995 and 99000

R* - Register pair R1 and R2
Gl,G1+2 - General memory address double word

Instruction

AB S OLUTE VALUE
ADD BYTES
ADD IMMEDIATE
ADD WORDS
AND IMMEDIATE
BRANCH
BRANCH AND LINK

BRANCH AND LOAD WP

Format Status
Type Bits

Opcode Affected

CLEAR 04CO 6
CLOCK OFF 03C0 7
CLOCK ON 03A0 7
COMPARE BYTES 9000 1 0-2,5
COMPARE IMMEDIATE 0280 8 0 -- 2
COMPARE WORDS 8000 1 0 -- 2
COMPARE ONES CORRES. 2000 3 2

COMPARE ZEROS CORRES. 2400 3 2

DECREMENT BY ONE 0600 6 *O -- 4
DECREMENT BY TWO 0640 6 *O -- 4

Format

ABS G
AR G1 ,G2
A1 R,I
A G1 ,G2
AND1 R,I
B G
BL G

BLWP G

CLR G
CKOF
CKON
CB Gl,G2
CI R,I
C GI, G2
COC C,,R

CZC G,R

DEC G
DECT G

Effect

ABSOLUTE(G) - > (G)
(Gl)+(G2)->(G2)
(R)+I->(R)
(Gl)+(G2)->(G2)
(R) AND I->(R)
G->(PC)
G->(PC)
(PC)->(R11)
(G)->(WP)
(G+2)->(PC)
(Old WP)->(R13)
(Old PC)->(R14)
(Old ST)->(RlS)
0->(GI
External
External
(GI) : (G2)
(R) :I
(Gl) : (G2)
ST2=AND of RBITS
corres. to GBITS=P
ST2=NAND of RRITS
corres. to GBITS=l
(G)-1->(G)
(G)-2->(G)

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I n s t r u c t i o n

F o r m a t
T y p e

O p c o d e

D I V I D E 3CC)(! 9

E X E C U T E I N S T R T J C T I O N 0480 6
EXTENDED O P E R A T I O N 2COO 9

E X C L U S I V E OR
I TILE
I N C R E M E N T BY ONE
I N C R E M E N T BY TWO
I N V E R T B I T S
J U M P (U N C O N D I T I O N A L)
J U M P I F CARRY
JUMP I F EQUAL
J U M P I F GREATER THAN
J U M P I F H I G H OR EQUAL

J U M P I F L E S S THAN

J U M P I F L O G I C A L H I G H

J U M P I F L O G I C A L LOW

J U M P I F LOW OR EQUAL

J U M P I F NO CARRY
J U M P I F NO OVERFLOW
J U M P I F NOT EQUAL
J U M P I F ODD P A R I T Y
LOAD CRTJ
LOAD I M M E D I A T E
LOAD I N T E R R U P T MASK
LOAD ROM AND E X E C U T E
MOVE BYTE
MOVE FIORD
M U L T I P L Y

N E G A T E
OR I M M E D I A T E
R E S E T I /o
R E T U R N WORKSPACE
P O I N T E R

T e x a s I n s t r u m e n t s

S t a t u s
B i t s F o r m a t

A f f e c t e d

4 BTV G , R

X G
6 XOP G, T

XOR G , R
I D L E
I N C G
I N C T G
I N V G
J M P S
J O C S
3EQ S
J G T S
J H E S

J L T S

J H S

J L S

J L E S

J N C S
J N O S
J N E S
J O P S
LDCR G , T
L I R , I
L I M I I
L R E X
MOVB G l , G 2
MOV G l , G 2
MPY G , R

NEC, G
O R 1 R , I
R S E T
RTWP

E f f e c t

I N T (R) / (G) - > (R)
REM (R) / (G) - > (R + l)
E x e c u t e i n s t r a t G
(> 4 0 + 4 * T) - > (W P)
(> 4 2 + 4 * T) - > (P C)
E f f add of G - > (R 1 1)
(O l d W P) - > (R 1 3)
(O l d P C) - > (R 1 4)
(O l d S T) - > (R 1 5)
1 - > S T 6
(G) XOR (R) - > (R)
I D L E ; E x t e r n a l
(G) + l - > (G)
(G) + 2 - > (G)
IS COMP(G)->(GI
s - > (P C)
S- > (P C) I F S T 3 = 1
%)(PC) I F ST2=1
S- > (P C) I F ST1=1
S- > (P C) I F ST0=1
OR S T 2 = 1
S- > (P C) I F S T l = O
AND S T 2 = 0
S- > (P C) I F S T 0 = 1
AND S T 2 = 0
S- > (P C) I F STO=O
AND S T 2 = 0
S- > (P C) I F STO=O
OR S T 2 = 1
S- > (P C) I F S T 3 = 0
S- > (P C) I F S T 4 = 0
S- > (P C) I F S T 2 = 0
S- > (P C) I F S T 5 = 1
T b i t s (G) -> CRU
I - > (R)
I->(I n t . m a s k)
E x t e r n a l
(G I) - > (G 2)
(G I) - > (C 2)
MSW((G) * (R)) - > (R)
L S W ((G) * (R)) - > (R + l)
- (G I - > (G I
(R) OR I - > (R)
E x t e r n a l
(R 1 3) - > (W P)
(R 1 4) - > (P C)
(R 1 5) - > (S T)

O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Format Status
Type Bits Format Effect

Opcode Affected Instruction

SET BIT TO ONE
SET BIT TO ZERO
SET TO ONES
SET ONES CORRES, BYTE
SET ONES CORRES. WORD
SHIFT LEFT ARITH, #

lD0O
lEOO
0700
FOOO
EOOO
OAOO

SBO E
SBZ E
SET0 G
SOCB G1 ,G2
SOC Gl,G2
SLA R,C

1->(E+(R12))
0->(E+(R12))
>FFFF-> (G)
(Gl) OR (62) ->(G2)
(GI) OR (G2) ->(G2)
Shift left C bits
and '0' fill
Shift right C bits
and MSR fill
Shift right C bits
and LSR into MSR
Shift right C bits
and '0' fill
T CRU bits ->(G)
(ST)->(R)
(WP)->(R)
(G2)-(GI)->(G2)
(G2)-(GI)->(G2)
Interchange bits 0-7
with bits 8-15 of G
(INv(G1)) AND (62)
->(G2)
(INV(G1)) AND (G2)
->(G2)
(R12)+E->ST2

SHIFT RIGHT ARITH. # SRA R,C

SHIFT RIGHT CIRCULAR # OBOO SRC R,C

SHIFT RIGHT LOGICAL # SRL R,C

STORE CRU
STORE STATUS REGISTER
STORE WORKSPACE POINTER
SUBTRACT BYTE
SUBTRACT WORD
SWAP BYTES

STCR G,T
STST R
STWP R
SB Gl,G2
S Gl ,G2
SWPB G

SET ZEROES
CORRESPONDING BYTE
SET ZEROES
CORRESPONDING WORD
TEST BIT

SZCB 61 ,G2

SZC G1 ,G2

If C=O then count taken from bits 12 - 15 of RO,
If this is zero then C=16.

Additional Instructions for 9995 and 9989

Format Status
Type Bits Format Effect

Opcode Affected Instruction

LOAD ST FROM REGISTER 0080 8 0 - 15 LST R (R)->ST
LOAD WP FROM REGISTER 0090 8 LWP R (R)->WP
SIGNED DIVIDE 0180 6 *O-2,4 ~ I V S G INT(R*)/(G)->(Ro)

REM(R*)/(G)->(RI)
SIGNED MULTIPLY OlCO 6 * O - - 2 MPYS G MSW((R*)*(G))->(RO)

LSW((R*)*(G))->(Rl)

October 1981 Texas Instruments

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Additional Instructions for 99000 Family

Format Status
Type Bits Format Effect

Opcode Affected Instruction

ADD DOUBLE (Gl,G1+2)+(G2,G2+2)
--> (G2, G2+2)
(G) -> (PC)
(W)-2 -> (W)
(PC)+4 -> ((W))
I -> (PC)
(R)->ST
(R)->WP
Shift (GI ,G1+2) left
C bits; '0' fill
Shift (GI ,G1+2) right
C bits; MSB fill
INT(R*)/ (G)->(RO)
REM(R*)/ (G)->(R~)
MSW((R*)*(G))->(Ro)
(G2,~2+2)-(Gl,G1+2)
---> (G2, G2+2)
(~l+Tbit) -> ST2
(Gl+Tbit) -> ST2
0 --> (Gl+DISP)
(Gl+Tbit) -> ST2
1 --> (Gl+DISP)

BRANCH INDIRECT
BRANCH AND PUSH STACK
POINTER

BIND G
RLSK R,I

LOAD ST FROM REGISTER
LOAD WP FROM REGISTER
SHIFT LEFT ARITHMETIC
nOURLE #
SHIFT RIGHT ARITHMETIC
DOUBLE #
SIGNED DPVf BE

LST R
LWP R
SLAM Gl ,C

OOlC SRAM G1 ,C

DIVS G

SIGNED MJJLTIPLY
SUBTRACT DOUBLE

MPYS G
SM Gl,G2

TEST MEMORY BIT
TEST AND CLEAR MEMORY
BIT
TEST AND SET MEMORY
BIT

TMB G1,T
TCMB G1,T

OCOB TSMB G1,T

If C=O then count is taken from bits 4 - 7 of Roe

8,12.7 Pseudo-Instructions

Instruction Format Effect

NO OPERATION NOP
RETURN RT

JMP $+2
B *R11

TRANSFER VECTOR for a 'BLWP @label8 (SDSMAC only)
label XVEC wpadd,pcadd label DATA wpadd

DATA pcadd
WPNT wpadd

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14,8 Assembler Directives

() - The item in parenthesis is optional
(,x) - Any number of 'xis (each preceded by a comma)

All directives (except OPTION) may be preceded by a label
and followed by a comment, Strings are enclosed in single
quotes,

ABSOLUTE ORIGIN - AORG exp - absolute value
Defines an absolute code block and loads the location
counter with EXP,

RELOCATABLE ORIGIN - RORG {exp)
Defines a relocatable code block and loads the location
counter with EXP; if EXP not present then uses:

o Current length of program segment for absolute code
o Length of data segment for data relocatable code
o Length of common segment for common relocatable code

DUMMY ORIGIN - DORC exp
Defines a dummy code block (no code is generated but it
allows a module to access symbols defined in another module)
and loads the location counter with EXP,

DATA SEGMENT - DSEG
Defines a data relocatable block and loads the location
counter with:

o Max location counter from data relocatable code
o Zero

DATA SEGMENT END - DEND
Terminates a DSEG and defines a program relocatable block,
Loads the location counter with:

o Max location counter from program relocatable code
o Zero

COMMON SEGMENT - CSEG (string)
Defines begining (or continuation) of named common
relocatable code block and loads the location counter with;

o Zero if named common block previouly unused
o Max location counter from already used named common

relocatable code
If STRING (6 characters) not present then refers to blank
common segment,

COMMON SEGMENT END - CEND
Terminates a CSEG and defines a program relocatable code
block. The location counter is loaded as for DEND,

PROGRAM SEGMENT - PSEG
Defines a program relocatable code block and loads the
location counter with:

o Max location counter for program relocatable code
o Zero

Texas Instruments 8-104 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

PROGRAM SEGMENT END - PEND
Terminates a PSEG and defines a program relocatable code
block, The location counter is loaded as for DEND,

BLOCK STARTING WITH SYMBOL - BSS exp
Reserves EXP consecutive bytes. If a label present it is
assigned the address of the first byte of the block,

BLOCK ENDING WITH SYMBOL - BES exp
Reserves EXP consecutive bytes, If a label present it is
assigned the address of the first byte immediately following
the block,

INITIALIZE BYTE - BYTE exp (,exp)
Reserves successive bytes of memory and initializes them to
their respective values sf EXP,

INITIALIZE WORD - WORD exp (,exp)
Reserves successive words of memory and initializes them to
their respective values of EXP,

INITIALIZE TEXT - TEXT (-) string
Reserves successive bytes of memory and initializes them to
the appropriate character in STRING (max 52 characters) if
minus sign present then the last character in STRING is
negated,

WORD BOUNDARY ALIGN - EVEN
Aligns the location counter to a word boundary if it
contains an odd value, otherwise it is unchanged,

DEFINE ASSEMBLY TIME CONSTANTS - label EQU exp
Assigns the value of EXP to LABEL,

EXTERNAL DEFINITION - DEF symbol (,symbol)
Allows other programs to access a program's SYMBOLS,

EXTERNAL REFERENCE - REF symbol (,symbol)
Provides access to SYMBOLS defined in other programs.

SECONDARY EXTERNAL REFERENCE - SREF symbol (, symbol)
Provides access to SYMBOLS defined in other programs.

FORCE LOAD - LOAD symbol (,symbol)
Causes a special object tag to be generated for the Link
Editor (effect INCLUDE SYMBOL), Used with SREF.

DEFINE EXTENDED OPERATION - DXOP sym,num
Defines SYM to be an XOP; NUM is the XOP number,

PROGRAM END - END (symbol)
Terminates the assembly (everything following is ignored).
If SYMBOL present it is the program's entry point.

Texas Instruments 8-105 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

OUTPUT OPTIONS - OPTION key (,key)
Specifies the output and listing options to the assembler,
KEY can he:

XREF - Print cross reference table,
OBJ - Print listing of the object code.
SYMT - Print symbol table,
NOLIST - Suppress listing (SDSMAC)
TUNLIST - Text statement unlist (SDSMAC)
DUNLIST - Data statement unlist (SDSMAC)
BIJNLIST - Byte statement unlist (SDSMAC)
MUNLIST - Macro expansion unlist (SDSMAC)

PROGRAM IDENTIFIER - IDT string
Assigns a name (first 8 characters of STRING - enclosed in
single quotes) to the program. Must precede everything that
produces object code ,

PAGE TITLE - TITL string
STRING (max 50 characters) supplies heading for the
assembler listing, (If TITL not first source statement then
no heading on first page of listing).

LIST SOURCE - LIST
Restores printing of the source listing after an 13NL. The
directive is not printed in the listing,

NO SOURCE LISTING - UNL
Inhibits the printing of the source listing, The directive
is not printed in the listing*

PAGE EJECT - PAGE
Causes the assembler to continue the source listing on a new
page. The directive is not printed in the listing,

WORKSPACE POINTER - WPNT label SDSMAC only
Defines the current workspace (referenced by LABEL) to the
assembler but produces no object code.

COPY SOURCE FILES - COPY file SDSMAC only
Causes input to the assembler to be taken from FILE, On end
of file, input is resumed from the original file.

DEFINE OPERATION - DFOP sym,op SDSMAC only
Defines a synonym (SYM) for an operation (OP), OP may be a
mnemonic, a macro name, or the SYM of a previous DFOP or
DXOP directive,

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8 . 1 4 , 9 Object Record Format and Code

1 Byte 4 Bytes 6 / 8 Bytes (when r e q u i r e d)
l------.l-------------l-.-----------.------.----

I I
1 Tag 1 1ST F i e l d I 2ND F i e l d I
I----.--I--.-----.--.-I~--------------.- 1

TAG 1st FIELD 2nd FIELD MEANING

Length of a l l
r e l o c a t a b l e code
Address
Address
Locat ion of l a s t
appearance of
symbol
Locat ion of l a s t
appearance of
symbol
Locat i o n

Locat ion

Checksum f o r
c u r r e n t r ecord
Any va lue
Load address
Load address
Data
Data
Load b i a s

Not used

Texas Ins t ruments

8 c h a r
Program I D
Not used
Not used
6 c h a r
symbol

6 c h a r
symbol

6 c h a r
symbo k
6 c h a r
symbol
Not used

Not used
Not used
Not used
Not used
Not used
Not used

Not used

Program s t a r t

Absolute e n t r y p o i n t
R e l o c a t a b l e e n t r y p o i n t
E x t e r n a l r e f e r e n c e l a s t
used i n r e l o c a t a b l e code

E x t e r n a l r e f e r e n c e l a s t
used i n a b s o l u t e code

R e l o c a t a b l e e x t e r n a l
d e f i n i t i o n
Absolute e x t e r n a l
d e f i n i t i o n
Checksum

Ignore checksum va lue
Absolute load \ address
R e l o c a t a b l e load address
Absolute d a t a
R e l o c a t a b l e d a t a .
Load b i a s o r o f f s e t
I l l e g a l
End of record

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.10 I n s t r u c t i o n E x e c u t i o n Times

I-------------------l------1-----III-I--I-11-----~--------- I
I I n s t r u c t i o n I C lock I Memory I Add. Mod Tab le I
I I C y c l e s I Access I Sou rce I Dest I
I-------------------~------I----I--.--o--~-.-~-o--~--.---- I
I A 1 14 1 4 1 A I A I
I AB 1 14 1 4 1 B I B I
I ARS Msb=O 1 12 1 2 1 A I - I
1 ~ s b = l 1 14 1 3 1 A I - I
I A 1 1 14 1 4 1 - 1 - 1
I A N D 1 1 14 1 4 1 - 1 - 1
1 B I 8 1 2 1 A 1 - 1
I BL 1 12 1 3 1 A 1 - 1
I BLWP 1 26 1 6 1 A 1 - 1
1 C 1 14 I 3 1 A 1 A I
I CR 1 14 1 3 1 B I B I
I c1 1 14 1 3 1 - 1 - 1
I CKOF 1 12 1 1 1 - 1 - 1
1 CKON 1 12 1 1 1 - 1 - 1
I CLR 1 10 1 3 1 - 4 1 - 1
I COC 1 14 1 3 1 A 1 - 1
1 czc 1 14 1 3 1 A I - 1
1 DEC 1 10 1 3 1 A 1 - 1
I DECT I 10 1 3 1 A 1 - 1
I D I V ST4 S e t 1 16 1 3 1 A 1 - 1
(ST4 Reset a 1 92-124 1 6 1 A 1 - 1
1 IDLE 1 12 1 1 1 - 1 - 1
1 I N C 1 10 1 3 1 A I - I
I INCT 1 10 1 3 1 A 1 - 1
I IbJV 1 10 I 3 1 A 1 - 1
I JUMP PC Changed 1 10 1 1 1 - 1 - 1
I PC Unchanged I 8 1 1 1 - I - I
I LDCR C=O 1 52 1 3 1 A 1 - 1
I 1<=C<=8 I 20+2C I 3 I B I - ' I
I 9<=C<=15 I 20+2C I 3 1 A 1 - I
I L I 1 12 1 3 1 - 1 - 1
I LIMI 1 16 1 2 1 - 1 - 1
1 LREX 1 12 1 1 1 - 1 - 1
1 LWPI 1 10 1 2 1 - 1 - 1
I MOV 1 14 1 4 1 A ! A 1
I MOVB 1 14 1 4 1 B I B I
I MPY 1 52 1 5 1 A 1 - 1
I NEG 1 12 1 3 l A 1 - 1
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - - - - i - - - - - I - - - - - l - - - - - - - I
I -RESET f u n c t i o n 1 26 1 5 1 - 1 - 1
I -LOAD f u n c t i o n 1 22 1 5 1 - 1 - 1
I I n t e r r u p t c o n t e x t 1 I 1 I 1
1 s w i t c h 1 22 1 5 1 - 1 - 1
I-------------------l--------I--------1-------.1------- I

Texas I n s t r u m e n t s 8-108 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I,.--,--~-~------~----I--------I--------I----------------
I I
I I n s t r u c t i o n I Clock j Memory i Add. Mod Tab le 1
I 1 Cyc le s I Access 1 Source I Dest 1

1 RSET 1 12 1 1 1 - 1 - 1
I RTWP 1 1 4 1 4 1 - 1 - 1
I S 1 14 1 4 l A I A I
I SB 1 14 1 4 B 1 B I
I SBO 1 12 1 2 1 - 1 - 1
I SBZ 1 12 1 2 1 - I - I
1 SET0 1 10 1 3 1 A 1 - 1
I SHIFT CfO I 12+2C I 3 1 - 1 - 1
1 C=O,RO=O 1 52 1 4 1 - I - I
1 C = O , R O = N ~ O 1 20+2N 1 4 1 - 1 - I
1 soc 1 14 1 4 1 A I A 1
I SOCR 1 14 1 4 1 B I B 1
I STCR C=O 1 60 1 4 1 A 1 - 1
1 1<=C<=7 1 42 1 4 1 1 - 1
I C=8 1 44 1 4 1 B I - 1
1 9<=C<=15 1 58 I 4 1 A 1 - 1
i STST f 8 i 2 1 - !
I STWP 1 8 1 2 1 - 1 - 1
I SWPB 1 10 1 3 1 A 1 - 1
1 szc 1 14 1 4 1 A I A I
1 SZCR 1 14 1 4 1 B I B 1
1 TB 1 12 1 2 1 - 1 - 1
I x b I 8 1 2 1 A I - I
I XOP 1 36 1 8 1 A I - I
I XOR 1 14 1 4 1 A I - I
I - - - - - - - - - - - - - - - - - - - I - I . ~ - ~ ~ ~ I ~ ~ ~ - ~ - ~ ~ 1 ~ I - - - - - - ~ - - - - - - - 1
I Undefined opcodes 1 6 1 1 1 - 1 - 1
1 - - - - - - - - - - - - - - - - - - - 1 ~ - ~ - ~ - ~ ~ 1 ~ - - - - - - - 1 - - - - - - ~ ~ ~ ~ - - - ~ - ~ D

a Execu t ion t ime i s dependent upon t h e p a r t i a l q u o t i e n t
a f t e r each c l o c k c y c l e d u r i n g e x e c u t i o n

b Execu t ion t i m e i s added t o t h a t of t h e i n s t r u c t i o n a t t h e
s o u r c e a d d r e s s minus 4 c l o c k c y c l e s and 1 memory a c c e s s

Address M o d i f i c a t i o n T a b l e s (A and B)

I---------------1---------------1----.)-.)---------- 1
1 Address ing 1 Clock Cycles 1 Memory Access I
I Mode I A I B I A I B I
I---------------I-------1----11------1-------l------- 1
I R e g i s t e r I O I ~ I ~ I O I
1 I n d i r e c t 1 4 1 4 1 1 I 1 I
I Indexed 1 8 1 8 1 2 1 2 1
1 Symbolic 1 8 1 8 1 1 1 1 I
I I n d i r e c t w i t h I 8 1 6 1 2 1 2 1
I a u t o i n c r e m e n t (1 i i i
I---------------I-------I----II-----II--I----l------- I

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

T - Total instruction execution time
tc - Clock cycle time
C - Number of clock cycles for instruction execution

plus address modification
W - Number of required wait states per memory access

for instruction execution plus address
modification

M - Number of memory accesses

As for the TMS9900 except:

~~--o---o~-~--------~-----o-o~--------

1 Instruction I Clock I Memory
I I Cycles I Access
I-------------------I-----o--I~-~I~~I~
I LIMI 1 14 1 2
I x a 1 4 1 1
l ~ - - - - o ~ - - - - ~ - - - ~ ~ - - I I - - - o - ~ I I I I ~ - - - o ~

I Add. Mod Table
I Source I Dest ----------------

- I -
' A I -
--1--1111-------

a Execution time is added to that of the instruction at the
source address minus 4 clock cyc1es and 1 memory access

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

1-------------------1---1--1-II0------1-------00----0-- 1
I I n s t r u c t i o n I C l o c k I Memory I Add* Mod T a b l e I
I j C y c l e s I Access I S o u r c e I Dest 1
1-------------------f-f--1---f-1-1-11-1-I-~------l----~~- I
1 A 1 22 1 8 I A 1 A l
I AB 1 22 I 8 1 B I B I
I ABS Msb=O 1 16 1 4 1 A 1 - 1
I Msb=l 1 20 1 6 1 A 1 - 1
I A 1 1 22 1 8 1 - 1 - 1
I A N D 1 1 22 1 8 1 - 1 - 1
I B 1 12 1 4 1 A 1 - 1
I RL 1 18 1 6 1 A I - I
I RLWP 1 3 8 f 1 2 1 A I - I
I c I 20 1 6 1 A I A I
I 1 20 1 6 I B I B I
I C I 1 20 1 6 1 - 1 - 1
1 CKOF 1 14 1 2 1 - 1 - 1
I CKON 1 14 1 2 1 - 1 - 1
I CLR 1 16 1 6 1 A 1 - 1
(CSC i 20 ! 6 1 A I
1 czc 1 20 1 6 1 A I - 1
1 DEC 1 16 1 6 l A 1 - 1
I DECT 1 16 1 6 1 A I - I
I D I V ST4 S e t 1 22 1 6 1 A 1 - 1
I ST4 Reset a 1104-136 1 12 1 A 1 - I
(IDLE 1 14 1 2 1 - I - I
I I N C 1 16 1 6 1 A I - I
I INCT 1 16 1 6 1 A 1 - 1
I INv 1 16 1 6 1 A I - I
I JUMP PC Changed 1 12 1 2 1 - 1 - 1
I PC Unchanged 1 10 1 2 1 - 1 - 1
I LDCR C=O 1 58 1 6 i A 1 - 1
I 1<=C<=8 1 26+2C 1 6 1 B 1 - 1
I 9<=C<=15 1 26+2C 1 6 1 A 1 - 1
I L I 1 18 1 6 1 - I - 1
I LIMI 1 22 1 6 1 - I - I
I LREX 1 14 1 2 1 - I - I
1 LWPI 1 14 1 4 1 - I - 1
I MOV 1 22 1 8 1 A 1 A I
I MOVB 1 22 1 8 1 B I B I
I MPY 1 6 2 1 1 0 1 A 1 - 1
I NEG 1 18 1 6 1 A 1 - 1
I OR1 1 22 1 8 1 - 1 - 1
I RSET 1 14 1 2 1 - 1 - 1
I RTWP 1 22 1 8 1 - 1 - 1
I s 1 22 I 8 1 A I A 1
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - , - - - - - - - - l - - - - - - - I
1 - R E S E T f u n c t i o n 1 3 6 1 10 1 - I - I
I '"LOAD f u n c t i o n 1 32 1 10 1 - 1 - 1
I I n t e r r u p t c o n t e x t I i i i I
I s w i t c h 1 3 2 1 1 0 1 - I - 1
1-------------------1-.------1-----------1------- I

T e x a s I n s t r u m e n t s O c t o b e r 1 9 8 1

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I-------------------~--------I--------1---------------- I
1 Instruction I Clock 1 Memory I Add. Mod Table 1
I 1 Cycles I Access 1 Source 1 Pest 1
I-------------------l------1----I----II--I--------l------- I
I Sl3 1 22 I 8 1 B I B I
1 SBO I 16 1 4 1 - 1 - 1
I SBZ 1 16 1 4 1 - 1 - 1
I SET0 1 16 1 6 1 A I - I
1 SHIFT C/O I 18+2C 1 6 1 - 1 - 1
I C=O,RO=O 1 60 1 8 1 - 1 - 1
1 C=O,RO=N/O 1 28+2N 1 8 1 - 1 - 1
I soc 1 22 1 8 l A I A I
I SOCB 1 22 1 8 1 R I B I
(STCR C=l) 1 68 1 8 1 A 1 - 1
I 1<=C<=7 I 50 1 8 1 B 1 - 1
I C=8 1 52 1 8 B 1 - 1
I 9<=C<=15 1 66 1 8 1 A ! - 1
I STST 1 12 1 4 1 - 1 - 1
1 S ~ P 1 12 1 4 1 - I - I
I SWPB 1 16 1 6 1 A 1 - 1
I szc 1 22 1 8 1 A 1 A I
I SZCB 1 22 1 8 1 B I 1
I TB 1 16 1 4 1 - 1 - 1
I X b 1 12 1 4 1 A 1 - 1
I XOP 1 5 2 1 1 6 I A 1 - 1
I XOR 1 22 1 8 l A 1 - 1
I - - - - - - - - - - - - - - - - - - - I - - - - - - - - , - - - - - - - - l - - - - - - - I
1 Undefined opcodes I 8 1 2 1 - 1 - 1
1-------------------I-I--1--------1--------l------- I

a Execution time is dependent upon the partial quotient
after each clock cycle during execution

b Execution time is added to that of the instruction at the
source address minus 4 clock cycles and 1 memory access

Address Modification Tables (A and R)

I Addressing I Clock Cycles I Memory Access I
I Mode 1 A l R I A 1 R I
1---------------1-------I-------I------l-------
I Register 1 o I o I o I o
I Indirect I ~ 1 6 1 2 1 2
I Indexed 1 1 2 1 1 2 1 4 1 4
I Symbolic (1 0 1 1 0 1 2 1 2
I Indirect with / 12 1 10 1 4 I 4
I autoincrement 1 1 I I

Use the TMS9900 formula for calculating the TMS9980A and
the TMS9981 instruction execution times

Texas Instruments 8-112 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I---------------I----------I---------- I----------I-------.--III---------1
I

1 I I E v e r y t h i n g l E v e r y t h i n g l I I
i i I b u t Src 1 bu t Dst ! !
1 I I and D s t I ope rand I I Operand I
I I n s t r u c t i o n I E v e r y t h i n g l o p e r a n d s 1 o f f c h i p I E v e r y t h i n g l a d d r e s s I
I I on c h i p I o f f c h i p 1 a I o f f c h i p 1 d e r i v a t i o n 1
I I C l l X M l I C1 l X M l 1 C 1 l X M l I C 1 l X M l I S r c 1 D s t I
I---------------I-----I~---111---1----1----.~----~-----~----~.---- I ----- I
I A 1 4 1 ~ 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 A 1
1 AB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 1 A I A I
I ARS 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I
I A I 1 4 1 0 1 6 1 4 1 6 1 4 1 8 l 8 1 - 1 - 1
I A N D 1 1 4 1 0 1 6 1 4 1 6 ~ 4 1 8 1 8 1 - 1 - 1
I B 1 3 1 O 1 4 1 2 1 4 1 2 1 4 1 2 I A I - I
I BL 1 5 1 O 1 6 1 2 1 7 l 4 1 7 1 4 1 A I - 1
I BLWP I 1 1 1 0 1 12 1 2 1 1 4 b l 6 b l 17 (1 2 (A I - 1
1 C 1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A 1 A I
I CB 1 4 1 O 1 5 1 2 1 5 l 3 1 5 I 4 1 A I A l
1 c1 1 4 1 ~ 1 6 1 4 1 6 1 4 1 7 l 6 1 - 1 - 1
I CKOF \ 7 i O i $ O 2 ~ 8 ~ 2 f 8 2 2 1 - 1 - I
I CKON 1 7 1 o 1 8 1 2 1 8 1 2 1 8 1 2 1 - 1 - 1
I CLR 1 3 1 O 1 4 1 2 1 5 1 4 1 5 1 4 1 A I - I
I COC 1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A 1 - I
I C Z C 1 4 1 O 1 5 1 2 1 6 1 4 1 7 1 6 1 A I - I
I DEC 1 3 1 0 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I
I DECT 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 1 A I - I
1 D I V S T 4 S e t c j 6 1 0 1 7 1 2 1 8 1 4 1 1 0 1 8 1 A 1 - 1
1 S T 4 R e s e t 1 2 8 1 0 1 2 9 1 2 1 3 0 1 4 1 3 4 1 1 2 1 A I - I
1 D I V S S T 4 S e t c l 10 1 0 1 1 1 1 2 1 1 2 1 4 1 3 6 1 8 1 A I - 1
I ST4 Rese t 1 3 3 1 0 1 3 4 1 2 1 3 5 1 4 1 3 9 1 1 2 1 A 1 - I
I IDLE d 1 7 + 2 1 1 O 1 8 + 2 1 1 2 1 8 + 2 1 1 2 1 8 + 2 1 1 2 1 - I - 1
I I N C 1 3 1 O 1 4 1 2 1 ~ 1 ~ 1 6 1 6 1 A I - 1
I INCT 1 3 1 O 1 4 1 2 1 6 1 6 1 6 1 6 l A I - I
I I N V 1 3 1 O 1 4 1 2 1 6 i 6 1 6 I 6 1 A l - I
I JTMP - A l l I 3 I o I 4 I 2 I 4 I 2 I 4 I 2 I - I - I
I LDCR C=O 1 4 1 1 0 1 4 2 1 2 1 4 3 1 4 1 4 4 1 6 1 A I - I
I 1<=C<=15 I 9+2C1 0 110+2CI 2 111+2CI 4 112+2CI 6 1 A I - I
1 LI: 1 3 1 0 1 5 1 4 1 5 1 4 1 ~ 1 6 1 - 1 - 1
I LIMI 1 5 1 ~ 1 7 1 4 1 7 1 4 1 7 1 4 1 - 1 - 1
I LREX 1 7 1 0 1 8 1 2 1 8 1 2 1 8 1 2 l - 1 - 1
I LST 1 5 l o 1 6 1 2 1 6 1 2 1 7 l 4 1 - I - ~
I LFJP 1 4 1 0 1 5 1 2 1 6 1 2 1 6 l 4 1 - 1 - 1
I LWPI 1 4 1 ~ l 6 1 4 1 6 1 4 1 6 1 4 1 - 1 - 1
1 MOV 1 3 1 O 1 4 1 2 1 5 1 4 1 6 1 6 1 A I A I
I MOVB 1 3 1 O 1 4 1 2 1 4 1 3 1 4 1 4 1 A I A I
I--.------------I-----I~~-II-I-III~---11----~----~----.~----~--I--~----- I
1 A l l i n t e r r u p t I I I I I I 1 I 1 I 1
I c o n t e x t 1 1 1 1 1 I I I I I 1
1 s w i t c h e s 1 14 e l 0 e l 17 b l 6 b l 17 b l 6 b l 20 i l l 2 £1 - 1 - I
I---------------I-----1~~-~I-~-~-1.-I--I-----~----~-----~----~-----i----- i

Texas I n s t r u m e n t s Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I---------------I----------~II-~~-Ig~-1----------~----------~----------- i
I I I E v e r y t h i n g l E v e r y t h i n g l I I
I I I b u t S r c I b u t D s t 1 1 I
I I I and D s t I operand I 1 Operand I
I I n s t r u c t i o n I E v e r y t h i n g l o p e r a n d s I o f f c h i p I E v e r y t h i n g l a d d r e s s I
I I on c h i p 1 o f f c h i p I a I o f f c h i p I d e r i v a t i o n 1
1 (C l l X M l I C 1 l X M l 1 C1 l X M l I C1 l X M l I S r c I n s t I
1---------------I-----I~---Ig----~----~----~~---~~~----~~---~-----~----- 1
I MPY 1 2 3 (0 1 2 4 1 2 1 2 5 1 4 1 2 8 1 1 0 1 A 1 - I
1 MPYS (2 5 1 0 1 2 6 1 2 1 2 7 1 4 1 3 0 1 1 0 1 A I - I
I NEG 1 ~ 1 ~ 1 4 l 2 1 6 1 f i 1 6 1 6 1 A 1 - 1
I O R 1 1 4 1 0 1 6 1 4 1 6 1 4 1 8 1 8 1 - 1 - 1
1 RSET 1 7 1 0 1 8 1 2 1 8 1 2 1 8 1 2 1 - 1 - 1
1 RTWP 1 6 1 0 1 7 1 2 1 7 g l 2 g l 1 0 1 8 1 - I - I
I S 1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 l A I A l
I SB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 l A I A 1
1 SBO 1 8 1 0 1 9 1 4 1 9 1 2 1 1 0 1 4 1 - I - I
I SBZ 1 8 1 0 1 9 1 2 1 9 1 2 1 1 0 1 4 1 - I - 1
1 SET0 1 3 1 0 1 4 1 2 1 5 1 4 1 5 1 4 1 - - I
I SHIFT CBO (5 + C I 0 1 6 + C 1 2 1 6 + C l 2 1 8 + C 1 6 1 - I - I
I C=O,RO=O 1 2 3 1 0 1 2 4 1 2 1 2 4 1 2 1 2 7 1 8 1 - I - I
I C=O,RO=NBO I 7 + N 1 0 I 8 + N 1 2 1 8 + N 1 2 I 1 1 + N 1 8 1 - I - I
I SOC 1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 1 A I A I
(SOCB 1 4 1 O 1 5 1 2 1 5 1 3 1 5 1 5 I A I A 1
(STCR C=O (4 3 1 0 1 4 4 1 2 1 4 6 1 6 1 4 7 1 8 1 A I - 1
I 1<=C<=8 119+C (0 120+C 1 2 122+C 1 6 123+C 1 8 1 A I - I
I 9<=C<=15 127+C I 0 128+C 1 2 130+C 1 6 131+C 1 8 1 A I - I
I STST 1 3 1 ~ 1 4 1 2 1 4 1 2 1 5 1 4 l - 1 - 1
1 STWP 1 3 1 0 f 4 1 2 1 4 1 2 1 5 1 4 1 - 1 - 1
I SWPB 1 1 3 1 0 1 1 4 1 2 1 1 6 1 6 1 1 6 1 6 1 A I - I
1 SZC l 4 1 ~ 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 A I
I SZCB f 4 1 ~ ~ 5 ~ 2 ~ ~ ~ 3 1 5 1 5 1 A I A 1
I TB (8 1 0 1 9 1 2 1 9 1 2 1 1 0 1 4 1 - I - I
I X h 1 2 1 ~ 1 3 1 2 1 4 1 4 1 4 1 4 1 A I - I
1 XOP 1 1 5 1 0 1 16 1 2 1 1 8 b l 6 b l 22 1 1 4 (A I - I
1 XOR 1 4 1 O 1 5 1 2 1 6 1 4 1 8 1 8 1 A 1 - I
1---------------1-----~----~-----~----~~----~----~-----~---- I-----!----- I

a R e g i s t e r s f o r r e g i s t e r - o n l y i n s t r u c t i o n s (STST, LST, STWP, LWP,
s h i f t s) and r e g i s t e r s f o r i n s t r u c t i o n s where a n a d d i t i o n a l r e g i s t e r
i s r e q u i r e d (AI, A N D I , BL, C I S LDCR, L I , O R I , SBO, SBZ, STCR, TB,
and s h i f t s) a r e on c h i p .

b T rap v e c t o r o f f c h i p and new workspace on c h i p .
c E x e c u t i o n t i m e i s dependen t upon t h e p a r t i a l q u o t i e n t a f t e r each

c l o c k c y c l e d u r i n g e x e c u t i o n . Clock c y c l e s shown a r e f o r worse c a s e
o p e r a n d s .

d W i l l r emain i n I d l e s t a t e u n t i l a n unmasked i n t e r r u p t r e q u e s t o c c u r s
(I = number of CLKOUT c y c l e s u n t i l t h e r e q u e s t o c c u r s) .

e Trap v e c t o r and new workspace on c h i p (NMI o n l y) .
f Trap v e c t o r and new workspace on c h i p .
g Workspace on c h i p .
h E x e c u t i o n t i m e shown does n o t i n c l u d e e x e c u t i o n t ime of t h e

i n s t r u c t i o n l o c a t e d a t t h e s o u r c e operand .

Texas I n s t r u m e n t s 8-114 Oc tobe r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Operand Address Derivation Table (A)

I I Registers
1 Registers, on chip;
I index base I index base

Addressing 1 addr, and 1 addr, and
Mode I symbolic 1 symbolic

1 address I address
I on chip I off chip
1 C2 I XM2 I C2 1 XM2

- - - - - - - - - - - - - - - 1 - - - - - - 1 1 - ~ - 1 1 1 ~ - ~ - ~ 1 ~ ~ ~ - -
1 Register 1 0
I Indirect I 1
I Symbolic 1 1
I Indexed 1 3
I Indirect with 1 3
I autoincrement I

Registers
off chip;
index base
addr, and
symbolic
address
on chip
C2 1 XM2

------I-----

I
Registers, 1
index base I
addr, and I
symbolic I
address I
off chip I
C2 I XM2 I

,-----I----- I

T - Total instruction execution time
tc - CLKOUT cycle time
C 1 - Base CLKOIJT cycles
C2 - Additional CLKOUT cycles for operand address

derivation (table 'A' above)
W - Number of wait states per off chip (byte length)

memory cycle
XM1 - Base off chip (byte length) memory cycles
XM2 - Additional off chip (byte length) memory cycles

for operand address derivation (table 'A''- aboire) "

Address Modification Table A

---------------I--------I--------
Addressing 1 Clock I Memory
Mode 1 Cycles I Access

---------------I--------I.-.---..--
Register 1 0 1 0
Indirect 1 4 1 1
Indexed 1 6 1 2
Symbolic 1 6 1 1
Indirect with 1 6 1 2
autoincrement 1 1

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

l----------------===i==--'--------i---------------- i I
I I n s t r u c t i o n I C l o c k I M e m o r y 1 A d d . M o d T a b l e I
1 I C y c l e s A c c e s s I S o u r c e 1 D e s t 1
I-------------------III---1----IIII-I-I-II--------l------- I
I A 1 1 2 1 4 1 A I A I
I AB 1 12 1 4 1 A 1 A i
I A B S M s b = O 1 10 1 2 1 A 1 - 1
I ~ s b = l 1 14 1 3 1 A 1 - 1
I A I 1 14 1 4 1 - I - I
I A N D 1 1 14 1 4 1 - 1 - 1
1 B I 6 I 1 I A 1 - 1
I B L 1 10 1 2 1 A I - I
I BLWP 1 2 4 1 6 1 A 1 - 1
I C 1 1 2 1 3 1 A 1 A 1
I C B 1 1 2 1 3 1 A I A I
I C I 1 12 1 3 1 - 1 - 1
(CKOF 1 10 1 1 1 - 1 - 1
1 CKON 1 10 1 1 1 - 1 - 1
I C L R I 8 1 2 1 A 1 - 1
1 coc 1 12 1 3 1 A 1 - I
I C Z C 1 12 1 3 1 A 1 - 1
I DEC I 10 I 3 1 A 1 - 1
1 D E C T 1 10 1 3 1 A 1 - 1
(D I V S T 4 S e t 1 2 0 1 4 1 A 1 - 1
1 S T 4 R e s e t 1 56 1 6 1 A 1 - I
1 D I V S S T 4 S e t 1 56 1 4 1 A 1 - 1
I S T 4 R e s e t 1 60 1 6 1 A 1 - 1
I I D L E 1 10 1 1 1 - I - I
(I N C 1 10 1 3 1 A f - I
I I N C T 1 10 1 3 1 A I - I
I I N V 1 10 1 3 1 A 1 - 1
1 J I J M P s - A l l I 6 I 1 1 - 1 - 1
1 LDCR C=O 1 48 1 3 1 A 1 - 1
I 1 < = C < = 1 5 I 1 6 + 2 C I 3 1 A 1 - 1
I L I 1 12 I 3 1 - 1 - 1
1 L I M I 1 1 2 1 2 1 - 1 - 1
1 LREX 1 10 1 1 1 - 1 - 1
I L S T 1 10 1 2 1 - 1 - 1
I LWP 1 10 1 2 1 - 1 - 1
I L W P I 1 1 2 1 2 1 - 1 - 1
1 MOV 1 10 1 3 1 A 1 A I
I MOVB 1 1 2 1 4 1 A I A 1
I MPY 1 5 2 1 5 1 A 1 - 1
I MPYS 1 56 1 5 1 A I - 1
1 NEG 1 1 2 1 3 1 A 1 - 1
1-------------------111-1---1II---I-I-I--------l------- I
I " R E S E T f u n c t i o n / 2 0 1 5 i - 1 - 1
I -LOAD f u n c t i o n 1 20 1 5 1 - I - I
I I n t e r r u p t con tex t I I 1 I I
I s w i t c h 1 2 0 1 5 1 - I - I
1-1-----------------l-----1---1-11-1--111I--------l------- I

T e x a s I n s t r u m e n t s 8-116 O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I--------.----------I~.-.--.-!---.----1---------.---.-- 1
1 Instruction I Clock 1 Memory j Add. Mod Table 1
i) Cycles Access 1 Source I Dest 1
I--------------.----II~~-----I-~-I-.~-I------.-~~---..- 1
1 O R 1 ! 1 4 1 4 1 - 1 - 1
I RSET 1 1 0 1 1 1 - 1 - 1
I RTWP 1 1 6 1 4 1 - 1 - 1
I S 1 1 2 1 4 1 A I A I
I SB 1 1 2 1 4 1 A I A 1
I SBO 1 1 2 1 2 1 - 1 - 1
1 SBZ 1 1 2 1 2 1 - I
I SET0 I 8 1 2 1 A 1 - 1
I SHIFT CfO I 12+2C 1 3 1 - 1 - 1
I c = o , ~ o = o 1 52 1 4 1 - 1 - 1
1 C=O,RO=N/O I 20+2N I 4 1 - 1 - 1
I soc 1 1 2 1 4 1 A I A I
I SOCB 1 1 2 1 4 1 A 1 A 1
I STCR C=O 1 56 1 4 1 A I - I
1 1<=C<=8 1 4 0 1 4 1 A 1 - 1
1 9<=C<= 1 5 1 56 1 2 1 A 1 - 1
1 STST I 8 1 2 1 - 1 - 1
i STVP t 8 i 2 = I - !
1 swaR I 1 0 I 3 1 A 1 - 1
I szc 1 1 2 1 4 1 A I A I
I SZCB 1 1 2 1 4 1 A 1 A I
I TB 1 1 2 I 2 1 - 1 - 1
I x a 1 4 1 1 I A 1 - I
I XOP b 1 28 1 7 1 A 1 - 1
I XOR 1 1 2 1 4 1 A 1 - 1
\ - - - - - - - - - - - - - - . - - - - I - ~ ~ - ~ ~ - - 1 1 - - - - - - - ~ I - - - - - - - I ~ I - - - - - I
I Undefined opcodes 1 24 1 I - 1 - 1
11-----------------III---.-.-I--III-.-I-------.l.----.- I

% 2

a Execution time is added to that of the instruction located
at the source address

b Execution time includes time to perform a context switch
resulting from XIPP being inactive

T - Total instruction execution time
tc - Clock cycle time
C - Number of clock cycles for instruction execution

plus address modification
W 1 - Number of required wait states per memory access

for instruction execution plus address
modification

M - Number of memory accesses
R - Number of CRU operations
W2 - Number of required wait states per CRU operation

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

I-------------------I------.-I--------
I I n s t r u c t i o n I M a c h i n e] M e m o r y
I I S ta tes 1 A c c e s s
l-------------------I--------l--------
I A I 4 I 4
1 AB I 4 1 4
I A B S M s b = O I I 3
I M s b = l I 3 1 3
I A 1 I 4 1 4
I AM 1 1 2 1 7
1 A N D 1 I 4 1 4
I I 3 1 1
I R I N D I 4 1 2
I B L I 5 1 2
I BTJSK I 7 I 5
I RLWP I 11 I 6
I c I 4 1 3
1 C B I 4 1 3
I C I I 4 1 3
I CKOF I 7 1 1
(CKON I 7 1 1
1 C L R 1 3 1 2
I coc I 4 1 3
1 czc 1 4 1 3
I DEC 1 3 1 3
1 D E C T I 3 1 3
I D I V S T 4 S e t 1 10 I 4
I S T 4 R e s e t a 1 31 1 6
I D I V S S T 4 S e t 110 o r 131 4
I S T 4 R e s e t a 1 35 1 6
I I D L E 1 7+2N 1 1
1 INC 1 3 1 3
I I N C T I 3 1 3
I I N V ' I 3 1 3
1 JUMPS - A l l 1 3 1 1
1 LDCR C = O , s e r i a l 1 40 1 3
I C f 0 , s e r i a l I 8 + 2 C 1 3
I p a r a l l e l I 5 1 3
I L I I 3 1 3
(L I M I I 5 1 2
I L R E X I 7 1 1
I L S T I 5 1 2
I LWP I 3 1 2
1 L W P I I 3 1 2
I-------------------!-------- , - - - - - - - -
I A l l i n t e r r u p t I I
1 con tex t s w i t c h e s 1 14 1 6
1-------------------11--1-111111--1-11

---------------I i
A d d . Mod T a b l e I
Source 1 D e s t f

--------I------- 1
A I A I
A I A I
A 1 - 1
A 1 - 1
0 I - I
A
0

1a1
I - I

A 1 - 1
A 1 - 1
A 1 - 1
0 1 - 1
A I - 1
A 1 A 1
A
0

I A I
I - 1 - I - I

0 1 - 1
A 1 - 1
A 1 - 1
A I - I
A I - I
A 1 - 1
A 1 - 1
A 1 - 1
A 1 - 1
A 1 - 1
0 1 - I
A 1 - 1
A 1 - 1
A 1 - 1 - 1 - 1
A 1 - 1
A 1 - 1
A 1 - I
0 I - I - I - I - 1 - 1
- 1 - 1
0 1 - 1 - 1 - 1

--------I------- I
I - 1
1 - 1

--------I------- 1

Texas I n s t r u m e n t s O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

----------G==G-----i--------;-----m--
Instruction I Machinel Memory

I States j Access
.-.-----------.----I--.-----I-..---.-
MOV 1 3 i 3
MOVB I 4 1 4
MPY 1 24 1 5
MPYs 1 26 1 5
NEG I 3 1 3
OR1 1 4 1 4
RSET 1 7 1 1
RTWP I 6 1 4
S I 4 1 4
SR I 4 1 4
SBO I 7 1 2
SBZ I 7 1 2
SET0 i 3 1 2
SHIFT CfO I 5+c I 3
C=O , RO=O 1 22 1 4
C=O,RO=N+O I 7+N I 4

SHIFT DOUBLE C#O I 13+C I 5
C=O ,R6=0 1 30 5 6
C=O,RO=N+O I14+N I 6

SM 1 11 I 7
SOC 1 4 1 4
SOCB I 4 1 4
STCR C#O,serial 1 13+2C I 4

C=O,serial 1 45 1 4
parallel I 9 1 4

STST I 3 1 2
STWP I 3 1 2
SWPB I 3 1 3
szc I 4 1 4
SZCB I 4 1 4
TB I 7 1 2
TEST MEMORY BIT 1 28 1 3
X b 1 2 1 1
XOP I 1 5 c I 8
attached proc. 1 I 10
XOR I 4 1 4

-----------..------I...mI---l......------
Undefined opcodes 1 14 c I 6
external proc. 1 I 8

.l-o--l-l--------l-l---.--.-l--------

Add, Mod Table I
Source 1 Dest I

a Execution time is dependent upon the partial quotient
after each clock cycle during execution

b Execution time is added to that of the instruction located
at the source address

c Exceution time does not include the time required by soft-
ware or an attached processor to emulate the instruction

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Address Modification Table A

I---------------I------------- I
I Addressing 1 Clock I Memory 1
I Mode 1 Cycles I Access I

1 Register
I Indirect
I Indexed
I Symbolic
I Indirect with
I autoincrement

T - Total instruction execution time
tc - Machine state time (four times the external input

clock period)
C - Number of machine states for instruction execution

plus address modification
W - Number of required wait states per memory access

for instruction execution plus address
modification

M - Number of memory accesses

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8 4 1 P i n Assignments

P i n Function Pin Function Pin Function

Vbb
vcc
WAIT
-LOAD
HOLDA
-RE SET
IAQ
01
62
A14
A1 3
A1 2
A1 1
A1 0
A3
A8
A7
A6
A5
A4
A3
A4

A1 45
A0 46
!94 47
Vs s 48
Vd d 49
03 SO
DBIN 5 1
CRUOUT 52
CRUIN 53
"INTREQ 54
IC3 55
IC 2 56
re1 57
ICO 58
NC 59
NC 60
NC 6 1
Vs s 62
DO 63
Dl 64
D2
D3

D4
D5
D6
D7
D8
D9
nio
ni 1
Dl 2
Dl3
Dl4
Dl5
NC
NC
Vcc
CRUCLK
-WE
READY
-MEMEN
-HOLD

NC - No internal connection

P i n Function Pin Function Pin Function

1 '"HOLD 15
2 TiOLDA 16
3 IAQ 17
4 A~~~CRUOIJT 18
5 A1 2 19
6 A1 1 20
7 A1 0 2 1
8 A9 22
9 A8 23
10 A7 24
11 A6 25
12 A5 26
13 A4 27
14 A3 28

Texas Instruments

A2
A1
A0
DBIN
CRUIN
vcc
Vbb
-133
INT 2
INT 1
INT 0
DO
Dl
D2

D3
D4
D5
D6
D7
CKIN
vs s
Vdd
CRUCLK
-WE
READY
'"MEMEM

October 198i

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

i4*iim3 m,*annn*
1 -BSY Y b l

P i n Funct ion P i n Funct ion P i n Func t ion

1 -HOLD 15
2 HOLDA 16
3 I A Q 17
4 A l 3 / C R l J O U T 18
5 A 1 2 19
6 A 1 1 20
7 A 1 0 2 1
8 A 9 2 2
9 A 8 23

10 A7 24
11 A6 25
1 2 A 5 26
13 A4 27
1 4 A 3 28

A2
A 1
A 0
D B I N
C R U I N
vcc
03
I N T 2
I N T 1
I N T 0
DO
D l
D 2
D 3

B 4
D 5
D6
D 7
OSCOUT
C R I N
vs s
V d d
CRUCLR
"WE
READY
"MEMEM

P i n Funct ion P i n Func t ion P i n Funct ion

GND
GND,
W A I T
-LOAD
HOLDA
- R E S E T
I A Q
CLOCK
I N J
A1 4
A 1 3
A 1 2
A 1 1
A 1 0
A9
A 8
A7
A 6
A 5
A4
A 3
A4

A 1
A 0
NC
I N J
GND
GND
D B I N
CRUOUT
C R U I N
" INTREQ
I C 3
I C 2
I C 1
I C O
NC
NC
NC
I N J
DO
D l
D 2
D 3

D 4
D 5
D 6
D 7
D 8
D 9
d10
D l 1
d12
d13
d14
D l 5
I N J
NC
-CYCEND
CRUCLK
"WE
READY
"MEMEN
-HOLD

T e x a s I n s t r u m e n t s 8 - 1 2 2 O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

P i n Funct ion P i n Funct fon P i n Func t ion

XTAL 1 15
X T A L ~ I C L K I N 16

CLKOUT 17
D 7 18
D 6 19
D 5 2 0
D 4 2 1
D 3 22
D 2 2 3
V c c 24
D l 2 5
DO 2 6
C R U I N 27

- 1 N T 4 1 ' " ~ C 28

-INT 1
I A Q ~ H O L D A

- D B I N
"'HOLD

-WE/-CRUCLK
'"MEMEM
'"NMI
- R E S E T
READY
A 0
A 1
A2
A 3
A 4

29 A 5
30 A 6
3 1 vs s
3 2 A 7
33 A 8
34 A 9
35 A 1 0
36 A 1 1
37 A 1 2
38 A 1 3
39 A 1 4
4 0 A 1 51 CRUOUT

P i n Func t ion P i n Func t ion P i n Funct ion

GND
GND
W A I T
-LOAD
HOLDA
-RE S E T
I A Q
CLOCK
I N J
A 1 4
A 1 3
A 1 2
A 1 l.
A 1 0
A9
A 8
A7
A 6
A 5
A4
A 3
A 4

T e x a s I n s t r u m e n t s

A 1
A 0
-MPEN
I N J
GND
GND
DRIN
CRUOUT
C R U I N
-1NTREQ
I C 3
I C 2
I C 1
I C O
INTACK
NC
MP I L C K
I N J
DO
D l
D 2
n3

D 4
D 5
D 6
D 7
D 8
D 9
d10
D l 1
d12
d13
d14
d15
I N J
- X I P P
-CYCEND
CRUCLK
-WE
READY
-MEMEN
-HOLD

O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.11.7 TMS99000 Family

P i n Func t ion P i n Func t ion P i n Func t ion

-WE/-CRTJCLK 15 Vcc 29 A 1 3 / ~ 1 3
-DEN 16 A O / D O / C R U I N 30 A 1 4 / ~ 1 4
-RESET 17 ~ 1 1 ~ 1 31 -ST$ /D~~/CRUOUT
-APP 18 A 2 / ~ 2 32 ALATCH
-HOLD 19 A3/D3 33 V s s
WAITGEN 20 A 4 / ~ 4 34 CLKOUT
READY 2 1 A5/D5 35 XTAL2
-1NTREQ 22 A 6 1 ~ 6 36 X T A L ~ I C L K I N
7?MI 23 A7/D7 37 BST3
I C O 24 A8/D8 38 RST2
I C 1 25 ~ 9 1 ~ 9 39 BSTl
IC2 26 A l o / D l o 40 '"MEM
IC3 27 ~ 1 1 / ~ 1 1
-1NTP 28 A 1 2 / ~ 1 2

Texas I n s t r u m e n t s October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

-8.14.12 ASCII C h a r a c t e r S e t

Char Hex C h a r

NUL 00
SOH 0 1
STX 0 2
ETX 0 3
EOT 04
ENQ 0 5
ACK 06
BEL 07
BS 0 8
HT 0 9
LF OA
VT OB
FF OC
CR OD
SO OE
S 1 OF
9LE 10
D C 1 11
DC2 12
DC3 1 3
DC4 14
N AK 1 5
SYN 16
ETR 17
CAN 18
EM 19
SUB 1 A
ESC 1B
FS 1 C
GS 1 D
RS 1E
U S 1F
S p a c e 20
! 2 1
11 22
a 23
$ 24
X 25
& 26
I

27
(28
1 29 * 2A

T e x a s I n s t r u m e n t s

Hex Char

DEL

Hex

O c t o b e r 1 9 8 1

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8 , ? 4 , 1 3 Hex-Decimal Table

----------------------.--.-l~~--.---...--..---.~--.--~- I
E v e n B y t e I O d d B y t e

,-----,------l----------1----l------l---.-----..--
i
i

H e x D e c I H e x D e c I H e x D e c I H e x D e c 1
,------------1----------.--l-~~----..-.--l----------.-- I

0 0 1 0 0 1 0 0 1 0 0 I
1 4,096 1 1 256 1 1 16 1 1 1 I
2 8,192 1 2 512 1 2 32 1 2 2 1
3 12,288 1 3 768 1 3 48 1 3 3 1
4 16,384 1 4 1,024 1 4 64 1 4 4 1

I 5 20,480 1 5 1,280 1 5 80 1 5 5 1
6 24,576 1 6 1,536 1 6 96 1 6 6 1

1 7 28,672 1 7 1,792 1 7 112 1 7 7 1
8 32,768 1 8 2,048 1 8 128 1 8 8 1
9 36,864 1 9 2,304 1 9 144 1 9 9 1
A 40,960 1 A 2,560 1 A 160 1 A 10 I
B 45,056 I B 2,816 1 R 176 1 B 11 I

I C 49,152 1 C 3,072 1 C 192 1 C 12 1
1 D 53,248 1 D 3,328 1 D 208 1 D 13 1
1 E 57,344 1 E 3,584 1 E 224 1 E 14 1
I F 61,440 1 F 3,840 1 F 240 1 F 15 1
11-------01---1-0-----------II.~~---I--,--[--.-----.---- I

T e x a s I n s t r u m e n t s 8-126 O c t o b e r 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.15 BIBLIOGRAPHY

TI Publications

TMS9900 Microprocessor Assembly Language Programmer's
Guide (943441-9701)

TMS9901 Programmable Systems Interface (MP003)

TMS9902 Asynchronous Communications Controller Data
Manual (M~004)

~~990/100M Microcomputer User's Guide (MP321)

TM990/101M Microcomputer User's Guide (MP337)

~ ~ 9 9 0 / 3 0 2 Software Development Board User's Guide (~ ~ 3 4 3)

~k990/402 Line-by-Line Assembler User's Guide and
Listing (MPBO7)

Component Software Handbook (MP918)

Realtime Executive User's Manual (MP373)

Model 990 Computer Terminal Executive Development System
(TXDS) Programmer's Guide (946258-9701)

Model 990 Computer AMPL Microprocessor Prototyping
Laboratory Operation Guide
AMPL I (946244-9701)
AMPL I1 (946275-9701)

Model 990 Computer DXlO Operating System Release 3
Reference Manuals Vo lume s :
I1 Production Operation (946250-9702)
111 Application Programming Guide (946250-9703)
IV Developmental Operation (946250-9704)

Time of Day Clock Application Sheet

Texas Instruments 8-127 October 1981

	00001
	00002
	00003
	00004
	00005
	00006
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01_MicroprocessorPascal
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	6-83
	6-84
	6-85
	6-86
	6-87
	6-88
	6-89
	6-90
	6-91
	6-92
	6-93
	6-94
	6-95
	6-96
	6-97
	6-98
	6-99
	7-01_PowerBasic
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	8-001_AssemblyLang
	8-002
	8-003
	8-004
	8-005
	8-006
	8-007
	8-008
	8-009
	8-010
	8-011
	8-012
	8-013
	8-014
	8-015
	8-016
	8-017
	8-018
	8-019
	8-020
	8-021
	8-022
	8-023
	8-024
	8-025
	8-026
	8-027
	8-028
	8-029
	8-030
	8-031
	8-032
	8-033
	8-034
	8-035
	8-036
	8-037
	8-038
	8-039
	8-040
	8-041
	8-042
	8-043
	8-044
	8-045
	8-046
	8-047
	8-048
	8-049
	8-050
	8-051
	8-052
	8-053
	8-054
	8-055
	8-056
	8-057
	8-058
	8-059
	8-060
	8-061
	8-062
	8-063
	8-064
	8-065
	8-066
	8-067
	8-068
	8-069
	8-070
	8-071
	8-072
	8-073
	8-074
	8-075
	8-076
	8-077
	8-078
	8-079
	8-080
	8-081
	8-082
	8-083
	8-084
	8-085
	8-086
	8-087
	8-088
	8-089
	8-090
	8-091
	8-092
	8-093
	8-094
	8-095
	8-096
	8-097
	8-098
	8-099
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	8-111
	8-112
	8-113
	8-114
	8-115
	8-116
	8-117
	8-118
	8-119
	8-120
	8-121
	8-122
	8-123
	8-124
	8-125
	8-126
	8-127

